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Abstract—Designing a suitable objective function is an es-
sential step in successfully applying an evolutionary algorithm
to a problem. In this study we apply a grammar-based Genetic
Programming algorithm called Grammatical Evolution to the
problem of trading model induction and carry out a number of
experiments to assess the effect of objective function design on
the trading characteristics of the evolved strategies. The paper
concludes with in and out-of-sample results, and indicates a
number of avenues of future work.

I. INTRODUCTION

When applying an evolutionary algorithm one must un-

derstand the nature of the problem and recognize the char-

acteristics of a good solution before one can conceive a

suitable objective function. The choice of objective function

biases the search process. Thus, a badly designed objective

function can have a devastating effect on the performance

of the algorithm. In this study we apply an Evolutionary

Algorithm called Grammatical Evolution to the problem of

trading model induction.

Formulating a profitable trading strategy is a difficult

problem to solve as the size of the search space grows

exponentially as more building blocks are added to the mix.

Evolutionary algorithms have been demonstrated as useful

tools for navigating large search spaces, which suggests that

it may be a useful tool to efficiently explore the universe of

strategies given a function and parameter set. A well defined

objective function aids the algorithm in discovering good

solutions to the problem at hand. Thus, one must quantify

what merits a good solution.

In this study we define a number of metrics to evaluate the

performance of a trading strategy and formulate a number of

objective functions, each with distinct risk preferences. A set

of experiments are carried out for each of these functions and

the trading characteristics of the evolved trading strategies are

compared to assess the behavior induced by our choice of

objective function.

A. Structure of Paper

The remainder of this paper is structured as follows.

Section II gives a brief background on the problem of

designing a sensible trading system performance metric.

Section III defines a number of variables of interest which

are used in quantifying a model’s performance. In section

IV Grammatical Evolution is suggested as a suitable tool

to navigate the search space of possible solutions. This

section also defines the objective functions applied in our

experiments and concludes with a review of the data used

to evolve and test the models. Section V describes the

experiments carried out and analyzes the results. The last

section outlines the conclusions of the study and suggest a

number of avenues of future work.

II. BACKGROUND

We are faced with two conflicting objectives when mea-

suring the performance of a trading strategy. One is simul-

taneously attempting to maximize return and minimize risk.

A sensible performance measure should allow us to control

how these two objectives are related. How do we define

risk? Variance is a traditional risk measure. However, this

statistic exhibits constant risk aversion as it treats positive

and negative gains equally. This is not intuitive as investors

do not treat gains and losses symmetrically. They tend to

have a higher sensitivity to losses. Performance measures

such as the Information Ratio [13], Sharpe Ratio [25], and

utility functions such as the Xeff measure discussed in [6]

exhibit constant risk aversion. More realistic measures such

as the Reff utility function, also discussed in [6], allow for

variable risk aversion.

The aforementioned measures use the mean return as a

proxy for reward, and variance as a proxy for risk. Therefore,

these metrics assume normality in the return distribution and

do not consider higher moments of this distribution. Market

data has been shown to exhibit non-normal properties such

as negative skew and fat tails. Typically, the level of non-

normality increases as the sampling frequency of the data

increases see Figure 6. Thus, a risk measure designed for a

model operating at frequencies where the distribution is non-

normal should consider this extra information when ranking

strategies.

So far we have been talking about performance in terms

of the return distribution’s statistical properties. Return dis-

tributions are time-independent and as such do not tell the

full story. The temporal ordering of returns is an important

consideration when measuring risk. A sequence of negative

returns can lead to large drawdowns in a trading model’s

equity curve which can have detrimental consequences. Met-

rics such as the Calmar Ratio [19] include a measure of

drawdown in their calculation.



A number of measures have been developed in the litera-

ture which do not assume normality such as the Sortino Ratio

[26] and the more recently developed Omega Ratio which is

defined as the ”probability-weighted gains over losses” [16].

The Omega and Sortino Ratios each represent a single case of

a more generalized risk-return measure called Kappa which

is discussed in [15].

