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Evolving Behaviour Tree structures using
Grammatical Evolution

Diego Perez-Liebana and Miguel Nicolau

Abstract Behaviour Trees are control structures with many applications in com-
puter science, including robotics, control systems, and computer games. They allow
the specification of controllers from very broad behaviour definitions (close to the
root of the tree) down to very specific technical implementations (near the leaves);
this allows them to be understood and extended by both behaviour designers and
technical programmers. This chapter describes the process of applying Grammati-
cal Evolution (GE) to evolve Behaviour Trees for a real-time video-game: the Mario
AI Benchmark. The results obtained show that these structures are quite amenable
to artificial evolution using GE, and can provide a good balance between long-
term (pathfinding) and short-term (reactiveness to hazards and power-ups) planning
within the same structure.

1 Evolving Behaviour Trees for Game Playing Control

The objective of this chapter is to demonstrate how Grammatical Evolution (GE) [1]
can be used to evolve control structures for agents that interact in highly dynamic
environments. An example of this application is the control of Non-Player Char-
acters (NPCs) in computer games. These are highly dynamic environments, where
NPCs must be able to react efficiently and effectively in previously unseen scenar-
ios. In the concrete case of real-time games, these agents must be able to perform
actions in a limited time budget, typically in just a few milliseconds. These actions
must tackle both dynamic (enemies, power ups, moving structures) and static (level
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structure, path-finding) elements in the game. This requires the agent to be able to
react to imminent hazards, as well as devising action plans to accomplish the goals
that lead to winning the game.

An example of a platform game with these characteristics is the Mario AI Bench-
mark [2, 3]. In this environment, the goal is to reach the end of the level, avoiding
(or killing) enemies or other hazards that may harm the player. The agent (Mario)
must react to dynamic events that happen at close distance, and also plan ahead to
make progress in the level. Section 3 describes this benchmark, the environmental
information and the avatar effectors.

These two components, reactiveness and navigation, are closely related in this
game environment: both make use of the same set of actuators (or actions) that
Mario can employ. Section 4 describes two different approaches for tackling them,
one using the same actuators for both needs, and another providing different sub-
behaviours that deal with them separately.

Previous studies [4] have successfully applied GE to evolve Behaviour Trees
(BTs) [5] for the Mario AI Benchmark. A BT is a tree structure composed of dif-
ferent types of nodes, including control nodes that permit control over the flow of
execution, condition nodes that query the game state, and action nodes that execute
actions in the game. Section 5 describes how BTs work and how they are imple-
mented for the framework used in this study, and Section 6 details how to implement
these structures using GE.

A set of approaches is compared in terms of evolvability, generalisation, and
complexity of resulting controllers. Sections 7 and 8 describe the experimental study
and results obtained, with conclusions and recommendations for their applicability,
both to Mario AI and other dynamic environments, given in Section 9.

2 Related Work

This section reviews applications of GE to control environments including games,
other approaches to create controllers for the Mario AI benchmark, and applications
of BTs as game controllers.

From the onset, GE practitioners have used its grammar-based syntax specifica-
tion to solve a multitude of problems, including controllers for a diverse range of
environments. A typical example is the use of GE to solve the Santa Fe Ant Trail
problem [6], which rapidly became a typical benchmark over many years. Other ex-
amples include its application to the Lawn-Mower problem [7], and its combination
with a gene regulatory network, to solve the pole-balancing problem [8]. Regarding
gaming environments, examples include the work of Galván-López et al. [9], who
evolved controllers for Ms. PacMan, and Harper [10, 11], who used GE to co-evolve
controllers for Robocode Tanks.

The application of GE to game environments is not limited to control agents,
however. Other interesting applications include the design and optimisation of horse
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gate animations [12], and the design of levels [13] and personalised content [14] for
the Mario AI environment.

Mario AI provides a suitable platform for research in the application of con-
trollers to dynamic environments. Multiple approaches that aim at maximising the
game score can be found in the literature. These include rule-based agents with
higher-level, hand-designed conditions and actions [15], cuckoo search and its com-
parison with a standard genetic algorithm approach [16]), the evolution of finite-
state machines created with genetic algorithms [17, 18], Q-Learning with full game
information [19], Neural-Networks with Manifold Learning as a dimensionality-
reducing technique [20] and, finally, the combination of Monte Carlo Tree Search
with appropriate heuristics [21], creating agents that outperform the leading state of
the art controllers in this game.

Most game environments are highly dynamic environments, often resulting in
noisy fitness evaluation. This is also true for Mario AI, where a random seed can
vary the events and levels generated with the same difficulty level, presence and
absence of enemies, etc. There exists a large body of research in the area of noisy
fitness environments. A recent example of such studies are the works of J. Liu et
al. [22] and K. Kunanusont [23], who evolved game parameters for AI-assisted game
design in a search space with noisy and expensive evaluations.

BTs, initially introduced as a means to encode formal system specifications [5],
have gained popularity as a way to encode game controllers in a modular, scalable
and reusable manner [24]. They have now been used in high-revenue commercial
games, such as “Halo” [25], “Spore” [26], and other smaller indie games (such as
“Façade” [27]) illustrating their importance in the game AI community.

The evolution of BT structures has been explored in the work of Lim et al. [28],
where the authors used Genetic Programming [29] to evolve AI controllers for the
DEFCON game. In this study, the resulting agent played against the standard DEF-
CON AI controller, achieving a success rate superior to 50%.

