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Controlled Charging of Electric Vehicles in
Residential Distribution Networks

Alison O’Connell, Student Member, IEEE, Damian Flynn, Senior Member, IEEE Peter Richardson, Member, IEEE
Andrew Keane, Member, IEEE

Abstract—The integration of electric vehicles (EVs) poses
potential issues for low voltage (LV) distribution networks, such
as voltage deviations and overloading of equipment. Controlled
EV charging is seen as one possibility for reducing, or even
eliminating, these issues. This work presents an optimisation
method which focuses on controlling the rate at which EVs charge
over a 24-hour time horizon, subject to certain constraints. A
sample distribution network is used and the optimisation tool is
tested for multiple objective functions.

Index Terms—Electric Vehicle, Load Flow, Optimisation,
Smart Grid.

I. INTRODUCTION

ELECTRIC vehicles (EVs) are a technology that has
been gaining increasing interest in recent times. Many

governments have set ambitious targets for penetration levels
of EVs in an effort to reduce greenhouse gas emissions
[1]. For example, in Ireland there is a targeted 10% EV
penetration level by 2020 for passenger vehicles [2] which
will be the equivalent of approximately 230,000 vehicles [3].
The charging of these vehicles will result in a significant
increase in system demand at certain times which may in
turn cause a major strain on power systems, in particular
distribution networks. Furthermore, when a typical working
day is considered it may be the case that EV charging
coincides with the existing daily demand peak resulting in the
need for expensive peaking plants to come online. To cope
with this additional load there is a need to either invest in
major network reinforcement, encourage EV users to charge
at off peak times or to devise controlled charging schemes or
some combination of the above.

Previous authors have proposed methods for controlling
charging of EVs from both the system point of view [4], [5]
and the distribution network point of view [6]–[9]. In [10]
the authors used linear programming to maximise the energy
delivered to EVs, subject to network constraints. Network
sensitivities to the addition of EV load were obtained by
running load flow calculations for increasing penetration levels
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of EVs, which were then used to optimise EV charging rates.
The authors in [11] examined a case study for both EVs and
distributed generation (DG) for the year 2030. The charging
start time of EVs was controlled subject to the users’ desired
final battery state of charge (BSOC) and charging end time.
Another method proposed by [12] used both quadratic and
dynamic programming to minimise distribution network losses
based on when customers need EVs to be fully charged
by. Many of the above approaches require an optimisation
calculation for each time step and have only one objective,
in many cases minimising power losses.

In this work a 24-hour horizon is considered, meaning that
only one optimisation is required per day. The optimisation
objective can be varied and customised to an individual
network operator’s specifications. In this case three objectives
and an uncontrolled case are tested and compared with respect
to EV charging. All calculations are perfomed using time
series three phase unbalanced load flow. Section II outlines the
optimisation process, Section III describes the test network and
simulation case, Section IV presents the results and discussion
and Section V outlines the main conclusions and further work.

II. METHODOLOGY

A. Load Flow Method

The load flow method used in this work is the four conduc-
tor current injection method (FCIM) proposed by the authors
in [13] . The Newton-Raphson based method performs a three-
phase load flow with additional representation of the neutral
conductor. It can be used for balanced or unbalanced load
flow, and on both radial and meshed feeders. The known
currents injected at each bus by loads, generators, etc. are
used to calculate the current mismatches. The Jacobian matrix
is formed using the elements of the nodal admittance matrix
and combined with the current mismatches gives values for
the voltage mismatches at each bus.

B. Network Sensitivities

A network sensitivity matrix is computed in a similar
fashion to that of [10], performing load flow calculations
to determine network sensitivities to the addition of load,
however in this case the matrix relates changes in real and
imaginary current at one node to changes in real and imaginary
voltage at both its own node and other nodes. This provides the
ability to predict the network voltages for specified changes
in current.

http://alison.o-connell@ucdconnect.ie
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C. Optimisation

The optimisation may be implemented by some third party
aggregator as a centralised scheme to control the charge rate
of EVs on an individual feeder or on a group of feeders. It is
assumed that the aggregator has full knowledge of the network
conditions for both current and future optimisation horizon
i.e 24 hours ahead. In reality there may be some forecasting
errors, however those errors have not been considered as of
yet.

Three different objectives are tested in this work as de-
scribed in the following subsections.

