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Abstract

In this paper we present a new approach for solving energy market
equilibria that is an extension of the classical Nash-Cournot approach.
Specifically, besides allowing the market participants to decide on their
own decision variables such as production, flows or the like, we allow
them to compete in terms of adjusting the data in the problem such as
scenario probabilities and costs, consistent with a dynamic, more realis-
tic approach to these markets. Such a problem in its original form is very
hard to solve given the product of terms involving decision-dependent
data and the variables themselves. Moreover, in its more general form,
the players can affect not only each others’ objective functions but also
the constraint sets of opponents making such a formulation a more com-
plicated instance of generalized Nash problems. This new approach in-
volves solving a sequence of stochastic mixed complementarity (MCP)
problems where only partial foresight is used, i.e., a rolling horizon. Each
stochastic MCP or roll, involves a look-ahead for a fixed number of time
periods with learning on the part of the players to approximate the ex-
tended Nash paradigm. Such partial foresight stochastic MCPs also offer
a realism advantage over more traditional perfect foresight formulations.
Additionally, the rolling-horizon approach offers a computational advan-
tage over scenario-reduction methods as is demonstrated with numerical
tests on a natural gas market stochastic MCP. Lastly, we introduce a
new concept, the Value of the Rolling Horizon (VoRH) to measure the
closeness of different rolling horizon schemes to a perfect foresight bench-
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mark and provide some numerical tests on it using a stylized natural gas
market.

Keywords:
Rolling horizon, stochastic mixed complementarity problem, natural
gas market, game theory.

1. Introduction

There are many dynamically changing conditions in today’s international
energy markets such as increased level of renewable energy supplies that
are mandated and the related infrastructural challenges faced by many
countries, imperfect competition in international natural gas markets
motivated by both economics and politics in some cases, and strongly
fluctuating world oil prices to name a few. Consequently, there is a
need for energy models that are responsive to these conditions in a way
that more realistically depicts the individual players’ behavior taking
in to account the game theoretic nature of these markets, the role of
information related to only partial foresight of future conditions, and in
general, the stochastic aspects of demand.

1.1. Rolling Horizon Stochastic MCPs to Approx-

imate Endogenous-Data, Nash-Cournot Prob-
lems

In this paper we consider rolling horizon, stochastic mixed complemen-
tarity problems (MCPs). As discussed below, there are many reasons
why this area should be studied. Perhaps a first main reason though
concerns an extension of the traditional Nash-Cournot game in which
the variables relate to decisions concerning production, flow, capacity
or the like. In the current setting, each player has those variables but
also has control of the actual data in the problem such as scenario prob-
abilities that it estimates, costs, or other items that can be adjusted.
Considering that just the probabilities can be affected by each player, in
essence, player p is solving an optimization problem of the form:

min » _ PROB; (X; X7F) f,0 (X7 X7F) (1a)

Tp,s

st. XP e s, (X" x™h) (1b)

where s is the index for scenarios (could vary by player) , X7, is the vec-
tor of decisions that player p makes across all time periods, with the other



players’ decisions, given as X ¥ fixed. The objective function in the
above example is the expected value of a function f, for player p. The
important thing to note in the above example is that both this function
as well as the probabilities themselves PROB:; (X*; X =) depend on the
decision variables decided by both player p and the other ones. This is
an especially hard problem to solve given that both PROB; (X P xX-F )
and fps (X LD G ) are functions of all players’ decision variables and
are multiplied by each other. This difficulty is further compounded by
the feasible region S, (X¥; X~%) also being a function of both player p’s
decisions as well as the other players’ ones (although fixed).

To have a better handle on the importance of allowing such flexi-
bility to this extension of the Nash-Cournot paradigm, various endoge-
nous probability /endogenous data schemes are considered in this paper.
More specifically, each player is given a learning algorithm to adjust the
data in the problem and we evaluate several such ones to see which ones
are better in terms of several important measures such as profits, con-
sumer surplus, and the Value of the Rolling Horizon (VoRH), a new con-
cept we also introduce. These learning algorithms are implemented as
part of the rolling horizon methodology we propose wherein each player,
after each roll can adjust their data (e.g., scenario probabilities, costs) to
further their own ends. Clearly, this is just a heuristic approach to the
above much harder problem to solve. We discuss these and other aspects
of why the rolling horizon approach for stochastic MCPS is worthy of
consideration in what follows but first define MCPs with a specialization
later to natural gas markets for illustrative purposes.

In this paper we present a new approach to model such energy mar-
kets focusing on an illustrative natural gas market to clarify the con-
cepts. The gas market is described by a mixed complementarity problem
(MCP) [5], an often-used format which generalizes single-optimization
models via their associated Karush-Kuhn-Tucker (KKT) conditions, mul-
tiple optimization problems by market participants, and equilibrium
problems not directly traceable to one or more optimization problems
[22]. Formally stated, having a function F' : R" x R™ — R"™ x R™,
MCP(F) is to find a vector (z,y) € R"™ x R™ such that:

0<F,(z,y) Llx >0 (2a)
0=F,(z,y),y free (2b)

Here x represents the nonnegatively constrained variables with associ-
ated nonnegative F' components denoted F, and complementarity be-
tween them given by L (ie., F,(z,y)" # = 0). Also, y are the free
variables with associated components F, that must equal zero exactly
[14], [22].



As described more fully in the next subsections and sections, the cur-
rent paper combines MCP energy market models, stochasticity, rolling
horizon foresight with potential learning by the players, and scenario
trees that can change from one roll to the next based on decision made
in the previous roll (e.g., endogenous probabilities). While these ele-
ments are not new in themselves, the combination of them is novel and
leads to a more realistic perspective for modeling energy markets based
on MCPs. Moreover, for such a new approach we have also introduced
a new concept— the value of the rolling horizon or VoRH which is an
attempt to measure how well the stochastic, rolling horizon MCP stacks
up against a perfect foresight benchmark. In the subsections that follow,
we describe in more detail the advantages of this modeling paradigm.

1.2. Rolling Horizon Stochastic MCP vs. Perfect
Foresight M CP, Computational Advantages of
Rolling Horizon

To date, the majority of natural gas and electric power market models
assume perfect foresight of the time horizon being considered which is
less than realistic since market planners don’t have perfect information
for the entire time horizon. In fact, energy decisions are often made
under uncertainty with hedging of worst-case scenarios. With determin-
istic, perfect-foresight models, such things as costs and other parameters
are assumed to be known with 100% certainty. As such, these models
while instructive to serve as base cases, are less realistic than ones that
allow for stochastic elements and/or some rolling horizon foresight, more
in line with the way markets work.

In the latter case, there have been a number of stochastic MCPs.
One problem with stochastic MCPs is that an already hard problem to
solve (MCP) when large-scale, becomes prohibitively harder when even a
small number of scenarios is considered. T'wo common approaches are to
use scenario reduction [51], [39], [29], [23] or some sort of other strategy
for stochastic equilibrium problems. For example, Haurie et al. [35]
proposed a stochastic dynamic Nash-Cournot model with application
in the European gas market. Ventosa et al. [57] used a traditional
Stochastic Dynamic Programming (SDP) methodology to address the
long term hydrothermal coordination of a generation company operating
in a competitive market and at each SDP stage are stated as an MCP
for a Cournot market equilibrium to represent the electricity market
equilibrium. Dewolf and Smeers [12] built a stochastic Stackelberg game
for the European gas market. Luna et al. [47] proposed two models
for stochastic equilibrium: one based on the variational equilibrium of



a generalized Nash game, and the other on the mixed complementarity
formulation. The models differ in how the agents interpret their own
actions on the market. Cabero et al. [7] developed a Benders approach
for linear complementarity problems (LCP) for risk management in the
Spanish power market. Demand, fuel prices and water inflow in the
reservoirs are uncertain. Their work considered the master problem
that determined output quantities and acceptable risk-levels (CVaR)
in an oligopolistic setting among the producers while the subproblem
minimized cost for each producer to generate power. Gabriel and Fuller
23] developed a decomposition method for general stochastic MCP and
applied it to an electricity market model with stochastic demand with
consideration of market power aspects addressed in the subproblems.
Lastly, Shanbhag et al. [54] considered a stochastic multi-leader, multi-
follower equilibrium problem where the players competed in both the
forward and spot markets in successive periods. A stochastic MCP was
used to find an appropriate equilibrium and results for a power network
were presented.

