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Abstract. This paper studies a machine learning algorithm for bridge damage 

detection using the responses measured on a passing vehicle. A finite element 

(FE) model of vehicle bridge interaction (VBI) is employed for simulating the 

vehicle responses. Several vehicle passes are simulated over a healthy bridge 

using random vehicle speeds. An artificial neural network (ANN) is trained using 

the frequency spectrum of the responses measured on multiple vehicle passes 

over a healthy bridge where the vehicle speed is available. The ANN can predict 

the frequency spectrum of any passes using the vehicle speed. The prediction 

error is then calculated using the differences between the predicated and 

measured spectrums for each passage. Finally, a damage indicator is defined 

using the changes in the distribution of the prediction errors versus vehicle 

speeds. It is shown that the distribution of the prediction errors is low when the 

bridge condition is healthy. However, in presence of a damage on the bridge, a 

recognisable change in the distribution will be observed. Several data sets are 

generated using the healthy and damaged bridges to evaluate the performance of 

the algorithm in presence of road roughness profile and measurement noise. In 

addition, the impacts of the training set size and frequency range to the 

performance of the algorithm are investigated. 

Keywords: Bridge, Damage detection, Machine learning, ANN. 

 

1 Introduction 

Bridges are integral parts of the transport networks worldwide. Globally, bridges are 

used by a large percentage of the world’s population daily where an unexpected closure 

or collapse of such a structure would cause serious disruptions to the networks. It is 

obvious that having an understanding of the current structural condition of bridges is of 

major importance to networks’ owners worldwide. As bridges age, damage and 

deterioration become more present in the structure. However, bridges are most 

commonly assessed by carrying out a visual inspection. These inspections can give 
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good results when it comes to the immediate structural appearance of the bridge but are 

oblivious to any internal defects that may be present.  

In recent years, more focus has been put on the use of Structural Health Monitoring 

(SHM) methods for bridge condition assessment. These methods use vibration data 

gathered from the bridge to extract information relating to the bridge’s modal 

parameters. These parameters consist of the natural frequencies, mode shapes and 

modal damping which are unique to each bridge. If there is a defect present in the 

structure, then it should result in a detectable change in the information gathered in 

these parameters [1].  

Currently, the majority of SHM methods applicable to bridges are the approaches 

that directly instrument bridges. These methods generally require many vibration 

detection sensors to be installed at intervals all along the span of the bridge [2]. Due to 

the cost and time required for installation of these sensors, the direct methods are 

limited to use on larger bridges, and their implementation across whole networks is 

unfeasible [3]. This is a major constraint to the widespread implementation of direct 

detection methods, as the majority of bridges globally are of short or medium span. As 

a result of this, attention has been turned to developing an indirect method for the 

damage detection of bridges. The use of an indirect method would eliminate the need 

to install anything directly on the bridge. Measurements and data would be collected 

by the sensors attached to a vehicle which passes over the bridge. The passing vehicle 

would be far more efficient to implement across a range of bridges and could be used 

to cover an entire road/rail network [3].  

Yang et al. [4] first proposed the idea of using vehicle measurement for the purpose 

of bridge monitoring. To date, finding the bridge modal parameters, such as natural 

frequencies [4], damping ratios [5] and mode shapes [6], has been the main focus of 

drive-by methods. In addition, some of the methods do not rely on the modal 

identification and directly process the measured vehicle responses to assess the bridge 

health condition. For example, Wavelet spectrum of the vehicle response has been 

employed in a few studies [7, 8].  

Many obstacles still remain in the way of the completion of an indirect damage 

detection method that can be applied consistently under real-life conditions. An 

approach that is robust to the calculation noise produced by a combination of 

operational and environmental variables is yet to be produced. These variables include 

such things as the road surface profile, vehicle speed, and temperature. Road profile 

with an uneven roughness will result in high amplitude vibrations being introduced into 

the response spectrum which can mask the changes in natural frequencies of the bridge. 