One of the main hurdles encountered in the work of Lim et al. was how to ex-
change typed BT structures between individuals. This issue is easily dealt with GE,
which was also used to evolve BTs, as controllers for Mario AI [4]. The current
chapter details those experiments, giving insight on the actual process of specifying
the syntax of BTs through a grammar, and maximising the exchange of coherent ge-
netic material between solutions, increasing the effectiveness of the search process.

3 Mario AI as a Dynamic Game Benchmark

Super Mario Bros is a popular two-dimensional platform game where the player
controls Mario, who must reach the right end of the level by avoiding enemies,
other hazards, and collecting bonus items and power-ups. Therefore, the Mario AI
benchmark exemplifies a highly dynamic environment with a final goal that requires
long term planning. This benchmark, an adaptation of an open source version of Su-
per Mario Bros (by Markus Persson), is used for the experimental work developed
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for this chapter. The framework allows testing agents in multiple levels, customising
them by difficulty, type (over or underground), length, time limit, creatures (pres-
ence or absence), dead ends, and random seed for the automatic generation of the
level.

3.1 Game State Information

The playing agent is able to analyse the environment surrounding Mario by means
of two matrices, one providing information about the geometry of the level, and the
other indicating the presence of enemies.

Fig. 1: Mario and environmental information. Both matrices are of size 21×21, centered in Mario.

The level of detail to be retrieved from both matrices can be set to three values:
Zoom 0 represents the world with a different integer for each entity in the game,
whereas Zoom 2 gives the simplest possible representation (1 meaning enemy or
obstacle presence, and 0 the absence of it). As a mid point, Zoom 1 provides the
information categorised in useful groups, such as enemies that can be killed by
stomping or shooting, different types of blocks, etc.

Mario itself can be in three different states during the game: Small, where an
enemy or hazard hit causes the player to lose; Big, reachable by eating a mushroom
from the Small state; and Fire, which permits the player to shoot fireballs. Being
hit by an enemy changes Mario’s state to the previous one. The benchmark also
provides information about the state of the agent, plus its location in the level and
extra information, such as if Mario is on the ground, if able to shoot, jump, or if
carrying a turtle shell. Additional information is also available, including the game
status (game running, won or lost), the time left to complete the level, the current
score and a set of kill statistics, including the number of enemies killed and how
they were eliminated (by stomp, by fire or by shell).
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3.2 Game Actions

Mario can choose among several actions to be performed at each game step. These
actions include three directions (Left, Right and Down - Up has no meaning in this
implementation), Jump, and Run/Fire. If the agent is already moving right or left,
applying the action Run/Fire makes Mario move faster. If Jump and Run/Fire are
applied simultaneously, Mario jumps farther. Also, when in Fire mode, it makes the
agent shoot a fireball. Therefore, the set of possible actions defines an action space
of 25 = 32 actions (although some of these are nonsensical, such as left and right
pushed at the same time). As the agent is played in real-time, the action supplied at
each frame must be provided every 40ms, or the agent will be disqualified.

4 Mario Agents

The focus of this work is on the evolution of BT data structures that allow a hierar-
chical decomposition of tasks, by means of GE. The evolved structures need to be
able to respond adequately to scenarios that propose dynamic hazards and an overall
goal. In the case of Mario, GE evolves a BT that combines the two required aspects
of the agent behaviour for this game, also identified in the introduction: reactiveness
(dealing with close enemies and hazards) and navigation across the static elements
in the level. Both were dealt with using basic game movements or combinations of
these. Tables 4 and 5, at the end of the chapter, show the routines employed by GE,
along with a brief explanation of each.

Two different approaches are analysed in this study, in order to assert the im-
portance of the navigation component of the algorithm’s behaviour. Each approach
use a different set of routines. ReactiveMario (NoAstar) combines reactive and very
basic navigation commands, while PlanningMario (Astar) uses A* for navigation
in order to let the GE focus on the reactive part of the behaviour. Section 6 details
the general structure of the evolved BTs and how reactiveness and navigation are
integrated into a single approach.

4.1 A Reactive Mario

In this approach (NoAstar), the agent is exclusively focused on reacting to moving
elements in the game, without employing any explicit path-finding. Therefore, the
elements considered are the position of enemies and hazards, such as goombas, bul-
lets, flying turtles, bonus mushrooms and fire flowers. GE is used here to evolve a
BT that avoids these entities and navigates the agent through the levels. This con-
troller, submitted to the Gameplay track of the 2010 Mario AI Competition, ranked
4th out of 8 entries [3] in this contest.
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In this edition, one of the most difficult navigational hazards were dead ends. In
those, the level presents more than one way to move ahead, but at least one of them
is a cul de sac. An example of one of these is shown in Fig. 1, where it can be seen
that the cul de sac is longer than the size of the environmental matrix. Two sub-trees
(UseRightGap and AvoidRightTrap, see Table 5) have been specifically designed by
hand to address this problem. The latter routine detects a dead end in front of Mario
and moves him back until there is no obstacle over his head. The former sub-tree
finds a platform which Mario can jump onto (or a gap to fall through), to overcome
the trap by running through the open part.

4.2 A Planning Mario

This second approach (Astar) employs A* to guide navigation through the level,
while handing GE the task of dealing with reactiveness to the hazards of the game.
However, in order to use A* for navigation, the game level must be represented as a
navigable graph, a structure not supplied by the benchmark. Furthermore, due to the
nature of the game, this graph needs to be modifiable. Changes in the blocks (which
can be destroyed by Mario) or changes in the state of the avatar (i.e., from Big to
Small) can make some old paths invalid. Therefore, this graph must be generated
dynamically, at each step, by the agent. It is important to note that the map building
process is independent from the use of GE to evolve the playing agents and it is not
a functionality provided in the framework. The present section briefly summarises
this process.