An alternative approach, and one of the contributions of this paper,
is to use a rolling horizon, stochastic MCP in which only a subset of time
periods (e.g., four future quarters of a year) are considered at a time.
Once roll r has been solved for using H time periods in total including the
current one, in the next roll -1, roll 7’s decision are fixed as parameters.
In this way, the associated scenario tree is greatly reduced leading to
shorter solution times and also the behavior of the market participants
more closely matches how decisions are made in practice and captures
unexpected events more accurately. Rolling horizon optimization is not
new (see for example, [52], [15], [6], [45], [2], [56]) but not so often
used in the energy literature. Several recent examples in energy system
optimization are Tuohy et al. [55] for the Irish power sector, Guigues et.
al. [33] who proposed a risk-average multistage stochastic program with
robust rolling horizon approach to LNG (liquefied natural gas) contracts
with a cancelation option and Devine et al. [11] who studied the UK
natural gas market. By contrast, rolling horizon MCPs in energy or
other disciplines is an unstudied area and thus the current paper offers
something new in that domain.

In [46], a natural gas market model is solved recursively, i.e., the
model is solved, firstly for the years 2005-2010, then for the years 2010-
2015. Although similar, this is different from a rolling horizon. With
rolling horizons, typically the same number of periods are used in differ-
ent rolls of the model. For example, in the first roll, the time horizon is
Q1 to Q4 while for the second roll the time horizon is from Q2 to Q5 and
so on. Furthermore the variance associated with the demand scenarios



for Q2, Q3 and Q4 reduces from roll one to roll two reflecting how, in
reality and in contrast to [46], as time moves on information regarding
future demand becomes clearer. In addition the model described in [46]
does not model any stochastic variables.

It is important to note that the notion of perfect foresight vs. rolling
horizons are not the same as including/excluding uncertainty. In perfect
foresight (also called “open loop” equilibrium in the economics literature
[18], [1]), the decisions for all the time periods are considered at one time
by all the players. This is in contrast to the rolling horizon approach in
which decisions are taken one time period at a time for all players with
some sort of updating (potentially) of the parameters between these time
periods. In addition, for a rolling horizon approach (also called “closed
loop” in the economics literature [18]), it is understood that all decisions
by all the players in prior periods are available. In both these cases
the models can be deterministic. By contrast, a stochastic equilibrium
involves either of these two notions: perfect foresight or rolling horizon
but has some elements of the data uncertain and in the case of this
paper, described by finite scenario trees.

Lastly, in Section 4.4 we outline some computational advantages of
the rolling-horizon, stochastic MCP approach vs. scenario-reduction
methods. As each rolling horizon problem is using a smaller scenario
tree than perfect foresight, although solving it a number of times, the
end result is that for larger problems the rolling-horizon approach is
numerically superior at least on the tests used.

1.3. Endogenous Probabilities and Learning

Besides the above-mentioned computational and realism improvements
that come with rolling horizon equilibrium problems (MCPs), there is
another advantage that to our knowledge has not been well studied.
More specifically, as each roll is a separate solving of an MCP, there is
the opportunity to adjust inputs in between these rolls. For example,
the new scenario tree for the next roll can be endogenously changed, by
one or more players, based on a solution from the previous roll so that
the model has endogenous probabilities. In effect, in an MCP setting,
the market participant would also have scenario probabilities as decision
variables besides more traditional ones like production, flow, or the like.
In the case of optimization, decision-dependent uncertainty (endogenous
probability) in stochastic programs gives arise to non-convex problems
because the recourse model includes a probability multiplied by decision
variables. Some relevant work that involves decision-dependent proba-
bilities includes [50], [58], [40], and [41]. Pflug [50] applied a Robbins-
Monro procedure for the optimization of simulated Markovian processes.



Viswanath et al. [58] adjusted scenario probabilities based on an MILP
and distribution selection with binary variables. Held and Woodruff [40]
proposed the network interdiction problem where endogenous uncertain-
ties were attached in the network. Heuristic solution approaches were
also shown in this study. Hellemo et al. [41] provided several formu-
lations for modifying probability distributions: 1. Scaling for uniform
distribution, 2. Convex combination for discrete distribution, 3. Opti-
mization over parameters of the distribution, and 4. Approximation of
distributions.

We believe our approach is a significant improvement in the sense
that probabilities and other parameters are potentially updated after
each roll. Thus, despite assuming a finite probability mass function
(scenario tree), this approach is quite general and allows for any prob-
ability distribution and any updating rule. The input data or scenario
tree can be changed based on the previous rolls’ solution, but it does
not make the problem get more complicated to solve since there are not
bilinear terms of the form: probability multiplied by decision variable.

This feature of a decision-dependent scenario tree represents a tremen-
dous benefit to the model as it allows for a novel endogenous learning
and thus adds even more realism to the model as well as the potential
for prescriptive guidance. Besides updating the scenario tree in between
rolls, other data elements such as costs can also be modified. Conse-
quently, the rolling horizon equilibrium perspective allows for endoge-
nous spatial-temporal learning on the part of the market participants
whose optimization problems make up the equilibrium problem. To be
more specific, if for example the market share in profits for a particular
gas producer has substantially decreased from one roll to a future one,
the rolling horizon format then allows for lowering of costs by the pro-
ducer involved to try to recover these profits in the next roll. Another
example is adjusting in time period ¢t = r+1 for over- or under-estimating
sales in time ¢t = r. The temporal aspects consider how profits, produc-
tion, etc. change over time in some relative way for just the producer’s
own decision variables. The spatial aspects for instance, could relate to
how well the producer fares with respect to other producers in the same
or other nodes.

1.4. Connection to Sequential Games and Online Op-
timization Problems, the Value of the Rolling
Horizon for a Stochastic MCP

From one perspective, this rolling horizon paradigm can be considered
as an example of a sequential game ([42], [3]) where the rounds are the



rolls themselves. If the time horizon is the full set of time periods then
clearly one recovers the perfect foresight approach as a special case. In
a market equilibrium characterized by a single-objective optimization
problem without endogenous learning (e.g., maximzing social welfare),
one would expect that the perfect foresight approach provides a better
objective function value than a rolling horizon one and thus the former
serves as some sort of benchmark. This is the benchmarking concept be-
hind online optimization [53] for which different strategies to reoptimize
after some new information is learned (e.g., in a vehicle routing problem)
are compared against the optimization for which all information in the
future is known in advance.

Even when no endogenous learning is included, such a straightfor-
ward comparison between an online strategy (relating to each roll in the
current context), and the perfect-foresight equilibrium is not so obvious.
This is because in the case of MCPs, there is no one objective function
for all the equilibrium conditions.