As vehicle speed increases, the road profile effects are amplified, the vehicle bridge 

interaction (VBI) time reduces, and the resolution of the acceleration signal is 

significantly depleted. Temperature and other environmental effects have been shown 

to cause a shift in frequency amplitudes due to the associated change in the stress and 

strain levels in the bridge that accompany climatic changes [9]. A few studies have 

suggested that the use of multiple runs is a promising approach to tackle these issues 

[10-13].  

Malekjafarian et al. [12] propose a new bridge-damage detection approach using 

machine learning techniques, combining an Artificial Neural Network model (ANN) 
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and a Gaussian process, to identify healthy bridge condition from unhealthy ones. In 

this paper, the indirect damage detection algorithm has been proposed by the authors in 

[12], is further investigated. A numerical finite element model of a bridge is created, 

and a set number of vehicle crossings of the bridge are simulated at various damage 

levels. The time domain signal of the VBI is recorded for each crossing. Following this, 

the signal for each run is used to extract the frequency amplitudes. Fast Fourier 

Transform (FFT) is performed to extract the frequency amplitudes from the time 

domain signal. Next, the damage detection algorithm is formulated in two stages. An 

ANN is trained using a training dataset of velocities and the desired range of frequency 

amplitudes. Once trained, the ANN is then used to predict the frequency amplitudes 

when given the vehicle velocity. In the second stage, a Gaussian process is employed 

to create a damage index which assesses the sensitivity of the algorithm to increasing 

levels of damage. The predicted data points along the frequency signal are compared to 

the measured values and a prediction error is found. A larger prediction error in the 

results corresponds to increased damage being present in the bridge. The network 

configuration is adjusted, and the results are compared with the aim of finding the 

optimum arrangement of the network for damage detection. Finally, the VBI response 

signals are polluted by noise, to represent real-life unpredictable environmental and 

operational conditions, and the robustness of the network is checked. 

2 Finite Element modeling 

The VBI shown in Fig. 1 is numerically modelled using finite element (FE). The model 

that used here is adopt the properties used by Malekjafarian et al. [12] and is a coupled 

system consisting of a quarter-car model representing the vehicle, and a simply-

supported beam model to represent the bridge. The quarter-car system containing two 

sprung masses and its properties are given in Table 1.  

 

Fig. 1. The VBI. 

The bridge is modelled as a succession of a number of beam finite elements. The 

two nodes of each beam element each have a translational and rotational degree of 

freedom. The bridge properties are given in Table 2.  
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Table 1. The vehicle properties. 

Properties  Symbol  Value  Unit  

Body mass  𝑚𝑠 9300 𝑘𝑔 

Axle mass  𝑚𝑎 700 𝑘𝑔 

Suspension stiffness  𝑘𝑠 4𝑥105 𝑁⁄𝑚 

Tyre stiffness  𝑘𝑡 1.75𝑥106 𝑁⁄𝑚 

Suspension damping  𝑐𝑠 103 𝑁𝑠⁄𝑚 

 

Table 2. The bridge properties. 

Properties  Symbol  Value  Unit  

Length  𝐿  15  𝑚  

Depth  𝑑𝑏  0.75  𝑚  

Width  𝑏  10  𝑚  

Mass per unit length  𝑚𝑏  28,125  𝑘𝑔/𝑚  

Modulus of elasticity  𝐸  35,000  𝑁/𝑚𝑚2  

Second moment of area  𝐼  0.35156  𝑚4  

First natural frequency  𝑓1  4.62  𝐻𝑧  

Second natural frequency  𝑓2  18.47  𝐻𝑧  

Damping Ratio  𝜉  3  %  

 

In reality, road surfaces are never entirely smooth due to requirements for surface 

friction capabilities, varying aggregate sizes and deterioration. Road profile has also 

been seen to excite the response signal recorded by the drive-by vehicle resulting in a 

polluted spectrum from which the bridge frequencies are undetectable. For this reason, 

a Class A road surface profile has been applied to the FE model based on ISO 8608 to 

enable the algorithm to be tested in a more realistic environment. 