1) Maximum Power Objective: Maximises the power de-
livered to EVs for the total availability period, as shown
in (1), meaning that a particular EV’s charging is spread
across the time period for which it is available, subject to the
energy requirement constraint (6). This results in a somewhat
flattened EV load profile with some variations representing
EVs connecting and disconnecting.

max
∑
hεD

∑
kεKEV

∑
dεσd

(P dEVk
)h (1)

where
D set of all hours for which tool is being run;
KEV set of buses with an EV connected;
σd set of phases {a, b, c};
P dEVk

EV active power at bus k phase d.

2) Minimum Cost Objective: Minimises the cost of char-
ging EVs, as seen in (2). The minimum cost objective can
be viewed as a customer focused objective as it serves as an
incentive for EV users to allow a third party to control the
charging of their EV. It could also be seen as advantageous
from a system point of view, as a low electricity price usually
correlates quite well with low system demand, meaning that
EV charging may be allocated to those periods of lower
demand. In (2), Ch represents the cost of electricity at hour
h. It is assumed that the electricity price is known a day in
advance and that the addition of EV load has been considered
when the price for each hour was determined. It should
be noted that the energy requirement constraint, defined in
equation (6), restricts the optimisation so that the minimum
cost solution does not mean that all P dEVk

= 0.

min
∑
hεD

∑
kεKEV

∑
dεσd

(P dEVk
)h × Ch (2)

3) Maximum Wind Objective: Maximises power delivered
to EVs when the system wind penetration is high, as in (3).
This objective takes a system viewpoint. When the ratio of
forecasted wind to system demand (forecasts are used as this
tool is being run for a 24-hour horizon) is high, it can be
assumed that system demand is low while wind generation
is high. Interconnector flows with neighbouring systems will
complicate this relationship. There is then scope to increase
demand, in this case by adding EV load to the system, without
depending on expensive peaking plants coming online. In (3),
Wh represents the ratio of forecasted wind to system demand.

max
∑
hεD

∑
kεKEV

∑
dεσd

(P dEVk
)h ×Wh (3)

4) Constraints: Equation (4) shows the voltage constraint
created using the network sensitivity matrix mentioned in
Section II-B, where the voltage is limited between V dmin and
V dmax. V dinit represents the initial voltage computed by the load
flow for the base case when there are no EVs present.

V dmin ≤ abs(V dinitk − α
d
kI
d
k −

nb∑
i=1

∑
tεσd

αdtkiI
t
i )≤V dmax (4)

where
nb total number of buses;
Idk = IdRek + jIdImk

phase d current injection at bus k;
αdk sensitivity of phase d bus k voltage
. to changes in phase d bus k current;
αdtki sensitivity of phase d bus k voltage
. to changes in phase t bus i current;

Other constraints are imposed on the optimisation as fol-
lows:

EV charging rates are limited between an upper and lower
bound P dEVmin

and P dEVmax
respectively.

P dEVmin
≤ P dEVk

≤ P dEVmax
(5)

Batteries have a maximum energy capacity Bmax and aim to
be fully charged by the end of the charging period H ⊆ D. H
consists of those hours for which the EV is available. BSOC
refers to the initial battery state of charge.∑

hεH

(P dEVk
)h = Bmaxk

−BSOCk (6)

The total apparent power, which consists of both the res-
idential load and the EV load, flowing through the network
transformer at each time step cannot exceed its rating of
STrated

. Sdk in equation (7) refers to the residential load, which
is comprised of both real and reactive power, without the EV
load P dEVk

, which is purely real power.

abs(
∑
dεσd

∑
kεΩk

(Sdk + P dEVk
)) ≤ STrated

(7)

The total current flowing through each phase of the mains
cable connecting the transformer to the network has a current
rating of IMCrated

. IdMC is the current flowing through a par-
ticular phase of the mains cable, which is calculated using the
cable impedance matrix and the predicted voltages obtained
from the voltage constraint.

abs(IdMC) ≤ IMCrated
(8)

All service cables, the single phase cables connecting the
customers’ households to the three phase nodes, have a max-
imum import capacity as defined by the distribution system
operator (DSO). Accordingly, each customer’s total load must
be less than this maximum capacity rating SSCrated

, as shown
in (9) below.
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abs(Sdk + P dEVk
) ≤ SSCrated

(9)

All constraints mentioned apply to the objectives outlined
above. Absolute values of voltage, current and power are used
in the constraints as the rating values provided by the DSO
are absolute and not complex values.

The optimisation is implemented in MATLAB [14], using
the non-linear programming function fmincon. The sequential
quadratic programming (SQP) algorithm, which is an iterative
quadratic programming method, is used to solve the non-linear
optimisation problem. The non-linearity of the problem is due
to the use of current as the manipulated variable but power
in the definition of both the constraints and the objective
function, which can be observed in the description of the
voltage constraint in equation 4.