A sometimes-used measure for MCPs which can help in comparing
the rolling horizon MCP solutions to the perfect foresight ones is the
following. The conditions in the MCP can be restated as finding the
zero of the following function where z = (27 y1)7:

HZnid<Z> = Z; — mZd(lH Uiy 25 — FZ(’Z))?vz (3)

where [; = 0,u; = +oo for the nonnegative components (x in (2)) and
l; = —oo,u; = 400 for the other components (y in (2)) and mid(a, b, c)
is the median operator for the three scalars a,b,c [25], [21]. Conse-
quently, z is a solution to the MCP if and only if ||H(2)| = 0 for any
vector norm ||-|| where H(z) = (H;(z), Vi).

To make the notion of the H—function described above more clear,
consider the following small example. Find x € R, ,y € R so that

0<10z+2y—7Lx>0
0=3z+1y—2 vy free

where

Fy(z,y)=10z +2y -7 (ha)
Fy(z,y)=3z+ 1y — 2 (5b)

The unique solution to (4) is (z*,y*) = (3, —1) giving H (z*,y*) = 0

and for the non-solution (z,y) = (1,—4), |H (1,—4)||, =4 > 0. The H
function (3) could be used to test the “efficiency” of the rolling horizon
equilibrium solution vs. a perfect foresight approach for MCPs. More
specifically, the rolling horizon equilibrium solution 2™ for each roll, after
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concatenating them together could then be evaluated against the vector
associated with a perfect foresight solution z?/ but evaluated using this
H function (or other ones) corresponding to the perfect foresight set
of inputs. Such an analysis is done later in the paper using a new
concept which we call the Value of the Rolling Horizon (VoRH) based
on this H— function. VoRH rather than the more traditional value of
the stochastic solution (VSS) [5] is needed here for at least two reasons.
First, in stochastic optimization models there is one objective function
being optimized so that VSS makes sense. In an MCP setting there is
no one objective but rather several possible ones for example profits [61]
for each of the players or ||H(x)|| for a suitable norm |[||| and function
H whose zero matches a solution of the MCP [14] [27] [49] [21] [29].
The second reason is that when learning or more generally having the
scenario tree adjusted potentially at each roll, the concept of VSS for
fixed probabilities, not dependent on the decision variables makes less
sense.”

Thus, in summary, the rolling horizon equilibrium problem offers
some both computational and modeling realism advantages over more
traditional approaches. In the rest of the paper we compare perfect
foresight versus rolling horizon perspectives (Section 2), provide a spe-
cific natural gas formulation as an example (Section 3), provide selected
computational results (Section 4) and conclude the contribution (Section
5).

2. Perfect Foresight vs. Rolling Horizon Perspective
With and Without Uncertainty

In this section we provide some observations and counter-examples to
more clearly differentiate between perfect foresight and rolling horizon
MCPs with and without uncertainty. In Figure la the rolling horizon
stochastic trees are displayed. In roll 1, the demand for time period 1
is known exactly and is deterministic. For time periods 2-4, demand is
stochastic with the variance of demand increasing with time as Figure
la shows with widening of the branches in the stochastic demand trees.

In roll 2, the demand for time period 2 becomes exactly known and
deterministic. For time periods 3 and 4 demand remains stochastic but
with less variance from the previous roll. Figure 1a also illustrates how
information regarding time period 5 is only fed into the model in roll 2.
A similar pattern can also be seen for rolls 3-5 in Figure 1la.

Figure 1b displays the stochastic demand tree associated with the
perfect foresight version of the model. This graph shows that only de-
mand at time period 1 is deterministic while demand at all other time
periods is stochastic. This is in contrast to Figure la. In addition, Fig-



ure 1b also show how information regarding demand for all time periods
is known at the start of the model which is again in contrast to Figure
1a.

Now consider an MCP of the form (6) with specific time periods
t =1,...,T and associated decision variables (z*,y") ,t =1,...,T. This
assumes that each variable has a t subscript which in many instances is
not overly restrictive. The first question is whether or not if a determin-
istic rolling horizon approach is applied to solve (6), one MCP for each
time period, will the solution set of that set of problems be the same
as if the perfect foresight approach is used. The answer depends on the
separability of the MCP function F' as shown in the next result.

Essentially this result is saying if there is no linkage between the time
periods either in constraints or data updating (or otherwise), then the
two modeling paradigms of perfect foresight and rolling horizon match
up. For most models including the gas market one considered in this
paper this no-linkage assumption is not present. For instance, in the
numerical examples presented in Section 4, there is linkage between the
time periods as, after each MCP, the amount of gas in storage is up-
dated using the amount of gas injected/extracted in the previous roll.
In addition, the stochastic demand tree in these examples is also up-
dated between rolls as time new periods are added to the tree and the
variance associated with demand for gas at time t reduces. Clearly the
answer is yes if the MCP function F' is separable in ¢.

2.1. Value of Rolling Horizon

Besides comparing a rolling horizon vs. a perfect foresight solution to a
deterministic MCP as discussed above, it is instructive to consider such a
comparison when some of the data are stochastic. In that case, there are
two effects to consider. First, the rolling horizon vs. perfect foresight
aspects assuming nonseparability of the MCP function F' in light of
Theorem 1. Second, there are the stochastic aspects similar to the notion
of value of the stochastic solution (VSS) for optimization problems as
described in [5]. Different from an optimization problem, there is not
one objective function to use but rather a number of merit functions
such as the H function described earlier. Additionally, also different
from optimization is the fact that due to the rolling horizon nature of
the problem, the scenario tree itself may be endogenous changing due
to equilibrium solutions at each roll. We introduce a new measure, the
value of the rolling horizon (VoRH), to understand the importance of
rolling horizon taking into account the two points just mentioned.

In order to explain VoRH, we first set up appropriate notation. First,
we consider an MCP of the following form: find z! € R""= ¢' € R\
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such that !

0< F!(x,y) Lzt >0 B
0=Fi(a,y), vt free'™ " =107 ©)
where
(x,y):{(xt,yt),tzl, ,T}
Fy(x,y)=F'(z,y),t=1,...,T
Fy(z,y)=F,(z,y),t=1,...,T
F£ (z,y) : R"™ — RY™ F; (x,y): Rb™ — RY™

Let SOLP/ be the solution set to (6) solving for all time periods
at the same time, i.e., the perfect foresight perspective. For such a
solution to (6), the H function defined earlier must necessarily satisfy

HH(fpf@,,f) (fpf,gpf)” = 0 for any vector norm |-||. Note that the H

function now is made dependent on a particular perfect foresight solution
(zP!,yr’) € SOLP! .

The VoRH concept is based on the notion of seeing how a solution
to the rolling horizon set of problems compares with the perfect fore-
sight one using the norm of this H function. More specifically, suppose
that SOL™ is the solution set to (6) but solving using a rolling horizon
approach for each roll or time period. If |SOLpf} = !SOL”“ =1, then
a natural question is how far off from zero is using the rolling horizon
solution in place of the perfect foresight one via the norm of the H func-
tion? Consequently, in the case of singleton solution sets, we have the
following first definition of the VoRH.

Definition: Assume that ‘SOLpf‘ = ‘SOL’“h| = 1. Then, the value
of the rolling horizon (VoRH) for problem (6) is defined as

| H s oy @5 | ®)

and is always non-negative where (fpf, ypf) € SOL* so thatHH(fpf ) (fpf, ypf) H =
0.
Since the solution sets SOLP/ and SOL™ may in fact not be sin-
gletons, a more generalized version of the above definition of VoRH is
needed and is as follows.

