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Abstract—Fog Computing is one of the edge computing
paradigms that envisages being the proximate processing and
storage infrastructure for a multitude of IoT appliances. With its
dynamic deployability as a medium level cloud service, fog nodes
are enabling heterogeneous service provisioning infrastructure
that features scalability, interoperability, and adaptability. Out
of the various 5G based services possible with the fog computing
platforms, security services are imperative but minimally inves-
tigated direct live. Thus, in this research, we are focused on
launching security services in a fog node with an architecture
capable of provisioning on-demand service requests. As the fog
nodes are constrained on resources, our intention is to integrate
light-weight virtualization technology such as Docker for forming
the service provisioning infrastructure. We managed to launch
multiple security instances configured to be Intrusion Detec-
tion and Prevention Systems (IDPSs) on the fog infrastructure
emulated via a Raspberry Pi-4 device. This environment was
tested with multiple network flows to validate its feasibility. In
our proposed architecture, orchestration strategies performed by
the security orchestrator were stated as guidelines for achieving
pragmatic, dynamic orchestration with fog in IoT deployments.
The results of this research guarantee the possibility of developing
an ambient security service model that facilitates IoT devices with
enhanced security.

Index Terms—IoT, Fog Nodes, IDPS, Security Services, Scal-
ability, Performance, Orchestration

I. INTRODUCTION

The Internet of Things (IoT) emergence made a big impact

on daily life with the arrival of micro and nanodevices. These

devices inheriting autonomous intelligence are used to simplify

personal lives by improving the efficiency of digital infrastruc-

ture. The extent of IoT applications ranges from households,

business environments, agricultural sites, sporting events to

automobiles [1]. Typically, IoT systems consist of sensors,

actuators, networking nodes, intermediary data storage, and

processing centers, interfacing devices, and remote clouds.

Most of the IoT devices are miniature and battery energized

appliances that embed low-level processing and memory com-

ponents [2]. Thus, reliable and highly scaled service functions

cannot be guaranteed by them. Such appliances are employed

as remote sensory devices and wearables that are commis-

sioned to extract data and monitor the subjected entities.

Extracted data from these sensors are imperative for not

only immediate decision making but for identifying patterns,

predictive analysis, and forecasting solutions to improve the

effectiveness of the smart services [3].

Typically these sensory devices are connected to an IoT

gateway that forms a Wireless Sensor Network (WSN). A

number of connected gateways depend on the extent of the

smart environment/system. As these WSNs are exerting an

enormous amount of critical data from the smart environments,

securing the transmission channels is in the best interest

of achieving an accurate and seamless smart service. The

resilience of these devices, including the gateways, however, is

lesser for different types of security attacks due to their remote

nature. IoT sensors could be tampered by physical means.

There is a higher tendency for the injection of malicious

nodes among sensors in WSNs. The household components

such as CCTV cameras and doorbells are hackable for gaining

habitual and personal information [4], [5]. Botnets are the most

recent threats that emerged for emanating Distributed Denial

of Service (DDoS) attacks on WSN based IoT gateway nodes

for disrupting their services [6].

These vulnerabilities in IoT sensors are creating different

security requirements that could not be mitigated by a singular

security function. Launching diverse security functions in a

WSN composed of IoT devices and a gateway is questionable

due to their resource constraints. However, with edge comput-

ing initiatives such as fog computing, an edge infrastructure is

envisaged to deployed among the IoT systems [7]. Thus, this

research is intending to explore the possibility of launching

multiple-security services at a resource-constrained edge node.

A. Contribution

In this paper, we aim to investigate the feasibility of

launching multiple Intrusion Detection and Prevention System

(IDPS) tools at a resource-constrained edge node. We are

proposing an architecture suited for provisioning security ser-

vices for IoT devices, centralized by a fog node. This approach

enables a user to acquire a preferred security service that is

capable of ensuring security and privacy aspects regardless

of the service which was originally subscribed to. Moreover,

the dynamic nature of the service provisioning fog based

platform improves the scalability of IoT applications. The

main contribution is the orchestration strategies proposed for



managing the security services in the edge node. In order to

implement multiple security services, light-weight virtualiza-

tion techniques are followed. Moreover, state-of-the-art IDPS

tools are configured with the edge device to form the testing

environment. We are validating the proposed structure by

emulating malicious traffic flows and testing the performance

of the edge node.