4.2.1 Mapping a level

The first problem when dealing with path planning is the world representation. As
the Mario AI Benchmark does not provide access to a complete map of the level, this
has to be built as Mario moves through it, using the environment arrays described in
Section 3.1. As this map is created for navigation, blocks that do not affect move-
ment (items, enemies or coins) are not taken into account. However, it is possible to
add meta-data information, such as the type of block (question or brick), enemies,
and/or collectible items, which can be later used for queries in the BT.

4.2.2 Nodes for Path Planning

Once a representation of the geometry of the level is available, a graph for the A*
algorithm can be built. Given the format of the data, the best solution is to build a
tile-based graph approximation.

The first decision is where to place the nodes (or vertices) of the graph within
the map; these nodes represent navigable spaces, i.e. positions where Mario can
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Fig. 2: Top: the original section of the level as seen in game. Bottom: the respective map generated
from the environmental matrix received by the agent.

stand. Fig. 3 (left) shows the level structure (as squares) and the graph nodes (as
dots). It is worthwhile mentioning that this process identifies some nodes that are
not accessible (such as the nodes inside the ceiling of the dead end), but the next
step will filter these out of the graph in which Mario is located and can move.

4.2.3 Edges for Path Planning

Although most grid-based path finding networks consider the map as seen from a
zenithal perspective (i.e. from the top), this game requires the graph built as seen
from the player’s perspective, sideways to the level. This incorporates an additional
challenge, where horizontal and vertical edges cannot be used in the same way.

The edge creation process analyses the nodes to finish the graph construction,
using different types of links. The following links are available for the graph, which
are also shown in the example Fig. 3 (right).

• Walk links: These are the simplest ones, which can be used just by applying the
right (or left) actions. These edges are bidirectional.

• Jump links: Unidirectional upward edges that join nodes vertically separated by
no more than 3 cells and horizontally by 1 position. Therefore, they can be used
to jump to a node that is over the starting node (with a maximum jump height)
and one unit to the left or right.

• Vertical jump links: Some level formations can be jumped onto from below,
keeping the same vertical. For these structures, unidirectional upward edges are
created, which join nodes vertically separated by no more than 3 cells.
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Fig. 3: Top: level structure (squares) and graph nodes (dots). Colours indicate different types of
block - question mark, brick, or solid. Bottom: navigation graph representation. Different types of
edges are Walk link (A), Jump link (B), Fall link (C), Faith jump link (D) and Break jump link (E).

• Fall links: Unidirectional downward edges that join nodes vertically separated by
any number of cells and horizontally by 1 position. Some of these links have as a
counterpart a jump edge (some jump links can also be used to fall in the opposite
direction). This distinction is important, because while the former have to be
managed by jumping, the latter must be gone through moving in one direction
and managing the fall in order to land in the proper place.

• Faith jump links: Bidirectional edges that link two nodes horizontally separated
by no more than 4 cells. These edges are used to link nodes that are separated
horizontally by more than one unit, and with a maximum vertical distance. These
can be, in some cases, hard jumps to make, because of the long distance between
starting and ending node.

• Break jump links: These are very similar to normal jump, but in this case there
is a brick block in the trajectory of the jump, in the vertical of the node where
the edge starts. Because this block can (potentially) be destroyed, this link is
included in the graph as it can become a regular jump link. It is also possible
that the brick block does not break (becoming a solid block instead) and the link
cannot be used. In that case, as the map and graph are repeatedly generated, this
link will not be created again.

An important aspect of this game is that Mario can have different states (Big or
Small), and some edges can only be traversed if Mario is Small (only one cell is
required to pass through). This information is also included in the edges, and it is
used not only to traverse the graph, but also to compute the cost of the edges for A*.
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The basic cost of an edge is calculated as the Manhattan Distance1 between its
nodes. The final cost is computed as the basic cost multiplied by a factor determined
by the link type. The reasoning is as follows: the factor of traveling an edge walking
must be higher than jumping, because calculating the jump and managing landing
takes longer and it has a higher associated risk (it is more likely to miss a jump than
a simple walk movement). The basic cost of each link is therefore multiplied by a
factor of 1.5 if the link involves a jump, with the exception of a break jump link,
which factor is 3.0 due to the extra cost involved in trying to break the brick.

Once A* can be used to generate paths to different positions in the level, it is
possible to design path finding routines for GE to use during the evolution of BTs.
The next section gives a definition of BTs, and how are they used for this game.

5 Behaviour Trees for Decision Making

Behaviour Trees (BT) are data structures that allow to decompose a complex be-
haviour hierarchically in several sub-trees as tasks of reduced complexity. Their
applicability is broad in the fields of AI and technology, such as management of
control systems [30], robotics [31] and decision making behaviours in video-games
[24, 25, 26], an area in which BTs have achieved great popularity.

In fact, along with Finite State Machines (FSM), BTs are one of the most prolific
structures to implement complex Non Player Character (NPC) behaviours in games.
In contrast to FSMs, BTs are more flexible, scalable and intuitive, easier to develop
(even for non-technical developers and designers) and are able to incorporate mul-
tiple concerns such as path planning and path following [32].