The flowchart in Fig. 1 shows the high level steps of the
optimisation tool process. Feeder inputs such as underlying
residential load, system impedances, etc. are used to perform
a three phase unbalanced load flow calculation for the 24-
hour time period without any EV load. The results from
this load flow and EV inputs such as EV availability, initial
BSOC, etc. are input to the optimisation tool. The optimisation
is performed and the EV profiles are combined with the
residential load to perform a validation load flow to ensure
that the profiles do not cause any network limitations to be
breached.

Figure 1. High level flowchart of optimisation

III. TEST CASE

A. Test Network

The test network consists of a low voltage (LV) residential
feeder where a LV substation serves a total of 74 customers (85
buses). This network represents a typical suburban feeder in

Ireland. A simplified version of the network can be seen in Fig.
2. Each service cable, customer load and EV load is modelled
individually on its corresponding phase, and not as a lumped
load, as represented in Fig. 2. Medium voltage (MV) 38 kV:10
kV tap changing transformers are controlled to ensure that the
voltage at their 10 kV side is regulated to a nominal value.
A voltage drop is incurred between the 10 kV buses and the
LV feeder substation bus which is accounted for by assuming
that the line to line voltage at the high side of the transformer
substation is at a fixed value of 9.7 kV. CPOC in Fig. 2 refers
to customer point of connection.

Figure 2. Simplified single line diagram of test network

The total annual energy usage for each individual customer
in the above network has been obtained from the DSO. Typical
yearly profiles for low, medium and high use customers have
also been obtained. These are then scaled according to each
individual customer’s annual usage and time shifted to recog-
nise load diversity. The coincidence factor of the customer
profiles is calculated to ensure that they are realistic. This value
is found to be 0.22, which is reasonable when compared to
values for similar networks [15]. Customer loads are modelled
as constant power, as the typical load composition for this
network is unknown.

In Ireland, the voltage tolerance is ±10% of the nominal
value of 230 V [16], which gives minimum and maximum
allowable voltages of 207 V and 253 V respectively. However,
to allow for the predictive nature of the voltage constraint in
(4) the minimum and maximum voltages are defined in the
optimisation as 210 V and 250 V respectively.

The transformer supplying the network is rated at 400
kVA and the mains cable has a maximum current limit of
424 A. The maximum import capacity for average domestic
households, as specified by the DSO, is 12 kVA. The two
apparent power ratings and the current rating are used as the
constraining values in the optimisation, as seen in (7-9).

Domestic EV charging is assumed to be single-phase only.
So, the charging rate of the EVs is limited to between 0 kW
and 4 kW. Batteries are assumed to have a 20 kWh capacity
and the EV load is assumed to be constant power.

B. Simulation Case

The method, as described in Section II, was tested for a
24-hour time period, in time steps of an hour, from 07:00
to 07:00 the following day so that an entire charging period
could be observed. The 24-hour period that was chosen had
the highest network demand time step of the year (94 kW)
and thus represented a high load winter day.
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Varying EV penetration levels were examined by randomly
allocating EVs across the network of 74 customers. The
penetration level refers to the percentage of customers on the
feeder with an EV present, and it was assumed that there was
only one EV present per household. Each EV has its own
randomly assigned availability period and initial BSOC. A
mean plug in time of 18:00 and plug out time of 07:00 was
used to determine each EV’s availability and a mean initial
BSOC of 8 kWh was used to determine each EV’s initial
BSOC.

Multiple objective functions were tested, as mentioned in
Section II-C, at a penetration level of 50% which amounts to
37 EVs on the network or a potential additional load of 148
kW. The EVs were evenly spread across the network and the
phases, which can be seen in Table I. An uncontrolled case
was also considered, which consisted of all EVs commencing
charging immediately when plugged in.

Table I
EV LOCATION AND PHASE

The cost function, used for the minimum cost scenario and
for cost comparisons in Section IV, is the system marginal
price (SMP) acquired from the Irish Single Electricity Market
Operator (SEMO) [17]. The wind function has been obtained
from the Irish transmission system operator (TSO) [18]. It
should be noted that these profiles are for arbitrary days to
demonstrate the optimisation and in reality would vary day to
day.