!This notation implicitly assumes that there is the same set of variables for x
and y, repeated for each time period t. This is not restrictive and can be relaxed by
allowing n, to vary by time period.
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Definition: The value of the rolling horizon (VoRH) for problem
(6) is defined as

inf sup )H(fpfgpf) (frhv grh) H (9)

(frh gh ) eSOL™h (Ezvf P! ) esoLrf

where HH(W-HW) (jpf,ypf)H —0.
3. Formulation

In this section, we describe the rolling horizon formulation for a stochas-
tic natural gas market MCP. This formulation is then applied to a three-
node system to provide insights into the rolling horizon approach.

3.1. Overview of Rolling Horizon and Market Par-
ticipants

As stated before, the procedure a sequence stochastic MCPs each with
partial foresight. Each of the stochastic MCPs corresponds to a roll
of the rolling-horizon. At each roll r the model looks at H time steps
ahead: The first timestep is t = r and the last oneis t = r + H — 1.
The set of timesteps for roll 7 is T'(r) = {r,..,r + H — 1}. For example,
if H = 4 then the time set for the first roll would be T'(1) = {1,2,3,4}.
For the second roll it would be T'(2) = {2,3,4,5} and so on. For each
roll 7, demand now (i.e., demand at time ¢ = r) is known exactly and
is scenario-independent. The first-stage decisions from the previous roll
plus adjustments are used to meet this exactly known demand. For each
roll r, first-stage decisions (gas production, injection, etc.) are made on
how to meet the, at this point, uncertain demand for the next timestep
ahead. These first-stage decisions are used in the next roll (r 4+ 1) to
meet the exactly known demand in that roll. For each roll r, hypothetical
decisions are made on how to meet the uncertain demand for all time
steps greater than one time step ahead. In total, over all rolls, there
are TT = |R| + H — 1 timesteps where R is the set of rolls. Once the
MCP for a given roll is solved, the model steps forward to the next MCP
problem where the uncertain demand for the first time step ahead in the
previous roll becomes known exactly. In this way, the model updates
itself with decisions made in the previous roll. The above approach
should be contrasted with a single roll optimization where all the future
time periods are considered which we have called perfect foresight.

In the gas market model to be presented, only two sets of players
are modeled: producers and a transportation system operator (TSO).
Clearly many more market players/functions are available but to keep

12



the model illustrative yet computationally manageable, these two sets
of players were chosen. The producer is endowed with decisions on pro-
duction, storage, as well as exports so in some sense it is a generalized
version of actual ones. As the market being considered is small (roughly
the size of the market operated by PJM?), we do not include liquefied
natural gas (LNG) aspects as are considered in more global gas models
such as the World Gas Model [26], Columbus [38], etc.

Tables 1-6, shown in the Appendix, describe the variables in the
model, the data, and the functions involved. The following conventions
are used: lower-case Roman letters indicate indices or variables, upper-
case Roman letters represent parameters (i.e., data, functions), Greek
letters indicate endogenous or exogenous prices while thousand cubic
meters and million cubic meters are represented by kem and mcm re-
spectively.

3.2. Producer p’s problem for roll r

Producer p maximizes profit by deciding how much gas to sell, to pro-
duce, inject to storage, extract from storage and how much to flow to
other nodes/markets. Note that the expected value (Fy()) for the pro-
ducer and other players means a weighted summation. That is

E,(z*) =Y PROB;z’

where PROB;, is the probability of scenario s for roll 7 and x* is the
particular variable whose expectation is being taken. Thus, when the
KKT conditions are taken relative to this variable x°, there will be a
factor of PROB,, in front of the variable. The producer’s convex pro-
gramming problem is given below with the associated KKT conditions
shown in the Supplementary Appendix. This assumes the cost functions
are convex.

2PJM is a regional transmission organization that coordinates the movement of
wholesale electricity in 13 states in the Eastern half of the United States.
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Producer p’s objective function (10) maximizes their expected profit in
all time periods less the recourse cost of making adjustments to first-
stage decisions from the previous roll (e.g., SALES] :;t”(ioff) for sales) in
t = r and second-stage decisions in ¢ = r + 1, across all markets. The
expected profit of producers is the money they receive from sales less
the cost of production, less the cost associated with flowing gas through
pipelines and less the cost of injections and extractions to and from

storage.
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Constraint (11a) ensures that the amount of gas producer p has en-
tering market m equals the amount of gas they have exiting that market.
Lower and upper bounds for the amount of gas producer p can have in
storage at time ¢ is provided by constraints (11b) and (11c) respectively.
Constraint (11d) ensures that producer p must meet any contract that
requires them to have a (pre-defined) fixed amount of gas flowing through
pipeline a. An upper bound on the daily amount of gas producer p can
produce in market m is provided in constraints (1le) and (11f) whilst
constraint (11g) ensures the total amount of gas produced by producer
p in market m, across all time steps, is capped. Similar constraints for
the daily injection and extractions rates to/from storage are given by
constraints (11h) - (11k).

Constraint (111) allows SALES] ;ff(fi‘f) (a first-stage decision from
the previous MCP) to be adjusted. Note: the right-hand-side of equa-
tion (111) contains no superscript s ensuring sales?, .. is the same across

pmtr
all scenarios for t = r. In contrast, constraint (11m) allows sales?

mir

to be adjusted, by second-stage decisions, for each scenario s. E(iua—

tions (11n) - (11u) provide similar constraints for injections variables,

extractions variables, flows through pipelines variables as well as pro-

duction variables. The variable in the parentheses, alongside constraints

(11a) - (11u), represent the Lagrange multipliers associated with that
constraint.

Finally, all primal variables in producer p’s problem are constrained

to be non-negative. The superscripts adj+ and adj— are associated with

variables in time period t = r only while the superscripts F'S, SS+ and

SS— are associated with variables in time period ¢t = r 4+ 1 only.

3.3. Transportation system operator (TSO) problem
for roll r

The next player is the transportation system operator who provides an
economic mechanism to efficiently allocate transport capacity to pro-
ducers. They are modeled as profit maximizers but in practice this
objective could also be social welfare maximization. The TSO’s convex
programming problem is the following with the associated KKT con-
ditions shown in the Supplementary Appendix. This assumes the cost
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In a similar manner to the producer’s problem their objective function
is to maximize their expected profits less the recourse cost of making
adjustments to first-stage decisions from the previous roll in ¢ = r and
second-stage decisions in t = r + 1. The TSO’s expected profit is the
money they receive from producers less the cost associated with flowing
gas through each pipeline a. The TSO receives two payments for each
unit of gas flwon through one of their pipelines; a pre-defined regulated
charge (7EFC) and a market price (75,,).

Constraint (13a) allows F'LOW S7 ”_iof)”’tso (a first-stage decision from
the previous MCP) to be adjusted. In a comparison to similar constraints
presented in producer p’s problem, note that the right-hand-side of equa-
tion (13a) contains no superscript s ensuring f lows ! is the same across
all scenarios for t = r. In contrast, constraint (13b) allows flows’: "™ to
be adjusted, by second-stage decisions, for each scenario s. Constraints
(13¢) and (13d) provide an upper bound on the daily amount of gas
that can flow through each pipeline a. The variable in the parentheses,
alongside constraints (13a) - (13d), represent the Lagrange multipliers
associated with that constraint. In addition all primal variables in the
TSO’s problem are constrained to be non-negative.

3.4. Market-Clearing Conditions for roll r

Besides optimization problems for each of the producers and the TSO,
there are market-clearing conditions. The market-clearing conditions
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for the producers balance supply and demand for gas by market and
are shown in (14a). This equation ensures that the price of gas in each
scenario s, market m and time period ¢ (73,,.) is equal to an inverse
demand curve. Similarly for the TSO, the flows requested by the pro-
ducers and allowed on the pipelines by the TSO are balanced in (14b).
The Lagrange multipliers for these two sets of market-clearing condi-
tions, respectively, 77 . and 77,., are the marginal supply and marginal

mir atr’
transportation prices.