For example, a soldier NPC can have different behaviours, such as patrolling,
investigating and attacking. Each one of these tasks can be broken down in different
sub-tasks (movement tactics, weapon management or aiming algorithms), which at
the same time can be composed of lower level actions (playing sounds or anima-
tions). In the robotics domain, high level goals can be broken down in sub-goals,
like recharging batteries or entering rooms, which in turn can be decomposed in
opening, closing and forcing doors [31].

BTs establish a descending order of complexity from the root to the leaves, em-
ploying different node types. In the simplest implementation, all nodes can return
success or failure to their parent node (although other versions could return real val-
ues, enumerators, etc.). Nodes are divided into two major categories: the first type
is control nodes, which manage the flow of execution through the tree:

• Sequence nodes execute its children from left to right until one returns failure. If
all children return success, the sequence node itself also returns success. Other-
wise, it will return failure to its parent. These nodes are represented with a right
pointing arrow.

1 The sum of absolute differences in Cartesian coordinates.
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• Selector nodes execute its children from left to right until one returns success. If
all children return failure, this node will return the same to its parent, and success
otherwise. These nodes are represented with a question mark.

• Parallel nodes execute all its children in parallel. Termination conditions and
return values can be diverse (i.e. breaking and returning the value from the first
child to finish, returning a majority vote, etc). These are typically represented
with parallel right pointing arrows.

• Decorator or Filter nodes modify the normal execution flow in different ways
(negating the value of its child node, loops, running a node until failure, etc).
These nodes typically have only one child. Decorators are normally represented
with a diamond shape.

Leaf nodes are Conditions and Actions. The former query situations and features
of the current environment, while the latter apply moves in the scenario the agent is
in. Actions usually return success unless the action was not possible to be executed
for some reason, while the returned value of a condition node depends on the query
performed.

BTs can also incorporate handlers for data sharing and sub-behaviour re-use. For
the former, Blackboards allow passing information between nodes and trees, and it
is possible to introduce management mechanisms to coordinate access and usage of
resources. For the latter, it is possible to use look-up tables to build a BT library that
allows the designer to re-use sub-trees in multiple locations of the overall BT.

5.1 Behaviour Trees and Mario AI

Tables 4 and 5 (at the end of this chapter) include all conditions, actions, filters and
sub-trees designed for the agent, and available to the evolutionary algorithm. Some
sub-trees are only available for controllers without A*. These are used for naviga-
tional purposes, which are taken care of by A* routines in the other controllers. The
leaf nodes described in these tables are also summarised here:

• Conditions: Used to provide information about the enemies (distance to the
avatar and their type) and obstacles in the map (type and position of the blocks).

• Actions: The most useful action combinations are provided to the BT, based on
those described previously (see Section 3.2). Examples are Down, Fire, RunRight
(Right and Run both pressed), NOP (no buttons pressed) or WalkLeft. There are
also actions to request paths to specific locations, when using A*.

• Sub-trees: These units are indivisible and require a concrete sequence of moves
to be performed. Jumps are more effectively managed in sub-trees, as they re-
quire a frame in which the jump button is not pressed before the jump action is
executed, and farther jumps can be made with consecutive repetitions of the key
being pressed. Sub-trees are achieved by combining different filter and action
nodes. Fig. 4 shows the sub-tree to make long jumps to the right.
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<?xml version=”2.0” encoding=”UTF−8”?>
<Node Type=”Sequence”>
<Node Type=”Action” Operation=”NOP”/>
<Node Type=”Filter” Filter Type=”Loop” Times=”9”>
<Node Type=”Action” Operation=”JumpRight”/>

</Node>
</Node>

Fig. 4: Sub-tree for executing long jumps to the right. NOP ensures no button is pressed before
the JumpRight command (Jump plus Right actions) is executed. The Loop filter makes sure
JumpRight is executed during a given number of frames. On the left, graphical representation.
On the right, BT XML Structure of this sub-tree.

In this work, the BTs used are stored in XML files, with a hierarchical structure
that defines the type of each node and the operation that it represents. Fig. 4 includes
the (simplified) XML code of the sample sub-tree from this chapter. Note that this
implies that the GE grammar must be able to generate the behaviours in this format.

6 Building Behaviour Trees with Grammatical Evolution

Fig. 4 shows the complexity of the syntax of the BT Controllers. GE’s use of gram-
mars can ensure that the evolved controllers maintain syntactic correctness, both
keeping compatibility with the variety of BT control and leaf nodes, and also incor-
porating domain knowledge (as explained below). This is possible through the use
of the grammar as an instrument to control of the syntax of solutions both in terms
of data-structures and biases [33, 34].

6.1 Structure of a Behaviour Tree

The grammar employed to evolve BTs specifies the (XML) syntax, containing all
conditions, actions, sub-trees and filters designed. Earlier experimentation, where
GE was free to combine these nodes without a rigid structure, showed that the
evolved trees were badly structured (such as sequences of sequences, with NOP
actions at their leaves), not human-readable, and computationally demanding.

In order to avoid these issues, a constrained structure for the syntax of BTs was
imposed via the grammar. Although still variable in size, the BT structures are con-
trived to follow an and-or tree structure [35], the recommended way of building BTs
for game AI [36]. Therefore, all evolved BTs have a selector node at the root with
a variable number of Behaviour Block (BB) sub-trees, each one of them encoding a
particular sub-behaviour. Each one of these BBs consists of a sequence one or more
conditions, followed by a sequence of sub-trees or atomic actions.
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The last child of the root node is an unconditioned BB, which is either a sequence
of actions and sub-trees, or a default navigation behaviour (when using the Astar
agent). Fig. 5 exemplifies this structure.