IV. RESULTS AND DISCUSSION

Fig. 3 compares the minimum CPOC voltage recorded at
any node and any time step over a 24 hour time period,
for increasing penetration levels of EVs, for the three ob-
jective functions and the uncontrolled case. In this figure
and subsequent figures depicting voltage the black dashed
line represents the minimum allowable voltage, as defined in
Section III by the DSO, and the grey dashed line represents
the minimum allowable voltage defined in the optimisation.
It can be seen that for the controlled cases the minimum
voltage seen drops somewhat steadily until approximately 50%
penetration. At this stage the voltage constraint limits charging
so that network voltages remain above the minimum level. In
contrast, for the uncontrolled case the voltage continues to
drop, although the minimum voltage level has been breached
at a penetration level of approximately 37%. It should be noted
that the voltages displayed in the figures are the results of
the ’check’ load flow and not the predicted voltages of the
optimisation, so although the optimisation may predict that all

voltages are above 210 V when the check is performed it may
be the case that some voltages do in fact fall slightly below
210 V, but are still above the acceptable limit of 207 V.

Figure 3. Minimum daily CPOC voltage for increasing EV penetration level

In Figs. 4 and 7 the shaded area represents the time period
that all EVs, or a single EV, are available. It should be noted
that for all three objectives all customers’ energy requirements
were satisfied by the end of their respective availability period.

Figs. 4-6 show the aggregated results for a 50% EV
penetration level, for the three objective functions and the
uncontrolled case. It can be seen in Fig. 4 (a) that because
the uncontrolled case allows EVs to commence charging as
soon as they connect to the network that there is a large EV
load peak at 18:00: an hour at which the network already has
a large underlying residential demand (90 kWh). Looking at
the minimum CPOC voltages for the uncontrolled case in Fig.
5 it is clear that the excessive demand on the network at 18:00
and 19:00 causes voltages to drop below the minimum level
to a value of almost 205 V.

For the minimum cost controlled scenario EV charging is
confined to hours when the price is low, namely 00:00 - 05:00,
which can be seen in Fig. 4 (b), and minimum voltages are
kept above the acceptable level.

For the maximum power controlled case instead of there
being a large block of demand at a certain time there is a slight
peak at 18:00 but charging is kept at a reasonably constant rate
and is spread across all available hours with a small drop off at
later hours. This results in a somewhat smoother daily voltage
curve in Fig. 5 with a small trough at 19:00 but voltages are
kept above the minimum limit.

The maximum wind objective, like the minimum cost,
controls EVs to hold off charging until the level of wind
penetration on the system is high, at 20:00-22:00 and again
at 00:00-01:00, which can be observed in Fig. 4 (b). Another
time where the wind ratio is high is 16:00 and it can be seen
that the few EVs that are available at this hour charge and
then proceed to disconnect for the following 3 hours when
the ratio is low. At 22:00 when the charging reaches its peak
there is a drop in voltage which just falls below 210 V, pushing
the voltage towards its lower boundary, however the voltage
constraint ensures that it is kept above 207 V.

Fig. 6 shows the thermal loading of (a) the transformer feed-
ing the network, (b) the mains cable connecting the substation
to the feeder, and (c) the service cable that has the highest
apparent power flowing through it for each hour, for the three
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Figure 4. Aggregate EV load for 50% EV penetration level, 24-hour time
period, three objectives and uncontrolled case
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Figure 5. Minimum CPOC voltages for 50% EV penetration level, 24-hour
time period, three objectives and uncontrolled case

objectives and the uncontrolled case with the charging profiles
seen above in Fig. 4 (a). The black dashed line represents
100% of the rated apparent power for the transformer and
service cables, and 100% of the current rating for the mains
cable. It is clear that although these components are heavily
loaded at the peak EV load hours, they have not reached
100% of their rated values even for the uncontrolled case. This
shows that the thermal loading is not the binding constraint
for this particular network and the network conditions of this
simulation case, therefore the focus for the following results
will be on the minimum voltage levels.

Table II shows the total network losses as a percentage of
energy served for all three objective functions, the uncontrolled
case and the system without EV load. It presents the minimum
percentage losses for the day, the maximum percentage losses
for the day and the time of day at which they occur, as well
as the average daily percentage losses. The minimum losses
are the same value of 0.66%, except for for the maximum
power and minimum cost cases, as both of these objectives

Figure 6. Thermal loading of (a) transformer, (b) mains cable and (c)
maximum customer service cable for 50% EV penetration level, 24-hour time
period, three objectives and uncontrolled case

allocate charging at 05:00 which is, without EV load, the
most lightly loaded time of day with a demand of 12 kWh.
Unsurprisingly, the highest maximum losses are a result of
uncontrolled charging with a value of 15.45%, more than twice
the losses of the case without any EVs. The minimum cost case
has the lowest maximum losses of 8.90% as it has pushed
charging to periods when the underlying demand is relatively
low. The opposite can be said for the maximum wind case,
which has the highest maximum losses of all three objectives
(11.96%), due to charging occurring earlier in the evening.
The average percentage losses for the day are quite similar
with values of approximately 4%. It should be noted that the
highest average daily losses occurred on phase b for all cases
due to the additional EV present on that phase.