Each of the aforementioned metrics have strengths and

weaknesses. These measures rank strategies differently and

no single metric can be declared superior to all others. Thus,

there is a certain level of subjectivity in deciding which

metric should be used to measure performance.

In this initial study we apply three performance measures,

two of which are constant risk-adjusted measures, and one

of which is a non-risk-adjusted. These measures are further

discussed and defined in IV-B.

III. VARIABLES OF INTEREST

We treat the wealth generated by a trading strategy as a

random variable X with probability distribution P (X). This
variable is defined as

X(∆t) = R(t) − R(t − ∆t) (1)

where R is the sum of returns from all trades closed by

the strategy to time t. In fact, we are more interested in X̃
for reasons outlined later. This variable is defined as

X̃(∆t) = R̃(t)− R̃(t−∆t), where R̃(t) = R(t) + ro (2)

where ro is the unrealized return at time t.

The total return accumulated by a trading strategy over

period T is the sum of the return on all trades over T and is

defined by

RT =
n

∑

j=1

zj (3)

where n is the number of trades completed in period T, j

is the jth trade, and zj is the return from trade j. A trade is

defined as a single round-trip comprising an order to buy/sell

offset by an order to sell/buy. The return on an individual

trade j is defined as

zj = s(zj) (x(ti,exit) − x(ti,entry) − cj) (4)

where x(ti,entry) and x(ti,exit) are the logarithmic entry and
exit prices respectively, cj is the estimated transaction cost

in basis points, and sign(zj) is the direction of trade j and
is defined as

sign(zj) =

{

1 if side = buy
−1 if side = sell

We define the equity curve as the evolution of wealth

accumulated by a strategy over time, but which variable is a

suitable proxy for this process? From Figure 1 it is clear that

there is a significant difference in the behavior of variables

R̃ and R. This is due to the fact that the former includes the
market risk of any open position (mark-to-market), while the
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Fig. 1. Partial equity curves illustrating the different behavior in R and R̃
relative to the returns of stock ROK over the same period.

latter is the realized return only which is determined by the

trading frequency.

The time series describing the evolution of these two

variables exhibit statistical differences which have important

implications for risk management. For example, the volatility

levels and drawdowns of R̃ tend to be greater than those of

R.

A trading model’s volatility determines the level of varia-

tion in the returns and is interpreted as a measure of risk as

stable rather than volatile returns are preferred. This variable

is calculated by taking the standard deviation of a strategy’s

returns. A standard approach is to annualize this quantity

by applying the ”square-root-T-law”. Thus, the annualized

volatility is defined as

σX̃(∆t),ann =

√

1year

∆t
σX̃(∆t) (5)

where

√

1year
∆t is the annualization factor which is propor-

tional to the sampling frequency ∆t.

The maximum drawdown is another measure of risk

derived from the equity curve and is defined as

D̃T = max(R̃ta
− R̃tb

|t0 ≤ ta ≤ tb ≤ tE) (6)

where t0 and tE are the start and end points of period T.

R̃ta
and R̃tb

are the cumulative returns from time t0 to ta
and t0 to tb respectively. See Figure 2 for an illustration of
a substantial equity curve drawdown.

Another proxy for risk is the proportion of time a strategy

is in the market. This variable is expressed as a percentage

and defined by

Tin =
1

T

n
∑

i=0

ti,exit − ti,entry (7)

where ti,entry and ti,exit are the entry and exit times of

trade i, and n is the number of trades over T . Conversely, a
strategy is on the sidelines Tout = 1− Tin percentage of the

time.
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Fig. 2. Example of an equity curve drawdown. Large sustained drawdowns
of this magnitude can break confidence in a model.
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Fig. 3. Probability density estimates of the return distribution P (X̃), with
∆t = 60 minutes, for 10 profitable strategies evolved using GE with the
Xeff performance measure as a fitness criterion.

We also define a proxy variable for the trading frequency

of a strategy as this can have a large impact on the risk profile

and the level of transaction costs. This variable is defined as

TF =
1day

T
nz (8)

where nz is the total number of trades executed over

period T so that TF is the number of trades executed per

day on average.