Fig. 5: Structure of evolved BTs.

The root selector starts with the leftmost BB at the beginning of the BT execu-
tion. The BT will follow a left-to-right priority order in which each sub-tree will be
executed if its stated condition(s) are fulfilled. Hence, the right-most block is the
default behaviour, which will be executed in case all the previous conditioned BBs
fail to trigger. The conditions provided are complex queries to the game state, which
allows limiting the number of conditions associated to each BB to just one or two.
The number of actions and sub-trees on each BB is left unlimited.

The default behaviour (right-most block) depends on the navigation used: with-
out A*, it is simply composed of a sequence of actions, without associated condi-
tions. However, if A* us used, a particular sub-tree is provided. Fig. 6 shows this
structure (sub-tree Default Go Right), which is composed of a selector node,
with two sub-trees, Default Path Planner and Path Follower.

Default Path Planner is composed of two sub-trees. Recalculate
decides if the default path has to be calculated; that can happen when no item is
being targeted, or when a path was set but is almost finished. Path Planner (ex-
ecuted if the one before is successful) calculates the path to the rightmost position
in the map (the direction to follow to the end of the level). In the rare event where
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Fig. 6: Sub-tree for path finding. It calculates, if needed, the path to the rightmost position available.

a path is not found, Mario enters an emergency state: to keep moving, a default
forward jump is executed.

6.2 Designing the Grammar

Given that each BB is a self-contained structure, due to the syntax described above,
it is reasonable to permit individuals to exchange these between them. Specific
crossover points were thus encoded into the grammar to allow this, using a spe-
cial grammar symbol (<GEXOMarker>) to label crossover points [37, 38]. These
constrain GE to only slice individuals according to these points, when applying
crossover; a two-point crossover was employed to guarantee this. Without these
markers, standard 1-point crossover would provide more exploration with less ex-
ploitation; given the high cost of the fitness function, this trade-off was necessary.
This technique creates an operator similar to sub-tree crossover in GP, but allowing
the exchange of a variable number of behaviour blocks between individuals. Finally,
it is also possible for an individual to crossover with himself, which is equivalent to
a sub-tree swap operator. In the presented grammar, this is very useful to modify the
priority of a BB.

An extract of the grammar used (Astar variant) is shown in Fig. 7. The <BT>
symbol merely defines the XML prelude, while the <XMLPart> symbol provides
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specific implementation BT tags. The following two symbols (<RootNode> and
<RootSelNode>) define the and-or tree selector root node.

Its contents are defined in <SeqsAndDefBB>: a set of sequences, followed by
the default behaviour. A first crossover marker is defined here, as the right-most
place at which crossover can occur (just after all the defined filtered sequences, but
before the default behaviour, which is equal for all individuals).

The set of filtered sequences (i.e. BBs) is defined by the symbol <SeqNodes>,
which is just a recursively defined list of one or more BBs. Each of them, however,
defined by <SequenceNode>, places a crossover marker at the start (i.e. left) of
the definition of a BB, allowing for the exchange of BBs between individuals.

The definition of the remainder of the XML syntax proceeds in a similar fashion,
and most of it is not shown for lack of space (the grammar is composed of 48
non-terminal symbols, and 541 lines). The definition of the Default Go Right
sub-tree is worth mentioning (symbol <DefaultGoRight>): GE grammars can
define a large sequence of text as a single terminal symbol.

7 Experimental Work

A series of experiments were ran to test several aspects of this approach. To ascertain
if BTs are a good structure to evolve controllers for Mario AI, BTs were evolved us-
ing GE and their training and test performance were monitored over time, along with
other statistical measurements. These experiments also measured if the separation
of reactive and navigation routines led to improved results. Section 7.2 discusses
in detail the different evolutionary approaches tested, aiming to deal with the noisy
fitness evaluation that highly dynamic environments such as games can present.

7.1 Evaluating Behaviour Trees

A set of game levels is generated to test each evolved controller. Each mapset is
composed of 10 levels (5 difficulty settings, with and without enemies), and is gen-
erated with a single random seed. The resulting fitness value (to be maximised) is a
weighted sum of distance traveled and the actual Mario AI Benchmark score (which
includes enemy kills and collected items). Both game levels and BT controllers are
deterministic: the same controller in a map always yields the same fitness.

7.2 Generality of Controllers

The Mario AI benchmark is able to randomly create multiple levels, ranging from
very easy to physically impossible to terminate. Such a dynamic environment poses
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<BT> ::= ’<?xml version="2.0" encoding="utf-8"?>\n’ <XMLPart>
<XMLPart> ::= ’<Behavior>\n’ <RootNode> ’</Behavior>\n’

<RootNode> ::= ’<Node Type="Root">\n’<RootSelNode>’</Node>\n’
<RootSelNode> ::= ’<Node Type="Selector">\n’ <SeqsAndDefBB> ’</Node>\n’
<SeqsAndDefBB> ::= <SeqNodes> <GEXOMarker> <DefBB> ’\n’

<SeqNodes> ::= <SequenceNode> | <SeqNodes> <SequenceNode>
<SequenceNode> ::= <GEXOMarker> ’<Node Type="Sequence">\n’

<1to2Conditions> <FilterSeqActNLUTs> ’</Node>\n’

<1to2Conditions> ::= <ConditionNode> | <ConditionNode> <ConditionNode>
| <ConditionedLUT>