Rest of the paper is organized as follows. Section II elabo-

rates the background technologies used for this investigation.

Prevailing literature are summarized in Section III. Section IV

and Section V are proposing and validating the IoT dynamic

security architecture. Section VI concludes the paper.

II. BACKGROUND

A. Fog Computing Edge Nodes

Introduced by Cisco in 2012, Fog computing is a major edge

computing paradigm that augments cloud computing services

to mobile devices through a decentralized service platform [8].

In this approach, an edge node, referred to as a fog node, is

dispensing resources that are limited to the main cloud with

proximate accessibility. The fog concept is formalized with

the three functional planes of cloud, fog, and IoT/user levels

[9]. Unlike other edge computing paradigms, fog network is

extended from fog-to-fog connections. Thus, latency endured

with fog applications is very low [1]. Service deployment at

the fog infrastructure is achieved by virtualization technolo-

gies. Due to the proximate placement of fog nodes to the

IoT nodes restricts the resources available for them. Thus, fog

nodes that are localized to IoT stratum are typically considered

as resource-constrained edge nodes.

B. Docker

Docker is a prominent light-weight virtualization technique

that is capable of launching at computing platforms with

alleviated resources [10]. Its ability to execute multiple service

instances with minimal resources enable its integration to

emerge virtualization-based systems. Docker is formed as a

client-server model, where docker daemon is handling the user

requests interfaced by a docker client. The extracted images

from the docker registry are executed as containers within the

docker host. Each container is given an ID and is capable

of committing the status of the container as a newly forged

image. These containers are connected with a default bridge

network. The overhead is remarkably lesser as 70 MB for a

Ubuntu-based container. Thus, deploying multiple containers

at an edge device is no longer an arduous task.

C. System on Bare Metal (SoBM) Vs. System on Docker

Containers (SoDC)

SoBM is a situation that particular software or a tool is

directly running on the edge device. In contrast, the SoDC

concept allows running the tools in Docker containers where

the Docker engine is orchestrating the light-weight virtualized

entities. The wide adaptability of docker as means of launching

diverse services with miniature resource-constrained devices,

IDPS systems are one such service that researches have

considered to embed into containers. Experiments conducted

by [11] clearly shows that, apart from network utilization,

other factors such as packet processing speed, prompted se-

curity alerts, and RAM utilization resembles in both cases.

CPU utilization and a number of dropped packets are lesser

with SoDC compared to SoBM. Thus, utilizing the SoDC

approach for launching diverse functions with fog nodes would

allow the entire edge system to control resources optimally.

Moreover, as the dockerized environment is operating in the

application level, the flexibility, scalability, adaptability, and

interoperability attributes are guaranteed.

III. RELATED WORK

Boudi et al. in [11] contributed towards the verification

of feasible deployment of resource-constrained edge devices.

Their assessment of validating the SoDC systems at edge

nodes was the foundation for this research initiative. In this

paper, a performance evaluation was conducted employing

a Raspberry Pi3 model as an edge device measuring the

processed packets, network utilization, CPU load, RAM uti-

lization, number of security alerts, and number of dropped

packets when suricata [12], [13] was operating. Though the

authors conclude that overhead on the Docker platform is very

light, only one docker container was tested with this approach.

Islam et al. in [14], the author, experimented in regards to

one issue face, which stated that several IoT devices in use

caused high amounts of data where critical system functional-

ities must be ensured during the access of network. The paper

brought edge functions to the local level as virtualized and

dynamically deployed components utilizing local hardware

capacity. They implemented a local edge networking proto-

type based on local microservices, called nano-services. The

latter was implemented using Docker container and deployed

using Docker Swarm-based orchestration. They focused on

the optimization of resources of the proposed nano-services.