Toir = Ly — Bone Z DAY S;sales,.,.Nmtrs, w, . free (14a)

mitr pmir

free (14b)

atr patr atr

p
t d
flows>* = E flows>P ™ Natrs, 7°
P

3.5. The Complete MCP at Roll r

The Karush-Kuhn-Tucker (KKT) conditions for both producers and the
TSO are presented in the Supplementary Appendix. Assuming that
all cost functions are convex these conditions are both necessary and
sufficient for optimally for both players. The MCP for roll r consists
of these KKT conditions in addition to the market clearing conditions
(14).

3.6. Update rules after each MCP (or roll)

In natural gas markets many market parameters parameters update over
time, for example, information regarding demand. In this section we
show now the rolling horizon MCP captures this behavior. After each
roll of the model, the following parameter changes take place:®

e All first-stage decisions in the previous MCP become the previous
parameters for the next MCP, e.g., flowst? . — FLOW SF v

at(r—1) atr

e The initial amount of gas in storage is updated based on the actual
decisions (i.e., decisions made in time period ¢ = r) made in the
previous roll for injections and extractions for storage:

e Similarly, the total production capacity for producer p in market m

(T'Pyax) reduces by the actual amount of gas produced for ¢ = r in

3When a learning algorithm is used in the model, further model parameters (e.g.,
probabilities, production costs or recourse costs) are also updated. How this is im-
plemented is described in detail in Section 4.3. The update rules presented in this
section are in place in the model regardless of whether or not a learning algorithm is
used or not.
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the previous roll ensuring that production capacities deplete over
time.

e The parameters associated with the stochastic demand tree update
reflecting how information regarding demand updates throughout
time, i.e., demand becomes less uncertain and eventually known
actually as time moves forward. The stochastic demand for ¢ =
r=+1 now becomes deterministic and known exactly. The stochastic
demands for t = r + 1,..,7 + H — 1 remain uncertain but with
reduced variance while information regarding stochastic demand
for time period t = r + H now becomes available to the model.

e The index for roll increases by one: r — r + 1

4. Numerical Results for Three-Node Model
4.1. Data

In this section numerical examples of the rolling horizon MCP are pre-
sented. The model is formulated with |P| = 3 producers, |M| = 3
markets, |S| = 3 demand scenarios and with |R| = 8 rolls. The three
markets are connected via |A| = 4 pipelines as shown in Figure 2 and
roughly represent the following states in the United States (including
the District of Columbia):

e M = 1: New Jersey, New York and Pennsylvania
e M = 2: Illinois, Indiana, Michigan, Ohio, Wisconsin

e M = 3: Delaware, District of Columbia, Florida, Georgia, Mary-
land, North Carolina, South Carolina, Virginia, West Virginia

For each roll/MCP solved, the time horizon is H = 4 which means
that the total number of time steps is TT = |R|+ H —1 = 11. Each time
step represents a season, i.e., spring, summer, fall or winter. As a result,
DAY S, =89 fort=1,5,9and DAY S, =92 fort =2,3,4,6,7,8,10, 11.
As the model is being solved over a relatively short timescale, no discount
factor is considered, i.e., D; = 1 Vt. Each of the producers plus the TSO
assign equal probabilities to the demand scenarios. Hence, PROB;, =
I_él = % Vp,s and PROB; = ‘—;' = % Vs. Note: in some of the example
presented in Section 4.3, these probabilities change between rolls.

The maximum daily production rates (DP;) for producer p in
market m are given in Table 7 while, for the first roll, the total production
capacity (T Prax) is given by the following equation:

pmr

T PR = (365000)(DP2). (15)

pmr
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Note: as Section 3.6 describes, T'P%, reduces between rolls when there
has been production in that field. The values for D P are based on in-
formation provided by the United States’ Energy Information Authority

* while the values for TP»* are arbitrarily chosen. The cost function

C’g%i“dwn(:v) for producer p in market m is a Golombek cost function

[26] and is given by the following equation:

roduction 1 DPH;::X -7
Cgmti ' (z) = (O‘p,m_VP,m)x+_5p,m$2+%7m(DP$X_$) In S max vt
2 DPma

(16)
where the parameters oy, Bpm and v, ., are given in Tables 8 - 10
respectively.

The maximum daily injection to and extraction from storage rates are
displayed in Tables 11 and 12 respectively. The minimum (MINSTOR,,,)
and maximum (MAXSTOR,,,) amount of gas allowed in storage for
each producer p in market m is zero and 10°, mem respectively. For the
first roll of the model the initial amount of gas in storage (INT'STOR,,,,,)
is set to zero for each producer p in market m. For subsequent rolls, the
initial amount is determined by the update rules described in Section
3.6. The storage cost function is assumed linear as follows:

C;ﬁi{fge(mj;mtr,xtr;mtr) = L.7(ingy e + xtry ), Vp,m,tr,s. (17)
The value of 1.7 is arbitrary but illustrative. The maximum daily ca-
pacity for each pipeline a (DA®) is given in Table 13 while the TSO’s
pipeline cost function is also assumed to be linear as follows:

C*(flowsy ) = (CMARG) (flowsyy™), Vt,r,s, (18)

CMARG ig given in Table 14. The regulated pipeline tariff that

where
the TSO receives is set equal to the marginal pipeline cost, i.e., 7F¢ =
CMARG gt Again, these costs are both arbitrary and illustrative.

The loss factors associated with injections to storage and flows through
pipelines are both set to 5%, i.e, LOSS, = 0.05,Va and LOSS,, =
0.05,Vm. In the numerical examples described in this section, no con-
tract flows are assumed meaning CONTRACT S, = 0, Vp, a,t while all
recourse costs are given a value of 0.2.

The slope values associated with the inverse demand function (see
equation (14a)), are given by the following equation:

BS

mtr

= Bmtr; vm7t7 S, (19)

“http://www.eia.gov
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where B, is the deterministic demand slope for market m and time ¢
with values displayed in Table 15. The corresponding demand intercepts
are given as follows:

Zr e = VAR Zir, Ym,t,s, (20)
where Z,,, are the deterministic demand intercepts for market m at
time ¢t and VAR; are the multipliers applied to the deterministic de-
mand giving increased /decearsed demand to scenario s in time t. The
values for Z,,, are 723.481, 643.743 and 483.49 for markets m = 1,2, 3,
respectively, V¢, r. Table 16 displays the values for VAR;. In this numer-
ical example, demand scenario s = 3 is deemed to be the high demand
scenario, scenario s = 2 the low demand scenario and s = 1 the maiddle

demand scenario.

4.2. Perfect Foresight vs. Rolling Horizon Foresight

In this example, we show how the rolling horizon MCP format captures
unexpected events more realistically than a perfect foresight approach.
In particular we show how and why the price spike, as a result of the
unexpected event, reduces as information regarding the event becomes
known earlier. The unexpected event in this example is increased de-
mand for ¢ = 7. Increased demand is obtained by increasing the de-
terministic demand intercept (Z,.s) levels, described in Section 4.1, by
50%. In the Base Case, the rolling horizon MCP is run without any in-
creased demand and with all parameters as described in Section 4.1. In
the No Foresight Case, none of the players have information about the
increased demand until roll 7; see Figure 3b for the increase in demand
for t = 7 in roll » = 7 only, compared with the Base Case in Figure 3a.

In the 1 Period Ahead Foresight Case, each player can see the in-
creased demand one period (roll) ahead, i.e., in roll 6. See Figure 3c for
the increase in demand for ¢ = 7 in rolls » = 6 and r = 7 only, compared
with the base case in Figure 3a. Note: while the values for the stochas-
tic demand increase for t = 7 in roll 6 for the 1 Period Ahead Foresight
case, the probabilities associated with the high, low and medium demand
scenarios remain the same.