<ConditionNode> ::= ’<Node Type="Condition" />\n’

<FilterSeqActNLUTs> ::= <FilterHeader> <SeqActNLUTs> ’</Node>\n’
| <SeqActNLUTs>

<FilterHeader> ::= <Loop> | <NON> | <UFL>
<Loop> ::= ’<Node Filter_Type="Loop" Times="’<I>’" Type="Filter">\n’
<NON> ::= ’<Node Filter_Type="NON" Type="Filter">\n’
<UFL> ::= ’<Node Filter_Type="Until_Fail_Lim" Times="’<I>’" Type="Filter">\n’
<I> ::= 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

<SeqActNLUTs> ::= ’<Node Type="Sequence">\n’ <1PlusActOrLUTs> ’</Node>\n’
<1PlusActOrLUTs> ::= <ActionOrLUT> | <1PlusActOrLUTs> <ActionOrLUT>
<ActionOrLUT> ::= <ActionNode> | <LUTNode>

<DefBB> ::= ’<Node Type="Sequence">\n’ <DefaultGoRight> ’</Node>\n’
<DefaultGoRight> ::= ’<Node Name = "DefGoRight" Type="Selector">
<Node Name = "DefPathPlanner" Type="Sequence">

<Node Name="Recalculate" Type="Selector">
<Node Filter_Type="NON" Type="Filter">
<Node Operation="IsFollowingPath" Type="Condition"/>

</Node>
<Node Operation="IsRightMostCloseToEnd" Type="Condition"/>

</Node>
<Node Name="PathPlanner" Type="Selector">

<Node Operation="GetPathToRightMost" Type="Action"/>
<Node Operation="NoPathAction" Type="Action"/>
<Node Name="JumpRightRunLong" Type="Sequence">
<Node Operation="NOP" Type="Action"/>
<Node Filter_Type="Loop" Times="25" Type="Filter">

<Node Operation="JumpRightRun" Type="Action"/>
</Node>

</Node>
</Node>

</Node>
<Node Name="Path Follower" Type="Sequence">

<Node Operation="IsFollowingPath" Type="Condition"/>
<Node Operation="FollowCurrentPath" Type="Action"/>

</Node>
</Node>’

Fig. 7: Extract of the grammar used, showing the incorporation of the XML syntax.

a generalisation problem, and the following approaches were tested aiming at tack-
ling this issue (note that both non-A* and A* versions of these were used):

• Single: this approach always uses the same mapset for evaluation, with the same
seed for all independent runs.

• Five: in this case, the same five mapsets are used to test each controller (kept for
all runs). This increases the variety of situations each controller is evaluated on.
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Table 1: Experimental Setup
Population Size 500
Evaluations 250,000
Derivation-tree Depth Range (for initialisation) 20. . . 30
Derivation-tree Max Depth unset
Tail Ratio (for initialisation) 50%

GE Selection Tournament Size 1%
Elitism (for generational replacement) 10%
Marked 2-point Crossover Ratio 50%
Marked Swap Crossover Ratio 50%
Average Mutation Events per Individual 1

Mario Level Difficulties 0. . . 4
Level Types 0 1
Level Length 320

• Change1: this approach uses only one mapset for evaluation, but changing it
at each generation. The same sequence of mapsets is used in all runs. This ap-
proach increases the variety of situations seen for each controller, while keeping
the evaluation effort small. To ensure continuity between generations, the parent
population is reevaluated with the new generation’s mapset.

• Change5: this case uses five mapsets for each evaluation, but all five are replaced
at each generation (same sequence for all runs). The parent population is reeval-
uated with the new mapsets at the start of each new generation.

• Slide: this approach also uses five mapsets for each evaluation, replacing one
mapset with a new one at every generation, in a sliding window manner (12345,
23456, etc.). The same sequence is kept for all runs. The parent population is
reevaluated with the new five mapsets at the start of each new generation.

Each of the 10 systems evaluated (five approaches described in Section 7.2, with
and without A*) used the setup shown in Table 1.

As different approaches use a different number of mapsets for evaluation, and a
single mapset took anywhere between 0.7s and 6.0s to evaluate (using a single core
of a 2.8 GHz Intel Core i7 processor), different numbers of generations were used
so that each approach used the same number of mapsets per run.
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8 Results

8.1 Performance on Training

The mean best controller training score for all approaches is shown in Fig. 8. These
plots also include the average performance of the respective reference behaviour
(RunRightSafe without A*; DefaultGoRight for A*)2.

Fig. 8: Mean best training score across time, for all approaches not using (left) or using (right) A*.
Note the difference in the scales on the Y axis.

The results confidently show that all approaches substantially outperform their
respective reference behaviours. It seems evident that the BT approach can success-
fully add reactive elements to the controllers, enhancing its performance. A second
observation that can be made is that there is a performance difference between the
controllers that use A* navigation and those that do not. The RunRightSafe con-
troller has an average performance close to 22,000 points, while DefaultGoRight
averages above 31,000. With the exception of the Single approach, this is at a par
(or superior) to the average controller performance for the other approaches not
using A*. This showcases the performance improvement of using a dedicated, de-
terministic algorithm for navigation.

The relative performance of each of the approaches is similar with or without A*.
It is worthwhile highlighting that the Single approach has the best training perfor-
mance. It is therefore quite successful at optimising the controller behaviour for the
single mapset it is trained on, independently from the initial random seed. It shows
the best evolvability, with a typical optimisation performance curve, achieving the
best training score with or without A*. A similar result can be observed with the Five
approach, providing a steady improvement in average performance across the five
training mapsets. The final lower total score is due to a more diverse performance
across the different mapsets.