They noticed that multi-stage builds based images show the

best performance for the reason that it includes only run-

time dependencies. The paper was based on the feasibility

study of the virtualized nano-services at the local level of

the IoT edge network. The reduction of resource consumption

was due to the replacement of base image sizes with multi-

stage builds which actually reduced from hundreds of MB’s

to tens of MB’s. They used Alpine image through a run-time

container size that was squeezed to a few hundreds of kilo

byes with the cost of larger unique container sizes. Due to

the multi-stage containers, they were able to reduce the nano-

services deployment time, which also resulted in the reduction

of initiation time.

Sfirzin et al. in [15] focused on provisioning virtualized

security service in resource-limited edge nodes by leveraging

lightweight virtualization technologies. The analysis of the pa-

per gave an overview of the container-based security solutions.

Thus it provided viable guidelines towards the orchestration

of security at the edge. According to the results, the overhead

introduced by the containerization for security functions is

very light. The Docker container had 100 percent control over



the network interface even though only one Docker container

was running the performance evaluation.

Tripathi et al. in [16] investigated the possibility of employ-

ing Raspberry Pi as an Intrusion Detection System against

cyber-attacks at home environments. The security functions

of the proposed model included a honeypot, packet analyzer,

and a firewall. The tools Snort [17], Barnyard2, Pulledpork,

MySQL, Ruby, Apache2, Cowrie, and Tshark were configured

to form the testing environment.

IV. PROPOSED ARCHITECTURE

Fig. 1. Dynamic Security Provisioning Architecture for Resource Constrained
Fog Nodes

In this paper, we intend to propose an architecture to

resource constraint edge nodes, as depicted in Fig. 1. Various

security functions hosted as containers are running in the

dockerized environment of the edge device. Docker engine

is responsible for the creation, retrieval, and termination of

containers as in a typical docker implementation. Security

Orchestrator (SO), however, is capable of auto-configuring

containers in accordance with the intrinsic security service

type. Thus, SO acts as an autonomous entity that instructs the

Docker engine on running, committing, and stopping security

service containers based on the demand. Besides, service

and performance statistics of the dockerized environment is

monitored by the SO.

It is obvious that the heterogeneous IoT based devices

connecting to a fog node require diverse security functions.

According to the OpenFog reference architecture presented in

[18], a separate layer exists for node management or orches-

tration. This layer is consisting of hardware virtualization, se-

curity, and node management in terms of network, computing,

storage, and accelerator resources. Thus, our proposed solution

is adhering to the OpenFog architecture (i.e. node management

layer) that presents a way to implement orchestration along

with security assurance. In our proposed architecture, we are

focusing on IDPS systems that are capable of monitoring net-

work intrusions. When multiple devices require provisioning

of security services at the same time, it is imperative to dis-

tinguish the virtual security instances for efficient processing.

Thus, we are proposing to establish a container network that

is capable of forming an Internet Protocol (IP) based network.

The exiting docker bridge network is limiting its scalability

and interoperability. Therefore, we intend to employ Open-

VSwitch (OVS) [19] as a virtual router for the fog node. The

OVS is creating its bridge network that assigns IP addresses

for each container. The security services are distinguished by

their assigned IP addresses thereon. Moreover, OVS is auto-

configured by the SO for updating the list of security service

containers and their IPs. An Uncomplicated Firewall (UFW)

[20], [21] function is deployed at the network interface of the

fog node. This UFW restricts unauthorized intrusions towards

the system.

A. Security Orchestrator (SO)

As explicated earlier, SO is the main entity that manage

the processing in the edge node. However, this edge node is

performing other services apart from facilitating IDPS based

security services. Thus, a maximum amount of resource limit

should be maintained by the SO for security service related

provisions. In addition to orchestrating docker containers, we

propose the following strategies to be governed by the SO.