IV. EVOLVING TRADING MODELS

Natural Computing is a growing field of research which in-

cludes the development of algorithms inspired by phenomena

observed in nature. This maturing field ranges from Neural

Networks, which are based on the workings of the central

nervous system, to Evolutionary Algorithms (EAs), which

are based on the idea that species adapt and change by

natural selection. Charles Darwin popularized the concept of

natural selection in his 1859 book titled ”Origin of Species”

[8] in which he coined the phrase ”survival of the fittest”.

EAs such as Genetic Algorithms (GAs) [12], [14], [17], [11]

and Genetic Programming (GP) [17] have been successfully

applied to a wide range of application areas. For a review of

Natural Computing applied to finance see [7], [2], [1].

The financial markets can be considered as an ecology

of competing trading strategies where survival is the main

objective [18]. In such a dynamic environment the ability

to adapt is paramount to survival. Nature has long been

evolving robust adaptable solutions and so it makes sense

to apply an evolutionary inspired algorithm to the problem

of trading system development. The problem of formulating

a profitable strategy grows exponentially in complexity with

every indicator and parameter that is added to the function

and parameter sets. It is both a problem of optimization and

model induction. In this study, we employ a grammar-based

GP algorithm called Grammatical Evolution (GE) [22], [9].

The novelty of GE over canonical GP is that the algorithm

is based on the genotype to phenotype mapping process. The

mapping process is controlled by a grammar containing a set

of production rules. This design lends well to our problem, as

domain knowledge regarding the form of a successful strat-

egy can be incorporated into the grammar, while allowing

the evolutionary process to uncover the remaining structure.

EAs have been successfully applied to this problem. Some

of the more recent applications are [5], [10], [24], [21], [23].

A. Model Representation

We represent a trading model as a rule-based

policy comprised of entry and exit rules. The entry

rules are conditional if statements of the form

”IF [Condition] Then [Do Action]”. The model also

manages risk by determining take-profit and stop-loss

thresholds on entering a position. Given an entry signal at

time ti a stop-loss size sl is determined by a function of
volatility defined by

sl = w σm (9)

where σm is a measure of conditional volatility over m
periods, and w is a coefficient so that the stop-loss size

is a multiple of volatility. A similar approach is applied to

determine the take-profit threshold.

The structure of the entry and exit rules are defined in

a grammar, and a set of production rules determine how

technical indicators from the function set listed in table I

can be legally combined to expand these structures. The

algorithm also optimizes the parameters on these indicators

and the aforementioned money management equations of the

form defined in (9).

TABLE I

FUNCTION SET

Technical Indicator Description

SMA SimpleMovingAverage
WMA WeightedMovingAverage
EMA ExponentiallyWeightedMovingAverage
STOC FastStochastic
ADX AverageDirectionalIndex



B. Objective Function

A sensible objective function is an essential component of

an evolutionary algorithm’s experimental setup. This function

measures the ability of a candidate solution to solve the

problem at hand. This measurement is input to the algorithm

which applies some scaling procedure to map this value to

a fitness value. The fitness values are used by the algorithm

to rank the solutions and apply a selection algorithm ac-

cordingly. This results in a search biased by individuals with

relatively high fitness values. Thus, if our objective function

is not suitably well formed one may end up with less than

desirable solutions to the problem at hand.

Since we are evolving trading strategies where the running

performance of a solution is described by an equity curve

of return it makes sense to derive objective functions from

the variables discussed in section III. We define three such

functions.

The first objective function F1 is the annualized return.

This is a non-risk adjusted measure and only uses the start

and end points of the equity curve in its calculation. Selection

pressure in the population will favor individuals with higher

levels of return regardless of the risk that was taken to

achieve the return

F1 : RcT,ann

where RcT,ann is the total return as defined by (3) is

the total annualized return with transaction costs of 2 basis

points per trade included. See equation (4) for a description

of the formula used to compute return on a trade adjusting

for transaction costs c.
The second function F2 is a simple utility function where

the annualized return is discounted by a risk premium. The

risk is measured by variance, and a risk aversion parameter

controls the function’s sensitivity to this premium. This risk-

adjusted metric is numerically stable for very small variances

as the risk enters the equation as a second term

F2 : Xeff = RcT,ann −
γ

2
σ2

X̃,ann
(10)

where γ is a risk aversion parameter (set to .2 in our

experiments), and σ2
X̃,ann

is the annualized variance of X̃

defined as (5) squared.