2 This and all results reported in this chapter are averaged over 30 independent runs. Videos of the
best controllers of some runs are available online (http://tinyurl.com/gebtMarioAI).
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Table 2: Least-Squares Analysis of Learning Rates

Approach Train Test
Intercept Slope Std. E. Res. E. Intercept Slope Std. E. Res. E.

N
o

A
*

Single 3.49E+4 1.40E-2 4.84E-4 784.5 2.12E+4 2.26E-3 2.50E-4 127.7
Five 2.87E+4 1.36E-2 1.00E-3 739.3 2.24E+4 3.22E-3 6.29E-4 321

Change1 3.24E+4 8.64E-3 3.43E-3 3946 2.25E+4 1.18E-2 1.25E-3 639.1
Slide 2.75E+4 1.12E-2 2.03E-3 1383 2.29E+4 1.15E-2 1.34E-3 684.2

Change5 2.70E+4 1.25E-2 3.35E-3 1763 2.27E+4 1.17E-2 1.30E-3 667.1
RunRightSafe 2.18E+4 0.0 0.0 0.0 2.18E+4 0.0 0.0 0.0

A
*

Single 5.03E+4 1.69E-2 7.63E-4 1236 3.50E+4 -3.69E-3 4.53E-4 231.4
Five 4.28E+4 1.41E-2 9.29E-4 680.9 3.63E+4 4.45E-4 3.38E-4 172.6

Change1 4.55E+4 -5.81E-3 4.47E-3 5133 3.69E+4 1.04E-3 9.59E-4 489.6
Slide 4.16E+4 2.94E-3 2.16E-3 1467 4.06E+4 1.61E-2 1.76E-3 902.7

Change5 4.06E+4 4.34E-3 4.50E-3 2369 3.80E+4 8.16E-3 7.74E-4 395.2
DefaultGoRight 3.11E+4 0.0 0.0 0.0 3.11E+4 0.0 0.0 0.0

Changing the mapset used for evaluation at each generation makes Change1 ap-
proach the noisiest in terms of evolution across time. This noisy result shows the dif-
ficulty range of the levels generated in this framework with different random seeds,
even when using the same difficulty setting. With or without A*, this approach has
both the highest and lowest average score of all approaches, and with A*, sometimes
performs worse than the default behaviour. Change5 and Slide exhibit a similar per-
formance. The evolution curves show the extreme range of difficulties due to the
generated maps, but to a lesser extent than Change1, especially in the case of Slide,
thanks to using several mapsets and modifying them between generations.

Table 2 shows the results of performing a linear regression to analyse the average
learning rate of the different approaches. Although they are not linear, a simple
linear model allows to make some observations: the intercept roughly represents
the starting performance of each controller, the slope is an approximation of the
learning rate of each approach, and the standard and residual errors are a measure
of the noise present in the average learning performance.

As can be seen, the Single approach exhibits the best average learning rate across
all runs. Five also shows a good learning rate, while Slide and Change5 exhibit simi-
lar learning rates, but lower and with a higher noise. Finally, Change1 has the lowest
learning rate, which is actually negative when used in conjunction with A* naviga-
tion, and the highest residual error (an indication of the range of different maps
explored and how hard it is to evolve controllers in such a dynamic environment).

8.2 Performance on Test

A generalisation test was carried out in order to measure the performance of the
evolved controllers in unseen scenarios. This test consisted of 20 unseen maps
(seeds 666 to 685), with the same parameters as the training mapsets. The indi-
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vidual that obtained the highest training fitness was tested every 5,000 evaluations
and the average results across all runs are shown in Fig. 9.

Fig. 9: Mean best test score of the best training individual every 5,000 evaluations, for all ap-
proaches not using (left) or using (right) A*.

The first result to notice in these tests is that the performance of all approaches
decreases with respects to that of training. Given that these levels are unseen and not
used for computing the fitness during training, this is to be expected. A* approaches
fall from a 35,000−55,000 training performance range to 34,000−44,000 in test,
while no A* behaviours drop from 25,000−40,000 to 21,000−27,000.

As can be observed, the Single approach clearly overfitted its single training
mapset, and has the lowest generalisation score overall. It is interesting to see that,
with no A*, it is even worse than the reference RunRightSafe behaviour, while with
A* its average generalisation score worsens as evolution progresses. Despite of a
few signs of training overfitting, the Five approach slightly improves its generalisa-
tion score over time without A*. With A* it quickly reaches its best performance
without further improvement overtime. Its performance is again substantially better
with A* (over 36,000 points) than without (around 23,000 points).

Change1 and Change5 steadily improve their generalisation performance, when
used without A*. In spite of the very noisy average training performance, the large
number of generations it is allowed to evolve can be a reason for this improvement.
In the case if A*, both approaches show a better performance than their no A*
counterparts, with Change5 showing a better improvement than Change1. However,
the approach that shows the best performance in the generalisation test is Slide, with
a substantially better average score at all evaluation steps.

Table 3 shows the test performance of the best training controllers (again av-
eraged across 30 runs). All A* approaches present significantly better test perfor-
mance than their respective no A* behaviours, with mostly non-overlapping stan-
dard deviation intervals.