1) Multiple Device Support: In a circumstance where mul-

tiple devices are to be dispensed with security services at the

same time, fog node should differentiate the ingress traffic

flows. It would be an arduous task to achieve this with a single

IDPS instance. Thus, multiple instances of IDPS tools should

be launched in parallel to serve the varied flows directed to

the fog node. The SO is autonomously tunneling the distinct

traffic towards the IDPS containers. The IDPS tool running

on the container would be based on the user preference

and requested security level. However, in a situation where

resources are limited, SO will assign a low resource consuming

tool overriding user preference for seamless operation.

2) Performance Optimizing: As an orchestrator, optimiz-

ing the resource utilization for maximizing the output is an

imperative requirement. Since our fog based edge nodes are

provisioning multiple security services in parallel, monitoring

the performance metrics in correlation to resource utilization

is a task for the SO. SO should include a mechanism to thresh-

old the affordable resource limits for particular containers/

instances based on their performance. If the performance of

the particular service instance is weak (i.e., packet drops are

higher), service should be assigned to a different tool intending

better performance metrics. Moreover, if the ingress data rates

are higher and the fog node is on the brink of overloading,

SO should transfer the security service to a light resource-

consuming service instance.

3) Classification of Ingress Traffic: The emerging diversi-

fied services and applications are conveying different types



of traffic through edge devices. These traffic types represent

Ultra High Definition (UHD)/HD/ CCTV, Voice over Internet

Protocol (VoIP), Augmented Reality (AR), massive Machine

Type Communication (mMTC), and Industrial IoT (IIoT)

applications that require fog nodes to manage their remote IoT

work sites. Each traffic type demands different security levels

and responsiveness in terms of alerts. Therefore, classifying

the traffic according to their service would lead to better

heterogeneity at the fog node. One way of achieving this is

to classify the traffic according to their Transmission Control

Protocol (TCP)/ User Datagram Protocol (UDP) port numbers.

Once the classification is pursued, different traffic classes

represented by the port numbers could be forwarded to either

single or multiple security instances, chained following the

Service Function Chaining (SFC) approaches [22].

4) Dynamic allocation of resources for service instances:

In our architecture, service instances are launched as docker

containers. These containers could be allocated with a con-

trolled limit of the host system processor and memory. If

the existing resources are inadequate for completing the ex-

ecuting process, resources of the subjected container could

be improved without running an additional security instance.

This scenario would be a lesser resource pruning than running

multiple instances.

V. IMPLEMENTATION AND EXPERIMENT RESULTS

A. Experimental Test Bed

Fig. 2. Experimental Testbed

The testbed was developed with a Raspberry pi 4 Com-

puter model B and a laptop having an Ubuntu 18.04 OS.

As illustrated in Fig. 2, Raspberry pi was connected to the

traffic emulating laptop with a CAT 5e Ethernet cable. Both

devices were operated in offline mode to restrict the packets

flowing from other sources to the shared interface. To enhance

the accuracy of the experiment, the above practices were

maintained throughout the experiment. The TABLE I shows

the specification of the testbed appliances in terms of hardware

and software. Note that the Raspberry pi uses the USB bus

2.0 chip and the LAN chip with a network interface card. The

maximum achievable rate for the USB console is 100 Mbps.

B. Network Traffic Emulation

The alerts were generated from pcap files that were publicly

available from [15]. The 1st pcap file contained larger files [23]

TABLE I
SPECIFICATIONS OF THE EXPERIMENTAL TESTBED

Laptop Raspberry pi 4

CPU core i3 2.2GHz Quad Core Cortex A72
1.5GHz

RAM 4GB DDR4 4GB LPDDR4

OS Ubuntu 18.04 Raspbian Debian Buster

Connectivity 100 Mbps Cat5e

where the 2nd pcap was containing small packets [24]. These

pcap files were inclusive of malware and possible viruses. The

intention was to check the rules of Snort and suricata and

the number of resources that were being consumed. The pcap

files have a more significant impact on the CPU. The pcap

file that contains small packets will cause the CPU to have

a higher workload compared to one that has larger packets.