In the 8 Period Ahead Foresight Case, each player can see the increase
in demand three periods (rolls) ahead, i.e., in roll 4. See Figure 3d for
the increase in demand (compared with the base case in Figure 3a) for
t = 7 for all rolls from r = 4 to r = 7. Again, while the values for
the stochastic demand increase for ¢ = 7 in rolls 4-6 for the 3 Period
Ahead Foresight case, the probabilities associated with the high, low
and medium demand scenarios remain the same.

In the Perfect Foresight Case, there is only one roll of the model and
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each player can see all time periods ahead at the start of the model. As
a result, each player can see the increased stochastic demand from the
start of the model; again, see Figure 4 for the increase in demand for
t = 7 compared with Figure 1b.

Figure 5 shows how increased information allows for smaller price
spikes for the prices in market m =1 (m,,—14—1,) while Figure 6 displays
the net injections of gas storage across all markets, i.e, the sum of all
injections to storage less the sum of all extractions. In the No Foresight
Case, Figure 6 explains how only a small amount of gas is extracted
from storage in roll 7 because, not knowing about the increased demand
in previous rolls, a relatively small amount of gas is in storage prior to
roll 7. As a result, Figure 5 shows how this case has the largest spike in
price for roll 7.

In the One Period Foresight and Three Period Foresight Cases, there
is prior knowledge of the stressed demand. As a result, Figure 6 shows
increases in the amount of gas injected to storage in rolls 5 and 6 which
in turn allows for an increased amount of gas to be withdrawn from
storage in roll 7. Hence, as Figure 5 shows, the price spikes in roll 7
for these two cases is not as big as in the No Foresight Case. However,
because of the increase in the amount of gas injected into storage, there
is increased prices seen in the rolls prior to roll 7 for these two cases
(relative to the Base Case and No Foresight Case).

As Figure 6 shows, the Perfect Foresight Case has the largest amount
of injections (cumulatively) to storage before roll 7, leading to the largest
amount of extractions from storage in roll 7. This allows the price spike
in roll 7 to be the smallest but there are increased prices (relative to the
Base Case) seen from roll 1.

In the One Period Foresight, Three Period Foresight and Perfect
Foresight Cases, the market is able to prepare for the increased demand
by injecting gas into storage prior to roll 7. The more gas that is injected
to storage prior roll 7 ensures smaller prices spikes in roll 7.

Withdrawals from storage in roll 8 can only be seen in the Base Case
and in the Perfect Foresight Case. This is because, in all other cases,
storage facilities are emptied to meet the increased demand in roll 7.

Similar gas price trends and spikes were found for markets m = 2
and m = 3 as those presented for m = 1 in Figure 5, i.e., the sooner the
market knows about the increased demand, the smaller the price spike
in roll 7 is relative to the Base Case.

4.2.1. VoRH results for increased demand example

Table 17 displays the VoRH results associated with the examples de-
scribed above in Section 4.2. Here the solutions from the No Foresight,

22



One Period Foresight and Three Period Foresight cases are compared
with the Perfect Foresight solutions.>% The second column of Table 17
displays the VoRH results as calculated by equation (8) while in the
third column these VoRH figures relative to the Base Case VoRH are
presented.

The No Foresight case has the largest VoRH indicating that the solu-
tions arising form this case are furthest away from the Perfect Foresight
solutions. This is not surprising because, as explained previously for
Figures 5 and 6, the No Foresight case has the largest price spike for
t = 7 and market participants only adjust the storage levels when they
become aware of the increased demand in roll » = 7, which is in contrast
to the Perfect Foresight case.

However, the One Period Foresight case has a smaller VoRH value
compared with the Three Period Foresight case suggesting that the solu-
tions from the One Period Foresight case are closer to the Perfect Fore-
sight solutions that those from the Three Period Foresight case. This is
a surprising result because one would expect, as more foresight is added
to the model, that the solutions would become closer to those from the
Perfect Foresight case, all things being equal.

When these results were analyzed more closely it was found that the
median value for |Hi7(fpf’ypf) (E’”h,yﬁl) | (see equation (8)), for each of

the cases, was zero suggesting that there are a few |Hiy(fpf’§pf) (f’”h, Th) |

values that are skewing the VoRH results. As a result, the VoRH figures
were calculated again with |H, (207 57) (T”h,y”h) | values greater than

two excluded; see column four of Table 17. As before, column five of
Table 17 displays these VoRH figures relative to the Base Case VoRH.
The results in these columns show that as more foresight of the increased
demand is added to the model, the VoRH figures decrease informing us
that the solutions to the rolling horizon MCP get closer to those from the
Perfect Foresight case as more information regarding demand is added
to the model. Thus, these re-calculated results show the benefit of using
VoRH in comparing solutions from perfect foresight with those from
rolling horizon. Finally, it must noted that this analysis is an initial
study of the VoRH and future work will examine the metric further.

5The Base Case VoRH is excluded from this analysis as this case does not contain
any increased demand and is thus not comparable with any of the other cases.
6This analysis assumes locally unique solutions in each case.
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4.3. Learning algorithm and endogenous probabili-
ties

In this section we examine the effects of several different learning algo-
rithms relative to approximating the extended Nash-Cournot problem
discussed in the introduction. Clearly, for the original form of the prob-
lem getting solutions even for the three-node network would be chal-
lenging given the non-convex nature of each optimization problem when
players can adjust data. Consequently, the KKT conditions would not
be valid (in general) so that the resulting MCP could not be formed.
As an alternative, we compare the rolling horizon results in terms of
producer profits, consumer surplus, and VoRH to gain insight using four
learning algorithms as discussed next.

4.3.1. The Learning Algorithms

All four of the learning algorithms are based on making adjustments
on either scenario probabilities and/or costs relative to a shift in mar-
ket share calculated from the producer profits. The idea is that the
producer will take some sort of action either in adjusting these scenario
probabilities or its costs (e.g., lower them) to be more competitive and
as such, this activity will approximate the more complicated, original
approach discussed in the introduction where both probabilities and de-
cision variables are under the control of the players.

Each producer is given the following threshold levels of market share:

e Producer 1: 35%
e Producer 2: 5%

e Producer 3: 57%

Any deviation below these shares results in the appropriate learning
algorithm activating. The learning algorithms are also not proportional
to the amount of deviation below these thresholds.

For learning algorithm 1, each of the three producers only takes ac-
tion if their own market share drops below the threshold value stated
above. If this occurs, then the producer increases the probability of the
high demand scenario by one-sixth and decreases the probabilities for
the other two scenarios each by one-twelfth. Note that initially, each
of the three demand scenarios have a equal probability of one-third for
each scenario. The idea is that the producer is trying to increase its
own market share by making the higher demand scenario more likely to
adjust its decisions accordingly for larger profits.
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For learning algorithm 2, a similar line of reasoning to the previous
one is employed except that the producer decreases its a parameter by
50%. Recall that a represents the coefficient of the linear term in the
Golombek production cost function.

For learning algorithm 3, both the producer’s own scenario proba-
bilities and costs are activated when its market share goes below the
threshold. In that event, the probability for the high demand scenario
is increased, the probability for the other two scenarios are decreased,
and the o parameter is decreased by 50% as stated above.