The third function F3 is the annualized Information Ratio.

This metric is described as return per unit of risk. The risk

in this case is measured by the annualized volatility (5). Like

(10) this ratio is a risk-adjusted measure of return. However,

it is numerically unstable for small variances and is undefined

when the denominator is 0

F3 : ˜IRcT,ann =
RcT,ann

σX̃,ann

where ˜IRcT,ann is the annualized return inclusive of costs,

and σX̃,ann is the annualized volatility.

It is expected that models evolved using F 2 and F3 will

exhibit more conservative behavior than those evolved with

F1. In and out-of-sample results comparing the behaviors are

discussed in section V.

C. Data Review

Figure 4 shows the cumulative returns for a basket of 60

large-cap NYSE tickers over the year 2007. We were faced

with the task of choosing a suitable data-set over which to

evolve our models. A period of volatile trading spanning 4

months was selected, posing a difficult environment where

a simple buy-and-hold strategy would not yield good per-

formance. In previous studies we have found that a biased

sample encourages corner solutions in the population which

do not exhibit any level of intelligence. For example, it is

hard to beat a buy-and-hold strategy in a strong upward trend

on low volatility. Therefore, a corner solution (dumb rule)

that simply returns a buy signal regardless of the model input

may thrive, and this may potentially result in the population

converging to this solution. Such a convergence would be

detrimental as corner solutions by definition are not robust

and are incapable of adapting to a changing environment.

Fig. 4. Cumulative sum of log returns for a basket of NYSE symbols over
the return 2007

The training set Dtrain comprises 16,980 observations of

OHLC data sampled at a 1 minute frequency for the ticker

ROK ranging from Monday 2007-07-02 to Friday 2007-

08-31. The test set Dtest has 16,380 observations ranging

from Tuesday 2007-09-04 (Monday of this week was a bank

holiday) to Friday 2007-10-31. Figure 5 shows the two data-

sets in one continuous series.

Figure 6 depicts the volatile behavior of the return distri-

bution at different sampling frequencies. Our trading models

are making decisions on a minute by minute basis so this

poses a very difficult environment given the high levels of

excess kurtosis at this frequency.

D. Experimental Parameters

The experimental parameter values used in this study are

listed in Table II. Roulette wheel selection is employed with a

steady-state replacement strategy, see Goldberg [11]. 30 runs

were carried out, with each run comprising a population of

size 300 being evolved for 50 generations. Crossover and

mutation rates of 0.7 and 0.05 were used to encourage a

balance between exploration and exploitation.
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All objective functions were inclusive of an estimated

transaction cost of 2 basis points per round-trip. The total

level of transaction costs for a trade is comprised of com-

missions and fees, slippage, and market impact. Our static

estimate is relatively arbitrary and a more realistic study

would estimate costs in a more sophisticated manner.

V. RESULTS

A number of experiments were carried out to assess the

effect different objective functions have on the trading behav-

ior of the evolved trading models. Three separate experiments

were completed, one for each of the three objective functions

defined in section IV-B. Each experiment is structured as

follows. 30 separately seeded runs are carried out. A run

is defined as a population of 300 models being evolved

for 50 generations over the in-sample data-set Dtrain. The

TABLE II

PARAMETER VALUES FOR GE EXPERIMENTS.