Small packets have the benefits of better response time and

less error rate. Though, the overhead is higher and causes more

CPU usage. If the number of packets per second is high, the

receiver has to work a lot to accept all of them. Since the latter

needs to work quickly, it produces CPU interrupts. Therefore,

using two different sized pcap files, we expect to get different

results.

C. IDPS Rules

Rules play a vital role in an IDPS. The most crucial part

comes when the user has to choose the number of rules that

are required. The rules are available on the snort websites. The

registered rules contain around 12,000 rules. The number of

rules used here was kept as default for the registered rules.

We did not want to have the set of rules edited since our goal

was to test the maximum resource usage of snort and suricata.

We have used suricata 5.0.0 and snort 2.9.15 with registered

rule-set.

D. Testing Scenarios

Testing scenarios were designed to validate the orchestration

strategies of the SO. In this scope of the research; however,

we are verifying the multiple device supporting strategy only.

1) Performance of NIDS tools with data rate of traffic:

In order to identify the optimum performance of the two

tools, they were exposed to an incoming emulated traffic flow

that ranges from 10 Mbps to 80 Mbps. Results for Snort

and Suricata are displayed in Fig. 3 and Fig. 4 respectively.

According to the results, optimum data rates for snort and

suricata are 55 Mbps and 30 Mbps, respectively.

2) Comparing the performance and resource utilization

with multiple instances of the same IDPS tool: In this testing

scenario, the effect of running multiple containers in parallel

with the same IDPS is experimented to determine the perfor-

mance and resource metrics for suricata and snort.

a) suricata: According to Fig. 5, CPU and RAM utiliza-

tion are accumulating gradually. The alert percentage and drop

rate do not vary significantly. The metric performance changes

in Fig. 6 is also insignificant. However, resource parameters

are incrementing with the data rate.



Fig. 3. Snort Performance compared to Data Rate

Fig. 4. suricata Performance compared to Data Rate

Fig. 5. Statistics with different suricata instances at 60 Mbps

Fig. 6. Statistics with 4 suricata instances with varied data rates

Fig. 7. Statistics with different snort instances at 60 Mbps

b) snort: Fig. 7 depicts the statistics with multiple Snort

instances. Even though the CPU and RAM are conspicuously

incremented over data rate, alert percentage reduces while the

drop rate is approximately consistent. This shows different

results than suricata’s performance. Thus, we can observe that

detection of malicious alerts with snort is highly reliant on the

CPU allocation. Fig. 8 shows that alerts are reduced with the

increasing data rate.

Fig. 8. Statistics with 4 snort instances with varied data rates



VI. CONCLUSION

In this paper, we proposed a novel architecture adaptable

for launching dynamic security services at the edge. The edge

infrastructure was launched as a fog node where multiple

security services were able to launch simultaneously. The

orchestration strategies stated in the paper holds the most

significant contribution to the research community, as such

a scheme was not yet published for resource-constrained edge

devices. We propose the orchestration strategies of multiple

device support, performance optimization, classification of

ingress traffic, and dynamic allocation of resources for service

instances. We have managed to validate the first strategy by

running multiple security services in a light-weight virtualized

environment. Our strategies are ideal for optimizing any edge

infrastructure that provisions not only security services, but

also the other types of service that can be launched for a re-

mote work-site. Use cases such as smart agriculture, IIoT, and

intelligent transportation systems require edge nodes deployed

at distributed and remote locations. In such circumstances,

our approach of launching multiple services dynamically via

a light-weight virtualized environment that attribute various

orchestration strategies for enhancing the service execution

would be vital for realizing them pragmatically. However,

the functions and capabilities of the orchestrator (i.e. SO) are

dependent on the nature of the service type. Though, the four

governing strategies proposed in this paper are applicable for

all the use cases. We are intending to develop and validate the

other orchestrating strategies in our future work.
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