Lastly, while the first three algorithms only considered the producer’s
own market share as a trigger for adjusting scenario probabilities or its
costs, by contrast, learning algorithm 4 also considers the actions of
another producer. The rule for this algorithm from the perspective of
producer p = 1 or 2, is if its market share goes below its threshold or
if the o parameter for producer 3 was decreased in the previous roll,
signaling producer 3 getting more competitive by reducing its costs,
then the action by producer p = 1,2 follows that of learning algorithm
3. Producer 3 in this situation follows the logic of learning algorithm 3.
This algorithm all things being equal should result in more adjustments
by the players.

Table 18 describes the results of these numerical experiments for
each of the learning algorithms compared with the case when there is no
learning algorithm. This table displays profits for each of the producers,
consumer surplus’ and VoRH expressed as percentage deviations from
the no-learning case. The most dramatic changes occur in comparing no
learning vs. learning algorithm 4 when the other producers’ behavior is
taken into account. Indeed, the profits for producer 1 are improved by
over 16% and for producer 3 they are increased by about 13%. This
comes at a definitive loss for producer 2 whose profit tumbles about 36%.
This occurs perhaps because for producer 2, their high demand scenario
probability increases to 1 given that they frequently update given their
market share dips below their threshold. This leads to overproduc-
ing and hence they have a high recourse cost and consequently reduced
profits. In fact, for three of the four learning algorithms, producer 2
does worse than with no learning and it is only learning algorithm 2
where they actually make more profits than no learning.  This is due
to producer 2 not adjusting their scenario probabilities at all. Also, it
is interesting to note that producer 3 always does better by any learning
algorithm related perhaps to being the player with the largest market
share and hence “weathering the storm” of all the adjustments by the

"For further details on we calculated consumer surplus see [22].
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other two players. It is only learning algorithm 2, related to each pro-
ducer potentially lowering their costs, when all three of the producers
do better than no learning. This is perhaps related to the fact that
cost-cutting measures, independent of market share always benefit the
bottom line and would thus potentially be a more attractive strategy (at
least in this example), than adjusting scenario probabilities as attempted
in the numerical tests. In terms of consumer surplus the two learning
algorithms that involve cost reductions do best as would be expected
since the consumers are not having to pay as much to the producers.

Figure 7 shows the prices in market m = 1 by roll considering each
of the learning algorithms. Perfect foresight has the lowest prices given
the least changes occurring to the system and hence the least uncer-
tainty reflected in the prices. Learning algorithm 4 is the 2nd lowest set
of prices indicating perhaps that, relative to prices at least, this algo-
rithm is best to eliminate some uncertainties and data adjustment by
the producers. Lastly, no learning or having each producer just adjust-
ing it’s own probabilities (learning algorithm 1) result in the highest
prices perhaps reflecting disadvantages to the consumer as the produc-
ers are not receiving appropriate market signals to adjust their decisions
accordingly. Similar results were found for markets m = 2 and m = 3.

From Table 18 we see that the perfect foresight approach always
does slightly better in terms of profit and consumer surplus than the no-
learning case potentially due to the increased value stemming from more
information about future demand. Also, the perfect foresight case has
much less variation in the producer profits than learning algorithms 1-4
since the data are not adjusted for each roll. The Value of the Rolling
Horizon shows dramatically higher values than perfect foresight (which
would have a value of zero) and no learning which is small and almost
zero. These large VoRH values indicate that relative to the perfect
foresight cases, the learning algorithms 1-4 are dramatically different in
their solutions due to all the data adjustments and the resulting decisions
made by the players. By contrast, a low VoRH for the no-learning case
means that it does not differ so much from having perfect foresight which
is also evidenced in the the profit figures for perfect foresight close to
those for the no-learning case.

4.4. Computational efficiency

To test the computational efficiency of the rolling-horizon approach de-
scribed above, several tests were performed using the three-node net-
work outlined earlier. For simplicity, all experiments assumed linear
costs. Specifically, a perfect foresight model with 10,000 demand scenar-
ios was the base from which we started. These 10,000 scenarios differed
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by random demand obtained by assigning random values to VAR; using
a uniform distribution between the maximum and minimum values in
Table 16 for each time period. Then, a fast forward scenario-reduction
algorithm [39] was applied to produce a much smaller number of scenar-
ios: 3, 10, 50, and 100 as indicated in Table 19.

As shown in Table 20, with just 3 scenarios, there were 2386 variables
in the rolling-horizon MCP which was solved for 4 time periods and 8
rolls as outlined above. By contrast, the perfect-foresight approach from
which 3 scenarios were selected had 5095 variables due to a larger number
of time periods considered at the same time. 10 replications using these 3
scenarios were then performed on a 3.3GHz i5-4590 quad-core processor
with 8GB of RAM and with a convergence tolerance used of 107%, the
default for the PATH solver. Since the same 3 scenarios were not selected
for each of these 10 tests, the CPU times varied as shown in these results.
The minimum, median, and maximum CPU times for both the perfect
foresight /scenario reduction and rolling horizon (summed over 8 rolls)
approaches are shown in Tables 19 and 20 respectively. Using the median
CPU the rolling-horizon approach is slower but this is expected for small
problems where the repeated rolls add too much time compared to just
solving the perfect foresight version with only 3 scenarios.

For the case of 10 scenarios, both approaches are approximately the
same in terms of CPU time. However, when a larger number of scenar-
ios are considered, specifically 50 or 100 scenarios, the rolling-horizon
approach is significantly faster. From Tables 19 and 20 we see that the
median CPU for 50 scenarios using rolling horizon is about only 9% of
the perfect foresight version of the problem. This large speed-up when
using a rolling horizon is no doubt due to the significantly smaller number
of variables (36,837 vs. 81,987) that is needed when only partial fore-
sight is considered. This computational advantage of the rolling-horizon
stochastic MCP approach also holds up for the 100-scenario case shown
in Tables 19 and 20. The results here are even more dramatic. Specifi-
cally, the scenario-reduction/perfect foresight approach fails to solve the
problem in 21,600 seconds (6 hours) which was when the GAMS pro-
gram was stopped. However, the rolling-horizon approach solves all the
instances with a median time of about 3.39 hours. As a further test we
allowed one of the scenario-reduction/perfect foresight experiments with
100 scenarios to be run to completion and found it took over 39 hours
(CPU time) to obtain an optimal solution. This further highlights the
benefits of the rolling horizon approach.
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5. Conclusions

In this paper we have introduced and developed the concept of a stochas-
tic mixed complementarity problem (MCP) for a rolling horizon with a
natural gas market application. This format, while more closely match-
ing how energy other markets function, also allows for decision-dependent
scenario-tree probabilities and endogenous learning by the market par-
ticipants. Several theoretical concepts (e.g., the Value of the Rolling
Horizon) and numerical results were developed and shown to validate
the rolling horizon approach.
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6.2. Tables

Table 1: Sets

a € A | Arcs (gas pipelines, LNG, other distribution).
p € P | Producers.

a € A(p) | Arcs that producer p is connected to.
r € R | Rolls. For each roll an MCP is solved.

teT(r)={r,..,T+ H—1}

Time set for roll r (e.g., quarters) where H is the time
horizon, i.e, the number of timesteps in a roll.

s(r) € S(r) | Scenario for stochastic elements, depending possibly on
roll r.
m € M | Gas node/market m.
a™(m) | Arcs inward to market/node m.
a®*(m) | Arcs outward from node m.
e € {r,..,t} | Dummy time index for storage constraint that represent

timesteps from r to t.

i
TT = |R|+H—1
D,

DAY S;

REG
Tat

DPma

DI

MINSTOR,,,
INITSTOR
MAXSTOR,,,
LOSS,,

LOSS,
CONTRACT S,

The time horizon, i.e, the number of timesteps in a roll.

Total amount of timesteps over all rolls.

Discount factor for time ¢ (%).