Parameter Value

Population size 300
Number of generations 50
Selection method Roulettewheel
Replacement strategy Steady − state
Crossover rate 0.7
Mutation rate 0.05
Maximum depth of programs in initial population 10
Maximum depth of programs in following generations 20
Number of independently seeded runs 30

trading model with the highest fitness value is then tested

out-of-sample on Dtest to assess the ability of the model to

generalize to unseen data. A number of statistics are recorded

for each model including a log of all trades executed and the

resulting equity curve (see section III for a detailed definition

of an equity curve). We estimate transaction costs to be 2

basis points per trade. However, this is a purely arbitrary

estimate. In practice advanced mathematical models called

Transaction Cost Models are employed to estimate the cost

of trading in real-time.
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Fig. 7. In-sample fitness of overall best individual and mean best individuals
over the 30 runs for the Information Ratio objective function.

Figure 7 summarizes the learning phase of experiment 3

which applied objective function F3. The mean mean model

over 30 runs converges to the mean best model by the 50th

generation.

On completion of the three experiments the experimental

statistics were aggregated and analyzed to assess the trading

characteristics exhibited by the models.

A. Analysis

The results of the experiments supported the a priori

hypothesis that models evolved with risk-adjusted objective

functions F2 and F3 would exhibit more conservative trad-

ing behavior than those evolved with non-risk-adjusted F1.

Figure 8 show a number of boxplots illustrating the different

behavior for each of the objective functions defined in section

IV-B. Function F1 showed the highest return both in and

out-of-sample. However, due to F1’s disregard for risk it also



demonstrated the highest levels of drawdowns and the lowest

Information Ratios. Function F2 shows similar behavior to

F1 which may be due to the small value of 0.2 given to the

risk aversion parameter γ in 10.
The proportion of time a model is long or short the market

as opposed to being out of the market is defined by 7.

Functions F1 and F2 are in the market over 70% of the

time on average compared to 10% for F3. This indicates that

the Information Ratio induces more risk averse models. The

same pattern is observed in the trading frequency variable

(8). F1 and F2 executed about 35 trades a day on average

compared to F1 which averaged about 15. The conclusion

from this set of results is that the choice of objective function

has a dramatic effect on the phenotypic behavior of an

evolved solution.

Figure 9 shows the dispersion of the equity curves for

the best models from the experiments described above. Our

estimated transaction costs of 2 basis points per trade has

a significant effect on performance both in and out-of-

sample. The error bars indicate the variation in the best

solution reached after each run. Interestingly the error bars

are significantly smaller for the graphs which are inclusive

of transaction costs as the objective function was inclusive of

costs. Thus, the evolutionary process has optimized specif-

ically for this case rather than the case with no transaction

costs where the error bars are much wider. Lastly, the results

are significantly better in-sample due to data fitting. However,

although there is a significant drop in performance out-of-

sample, the rules are finding some structure in the underlying

data and manage to identify a number of profitable strategies.

VI. CONCLUSIONS AND FUTURE WORK

In this study Grammatical Evolution was applied to the

problem of trading model induction. A number of experi-

ments were carried out to compare the behavior of the trading

models evolved using different objective functions. It was

found that the choice of objective function has a significant

impact on the trading characteristics of the evolved models

both in and out-of-sample suggesting that the choice of

objective function is critical and should be carefully defined

before applying an EA to a problem.

We intend to pursue a number of avenues to extend

this work. The objective functions applied in this study

assumed constant risk aversion which is contrary to the

time variant risk preferences of a typical investor [4], [3].

Future work will explore the application of measures which

include a variable risk aversion component which models this

behavior. In addition, this study will be extended to include

the application of risk metrics which consider the higher

moments of a strategy’s return distribution such as skew and

kurtosis. For example, two models can have similar mean

and variance in their returns but exhibit dramatically different

levels of skew which may impact on an investors choice of

model [20]. Thus, a well specified objective function can

bias the search process toward strategies with the desired

properties.
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Fig. 8. Box plots showing the distributions of five different variables across 30 runs both in and out-of-sample.
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Fig. 9. The graphs above show the equity curves of the best individuals over 30 runs. Rows 1 and 3 show the equity curves with zero transaction costs
in-sample and out-of-sample. Rows 2 and 4 include transaction costs of 2 basis points per trade. There is one column for each of the three objective
functions tested.