3 The damage detection algorithm 

Fig. 2 shows the design of the damage detection algorithm. It uses the fast Fourier 

transform (FFT) amplitudes of the accelerations measured at the axle to discover the 

presence of damage in the structure. It consists of two stages. In the first stage, an ANN 

is trained to predict the frequency amplitudes during the passage of a vehicle over the 

bridge. In the second stage, the measured FFT frequency amplitudes are compared to 

the predicted values from the network and the error is used to estimate the presence of 

damage. The training set is comprised of two inputs and a single target output. The 

target output is the frequency amplitudes, these are acquired from FFT performed on 

the acceleration signal of the vehicle. The two inputs are the velocity of the vehicle for 
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a given crossing of the bridge, and a set frequency range to correspond to the target 

amplitudes. 

 

 

Fig. 2. The damage detection algorithm. 

4 Numerical results 

4.1 Data generation and damage detection 

The numerical VBI model is simulated in MATLAB and is used to gather data for a 

range of damage levels in the bridge. A training set collected in the healthy condition 

and monitoring sets for damage levels from 0% damage to 30% damage are formed. 

Each monitoring set will contain 100 crossings of the vehicle across the bridge with a 

set damage level. For each crossing, the vehicle speed, between 10 and 15 m/s, and the 

frequency amplitudes from FFT performed on the acceleration signal are recorded. 

There is a total of 7 monitoring sets with the corresponding damage level increasing in 

increments of 5% for each set. The damage is modelled as a crack imposed on the 7th 

element of the bridge.   

 

Fig. 3. (a) The prediction error and (b) the damage index (DI). 
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Fig. 3 (a) shows the prediction errors calculated for the monitoring sets. It can be 

seen that as the damage level increases, the prediction error also increases. This is 

reflected in the damage index (DI) in Fig. 3 (b). 

4.2 Impact of the training set size 

The size of training data set is an important attribute that contributes to the prediction 

power of the network. The ideal network can predict the exact frequency amplitudes 

over the given frequency range for any velocity. The training set is initially made up 

from the vibration data gathered from 100 runs across the bridge. The monitoring data 

sets are also made up of signals from another 100 random velocities between 10 and 15 

m/s. As the vehicle speeds in the new healthy and damaged sets differ from the training 

set, the prediction errors will vary for different iterations of the crossing within the same 

damage level scenario. When predicting the signal for the velocities in the monitoring 

sets the network is required to interpolate from the signals related to the velocities it 

has been trained from. The more runs that are included in the training set, the more 

velocities that the training set will be accustomed to. This in turn results in a shorter 

interpolation required to predict for the velocity sets of the monitoring sets. It can then 

be deduced that by increasing the size of the training set the ambiguity in the prediction 

should decrease. In this section, the network is trained using 150 and 200 runs.  

Fig. 3 shows the DI for the different numbers of runs in the training part. It can be 

seen that there is an obvious issue with reliability of the network. The algorithm shows 

a general sensitivity to an increasing level of damage but for each damage scenario 

there are a regular number of outliers where the damage index has jumped away from 

the mean of that set. The effect of such a regular miscalculation for the application of a 

damage detection algorithm can be of major cost to an economy. An incorrect 

classification of the deterioration of a bridge, could lead to repairs being planned when 

in fact the bridge is healthy or, with more serious consequences, vice versa. From Fig. 

3, it can be derived that for the training set of 200 runs the number of divergent runs is 

greatly reduced and the major outliers are completely eliminated. 200 runs will be used 

as the standard size of the training set for further testing. 

 

   
 

Fig. 3. The damage index for (a) 100 runs, (b) 150 runs and (c) 200 runs. 
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4.3 Impact of the frequency range 

The frequency range to be analysed is a very important factor when designing an 

algorithm to detect damage once a road profile is introduced. The vibrations imparted 

on the recording vehicle by the road profile result in a substantial increase in the amount 

of frequency peaks present in the signal. With an increased number of peaks, and less 

consistency between the response signals recorded at different speeds, difficulty in 

associating frequency magnitude shifts to damage rises dramatically. In this section, 

the frequency range to be analysed by the damage detection algorithm will be adjusted 

to find the range that gives the optimal sensitivity to damage. The current frequency 

range being used by the algorithm is the 0-8Hz range. This range was chosen based on 

the vehicle axle hop frequency of approximately 8Hz. 