Number of days in time period .

Regulated price for using arc a at time ¢ ($/kem).

Maximum daily production capacity for producer p at node m
(kem/day).

Maximum daily storage injection rate for producer p at node m
(kem/day).

Maximum daily storage extraction rate for producer p at mar-
ket /node m (kem/day).

Maximum arc capacity for arc a (mem/day).

Total production capacity for producer p at node m over the
whole time horizon (mcm).

Minimum amount of gas needed at
node/market m for producer p (mem).
Initial amount of gas in storage facility at node/market m for
roll r for producer p (mecm).

Maximum amount of gas allowed in storage facility at
node/market m for producer p (mecm).

Injection to storage loss factor for node m (%).

Arc a loss factor (%).

Contracted gas that producer p must provide through arc a at
time ¢ (mcm/day).

storage facility at
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VA Fixed demand (demand curve intercept) at market/node m for
roll 7 and scenario s (kem).

B . Demand curve slope at market/node m for roll r and scenario s
($/kem).

RU;,., Recourse/penalty cost associated with underestimating for pro-
ducer p in market/node m for roll r ($/kem). There are different
costs for each primal variable.

RO, Recourse/penalty cost associated with overestimating for pro-
ducer p in market/node m for roll r ($/kem). There are different
costs for each primal variable.

RUJlews Recourse/penalty cost for TSO associated with underestimating
flows through arc a for roll r ($/kem).

RO/lows Recourse/penalty cost for TSO associated with overestimating
flows through arc a for roll r ($/kem).

PROB,, probability producer p associates with scenario s at roll r.

PROB; probability TSO associates with scenario s at roll r.

Table 2: Parameters. Note: Any variables with ”previous” superscript are parame-
ters. Also, the superscript * is a placeholder for multiple superscripts.
Table 3: Functions
05;;‘3,“0“0”(.) Production cost function for producer p at node m at

Cstorage ( )

pmitr

Oarc(.)

atr

time ¢ roll r ($/day).

storage cost function for producer p at node m at time
t roll r ($/day).

operations cost function for arc a at time ¢ roll r ($/day).
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Table 4: Primal variables: Each of these primal variables have multiple superscripts
which are described below. The superscript * is a placeholder for the superscripts in

Table 5.

salesy, i, Amount producer p, at node m, sells at time t. Decision
made at roll r (kem/day).

prody,... Amount produced by producer p, at node m, at time t.
Decision made at roll r (kem/day).

(L0 — Amount injected into storage by producer p, at node m,
at time t. Decision made at roll r (kem/day).

oA p— Amount extracted from storage by producer p, at mode
m, for at time t. Decision made at roll r (kem/day).

flows;;ﬁ’;[’d Producer p’s flows through arc a at time t. Decision
made at roll r (kem/day).

flows®*° | TSO flows through arc a at time t. Decision made at
roll r (kem/day).

Table 5: Superscripts

5 Scenario s.

previous | Decisions made in the most immediately previous MCP,
at roll » — 1. These represent parameters of the model.

adj+ Balancing decision made at roll r for time period t = r.
Represents an increase.

adj— Balancing decision made at roll r for time period t = r.
Represents a decrease.

FS First-stage decisions that are made at roll r for time
period t = r 4 1. These are scenario-independent.

SS+ Second-stage decisions that are made at roll r for time
period ¢ = r + 1. These represent an increase and are
scenario-dependent.

SS— Second-stage decisions that are made at roll r for time
period ¢ = r + 1. These represent an increase and are
scenario-dependent.
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Table 6: Dual variables

price for arc a at time ¢ at scenario s. Decision made at
roll 7 ($/kem).

market-clearing price of gas for node m, time ¢, scenario
s and roll r ($/kem).

Lagrange multiplier associated with constraint # in pro-
ducer’s problem (unit depends on the constraint).
Lagrange multiplier associated with constraint # in
TSO’s problem (unit depends on the constraint).

Table 7: Values for DP)* (mem/day).

m=1|m=2|m=3
3.5 4.5 3.9
10.7 39 4.5
8.9 0.5 26.9

"I
|
W N =

Table 8: Values for oy,

p=1|p=2|p=3
m=1,2,3] 60 48 60

Table 9: Values for B,

m=1|m=2|m=
1 2.2 0.25 1.8
2 122 60 2.6
31 042 0.75 0.4

SSERS LS
Il

Table 10: Values for vy,

m=1|m=2|m=3
p=1 6.9 6.9 6.9
p=2 6.8 6.6 6.8
p=3 6.9 6.9 6.9

Table 11: Values for DI7}4* (mem/day).

p=1,2,31] 150.1 | 423.2 91.7

Table 12: Values for DX %% (mem/day).

p=1,2,3| 300.2 | 846.4 | 1834
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Table 13: Values for DA (mcm/day).

a=2

a =

3

a=4

241

46

78

Values for CMARG (§ /kem).

a=2

a =

3

a=4

1 2

2

2

Table 15: Values for the inverse demand function slope B, ($/kem).

=1|t=2|t=3|t=4|t=5|t=6|t=7 =8
m=110.024 | 0.028 | 0.029 | 0.022 | 0.024 | 0.028 | 0.029 | 0.022
m=20.018 | 0.02 |0.021 | 0.016 | 0.018 | 0.02 | 0.021 | 0.016
m =3 | 0.013 | 0.015 | 0.015 | 0.012 | 0.013 | 0.015 | 0.015 | 0.012
Table 16: Values for V AR} for the numerical example described in Section 4.1.

s=1]s=2|s=3
t=1 1 1 1
=2 1 0.95 | 1.05
= 1 0.9 1.1
=4 1 0.8 1.2

Table 17: VoRH values for increased demand examples in Section 4.2.

VoRH Relative VoRH Relative
VoRH without VoRH
large without
values large
values
No foresight 292616.95 | 2.69 93.40 0.90
One period ahead foresight 216355.14 | 1.99 83.07 0.80
Three periods ahead foresight | 230268.63 | 2.12 65.00 0.63

Table 18: Profits, consumer surplus and VoRH for no-learning case plus % change

(compared with no-learning case) for learning algorithms & perfect foresight.

’ Learning Algorithms \ Profit,— \ Profit,—o \ Profit,—s \ CS \ VoRH ‘
No Learning 2.32 x 107 | 2.49 x 10° | 3.34 x 10" | 1.05 x 10'Y | 1.07 x 10°
Learning Alg.-1 —0.61% —-31.17% | 1.14% —0.84% 1626.83%
Learning Alg.-2 10.13% 11.52% 14.59% 12.96% 1.61%
Learning Alg.-3 7.83% —16.81% | 11.59% 8.75% 793.07%
Learning Alg.-4 16.61% —35.86% | 12.87% 12.02% 1089.56%
Perfect foresight 1.72% 0.01% 2.10% 2.26% N/A

41



Table 19: Minimum, Median and Maximum CPU time (in seconds) associated
with Perfect Foresight model with scenario obtained from the fast forward selection
scenario-reduction algorithm.

No. of Scenarios | Model Variables | Min CPU | Median CPU | Max CPU
3 5095 0.2 0.21 0.22

10 16547 1.93 2.03 7.71

50 81987 270.41 7468.91 17632.71

100 163787 > 21600 > 21600 > 21600

Table 20: Minimum, Median and Maximum CPU time (in seconds) associated with

Rolling Horizon model.

No. of Scenarios | Model Variables | Min CPU | Median CPU | Max CPU
3 2386 0.66 0.81 1.49

10 7517 2.16 2.74 7.04

50 36837 45.01 673.06 1596.71

100 73487 1596.71 12214.74 17549.27
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