Table III compares the total cost incurred by the aggregate
charging of the EVs for each objective and the uncontrolled
case as well as the percentage increase each scenario costs
when compared to the minimum cost case. The uncontrolled
case, as well as causing unacceptably voltages, costs C34.61,
which is almost double that of the minimum cost scenario,
while both the maximum power and maximum wind objectives
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Table II
NETWORK LOSSES

incur a cost almost 50% over the minimum cost case.

Table III
COST COMPARISON

Figs. 7 and 8 show results for an individual customer located
at the end of the feeder, for a 50% EV penetration level, for the
three objectives and the uncontrolled case. The service cable
for this customer connects to node a9, as seen in Fig. 2. This
customer’s EV is available from 18:00-06:00 and has an initial
BSOC of 11 kWh, which gives an energy requirement of 9
kWh.

Fig. 7 shows the charging profiles for this customer, while
Fig. 8 shows the voltages at this customer’s CPOC resulting
from the respective charging observed in Fig.7. Uncontrolled
charging has this customer’s EV charge at maximum power
of 4 kW upon connection to the network and then drop to
1 kW for the final hour to complete the charge, resulting in
acceptable voltage limits being breached.

The maximisation of power case has this customer’s char-
ging kept at a reasonably constant rate of between 0.5 kW and
1 kW and is spread across all available hours with a slight drop
off at later hours. The voltage at the point of connection is kept
above the minimum level.

For the minimisation of cost scenario the customer’s char-
ging is contained to the cheapest hours of the day (00:00
- 05:00). However, it should be noted that at the cheapest
hours, namely 03:00 - 05:00, when the EV would be expected
to charge at its maximum rate the charging is curtailed,
which is due to the optimisation allocating all EVs to charge
at these times and resulting in an overall drop in network
voltage. To avoid voltages breaching limits, the optimisation
decreases charging rates for buses deemed most sensitive. This
customer’s bus would be considered sensitive, being at the end
of the feeder, and therefore has a decreased charge rate at these
times.

The curtailment of charge can also be observed in the
maximum wind case, where at the time of highest wind
penetration on the system (22:00) this particular customer is
not charging at maximum power but is curtailed slightly to
3.3 kW as the voltage is hitting its limit. Looking at Fig. 8 it
is clear that this customer’s voltage has fallen slightly below
210 V but is still above the 207 V boundary.

The cost of this customer’s charging for the minimum cost
case is C0.37 and for the uncontrolled case is C0.76, a cost
saving of more than half.

Figure 7. Customer at end of feeder, EV load for 50% EV penetration level,
24-hour time period, three objectives and uncontrolled case

Figure 8. Customer at end of feeder, CPOC voltage for 50% EV penetration
level, 24-hour time period, three objectives and uncontrolled case

V. CONCLUSIONS AND FURTHER WORK

The aim of the work was to optimise the charging of EVs
for a 24-hour time horizon on a test network for multiple
objective functions. The results show that controlling the
charging of EVs can reduce the large voltage drops that could
be incurred at certain times if charging is left uncontrolled, as
well as minimising losses and reducing charging costs. They
also demonstrate that the choice of objective function can be
a significant factor for both EV charge rates and network
voltages. Depending on the network operator’s preferences
any one of the three objectives presented may be preferable.
For example, if the desire was to flatten out the feeder load
profile or avoid large demand peaks the maximum power case
would be favourable. If the wish was to encourage customers
to allow their EV charging to be controlled, informing them
they could have a significant cost saving if they did so would
undoubtedly entice them, making the minimum cost objective
more desirable. For a scenario where avoiding curtailment of
wind was the intent, the addition of EV load to the system
would be one solution and the maximum wind objective could
help achieve this.

The uncertainties and potential variability of some of the
inputs to this tool have not been taken into consideration in
this work. It may be the case that the residential load, or
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customer EV availability, for example, change dramatically
between the time that the initial optimisation was performed
and real time. These changes could mean that although initially
the generated EV charge profiles were optimal and satisfied
network constraints, that may no longer be the case. To
account for these uncertainties future work will consist of the
development of a rolling optimisation which will update its
forecasts at each hour to ensure that the optimal solution is
reached and that advantage is taken of new information.
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