Fig. 4 plots the prediction error recorded from 10 to 15m/s for each damage scenario 

for the frequency ranges of 0-5Hz, 0-8Hz and 0-20Hz. It can be seen that the road 

roughness appears to still have a major influence over the prediction errors adjudged to 

be present in the monitoring sets in the 0-20Hz range. In contrast to this, the 0-5Hz 

range shows an obvious positive relationship between the presence of damage and the 

prediction error recorded. From plotting the damage indexes, it can be deduced that the 

0-20Hz range is unsuitable for damage detection and is highly sensitive to the road 

profile. Whereas the 0-5Hz range offers a highly sensitive solution to an increasing 

damage level. 

 

   

Fig. 4. The damage index when the frequency range used is (a) 0-5 Hz, (b) 0-8 Hz and (c) 0-20 

Hz. 

4.4 Impact of measurement error 

A significant obstacle to the formation of a reliable damage detection algorithm 

previously, has been the changes to the dynamic behaviour of the structure caused by 

environmental conditions. In this study, the effects of environmental and operational 

effects, such as the presence of traffic, are characterised by the presence of white noise. 

The performance of the algorithm is checked when the recorded acceleration signal has 

been polluted by a range of noise levels. The acceleration response of the quarter-car 
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with the addition of Gaussian random white noise (GRWN). The robustness of the 

current network configuration was tested against three levels of measurement noise, 

3%, 5%, 10%. The sensitivity of the network to damage and robustness to noise was 

checked carrying out 100 crossings at each damage scenario, from 0% damage to 30%, 

and plotting the error on a damage index. The prediction error recorded for every 

crossing under the increasing noise conditions is plotted in Fig. 5. 

 

   

Fig. 5. The damage index when the added noise is (a) 3%, (b) 5% and (c) 10%. 

The damage indexes plotted in Fig. 5 confirm that the current algorithm maisntains 

a high sensitivity to damage even when measurement error up to 5% has been added to 

the VBI response. As the noise level is increased, the variability of the damage index 

for each monitoring set increases.  

 

5 Conclusion 

This paper studies the feasibility of machine learning for indirect damage detection. An 

FE model is created and the response of the VBI is recorded. FFT is performed on the 

time-domain signal and the frequency domain response of the VBI to each crossing of 

the quarter-car is recorded. The ANN is trained using a set of data recorded for the 

healthy state of the bridge. The presence of damage is then detected by comparing the 

measured response for a damaged state with the networks predicted response in the 

healthy condition and evaluating the level of error present. The sensitivity of the current 

network configuration to increasing levels of damage is evaluated by the formulation 

of a damage index. A Gaussian process is adopted to convert the prediction error into 

the damage index. The size of the training set and the frequency range to be assessed 

are all adjusted to find the network configuration that gives the optimum performance 

for damage detection. The performance of the ANN is evaluated measuring the 

response from a quarter-car model crossing a bridge of length 15m at random speeds 

of 10-15m/s, with a low roughness surface profile. It is found that the network shows 

the most sensitivity to damage while remaining robust to the effects of the surface 

profile when a training set of 200 runs and the frequency range was limited to 0-

5Hz.Once the optimal network configuration is chosen, the network is initially 
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examined when 3%, 3% and 10% noise added to the responses. Under these conditions, 

the algorithm continued to show good sensitivity to the presence of damage up to 5% 

noise. The variance within the monitoring sets saw a substantial increase due to noise, 

but the healthy condition always remained well defined and separated from the 

damaged scenarios. It can be concluded that the ANN shows a good robustness to 

measurement noise, and the future ability to be trained to differentiate 
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