The right half of Table 2 presents the test score improvement rates of all ap-
proaches; these are very low for Single and Five. Single has a negative learning rate,
when used with A* navigation. Slide and Change5 show good test performance im-
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Table 3: Average Test Performance and Std. Deviation
Approach Avg. Score Std. Dev. Approach Avg. Score Std. Dev.

N
o

A
*

Single 21668.1 1531.9

A
*

Single 34224.1 1016.8
Five 23033.3 2210.9 Five 36350.1 468.6
Change1 24910.4 1860.2 Change1 37435.2 596.2
Slide 26629.3 1631.7 Slide 42616.7 731.7
Change5 25374.7 1609.9 Change5 39282.5 579.9
RunRightSafe 21790.2 0.0 DefaultGoRight 31173.8 0.0

provement over time, Slide with A* exhibiting the highest learning rate across all
sets (in training and testing) and approaches (A* or not). Finally, it is worth high-
lighting that the learning rate of Change1 (with A*), albeit very low, is positive, in
contrast to its negative training learning rate.

8.3 Analysis

8.3.1 Fitness Analysis

Fig. 10 provides an analysis of the specific fitness contributors (number of cells
passed, number of kills and time left when Mario dies or finishes a level) of the best
evolved controllers, averaged across the 20 test mapsets.

This analysis reinforces the idea that A* navigation makes an evident contri-
bution to the survivability of Mario. The average number of cells passed with the
DefaultGoRight controller is much higher, leading to a higher number of (random)
kills. The time left with A* is also superior, due mainly to it not getting stuck in
areas that are difficult to navigate.

Controllers evolved with no A* show a worse test performance in terms of to-
tal cells passed than their reference behaviour (RunRightSafe). This is because BT
structures need to be evolved to effectively combine navigation and reactiveness
actions (such as killing enemies). Single and Five, despite of being poor at gen-
eralisation, are able to improve their average number of kills. They fail, however,
at significantly evolving controllers that improve the number of cells passed or the
total time left.

In the A* case, the BT structures are evolved mainly for reactiveness, with all
approaches producing good reactiveness behaviour blocks. This allows them to im-
prove the good navigation base given by the DefaultGoRight increasing the number
of cells passed, as well as the number of kills (with a much higher improvement
than controllers without A*).

This analysis provides another indication that the Single approach does not gen-
eralise well. It exhibits little or no improvement (apart from number of kills, when
used without A*). Five performs slightly better, and all the other approaches evolve
better generalisable behaviours across time.
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Fig. 10: Breakdown of average test performance of best evolved controllers, without A* (left) and
with A* (right). The first row plots average percentage of passed cells; the second the average
number of kills; and the last the percentage of time left.

It is also of interest the (non-)evolution of how much time was left after the game
was completed when using A*. Even though better navigation means maps will be
finished in less time, complex reactive behaviours and overall better survivability in-
crease the amount of time spent in each map. Fitness-contributing behaviours, such
as collection of items, were shown hard to evolve. Controllers with A* collected, on
average, between 1 and 2 items, while no A* controllers achieved less than 1.

8.3.2 Structure and Size of the Solutions

Fig. 11 (top) shows the average (genotypic) solution size, and it provides further
evidence that the Single and Five approaches overfit their target maps. The size of
the genotype steadily increases through evolution, which is more pronounced when
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A* is not used (hence solution size seems more stable with a pathfinding algorithm
in the behaviour).

Fig. 11: Top row: Genotype solution size without (left) and with (right) A*, for the best individuals.
Bottom row: Mean number of BBs for the best individuals, without (left) and with (right) A*.

Although the genotype size (and hence number of nodes in the BT controllers)
is comparable with or without A*, the actual structure of these trees is radically
different with the two navigation approaches. Fig. 11 (bottom) plots the number of
Behaviour Blocks (BBs) in the best controllers as seen across time. As can be seen,
this number is very stable, indicating that evolution is mainly focused on opimising
the contents of each BB keeping a similar number in the BT.

Having a small number of BBs without A* corresponds with a very complex
structure on each one of them. It is worth highlighting that this very small number
limits the effectiveness of the crossover operator: each BB incorporates a complex
mix of both navigation and reactiveness actions, which is difficulty to combine and
inter-exchange properly. When using A* as a default behaviour for navigation, each
BB is mostly a compact set of conditions and actions evolved for reactiveness, re-
sulting in a larger number of BBs being evolved by each controller. These BBs are
more easily exchanged through crossover as independent reactive sequences.
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9 Conclusions and Future Work

This chapter analysed the application of GE to evolve Behaviour Trees, a structure
that is able to incorporate reactive (short term) and planning (long term) concerns in
highly dynamic environments. In particular, this chapter showed the application of
this technique to evolve controllers for the Mario AI video-game.

The experiments showed that GE is suitable for this task, allowing the incorpo-
ration of domain knowledge and specific syntax restrictions into the generated so-
lutions, through careful grammar design. Also, the specification of crossover points
allowed for the definition and exchange of Behaviour Blocks, accelerating the evo-
lutionary process. The resulting solutions are human readable, and easy to analyse
and fine-tune. Not only this shows the applicability of this technique to produce us-
able and maintainable behaviours, but it also addresses one of the main concerns of
the games industry regarding speed, applicability and understandability of solutions
proposed by evolutionary approaches.

Possible extensions to this work include adopting a multi-objective approach,
dividing the objective fitness score into some of its constituents (such as distance
traveled or number of kills). Specifically related to the use of BTs, one could also
record statistics such as the frequency of use, the number of kills and the complexity
of each BB, and use this information to prune or inform the crossover operators.
Some mechanisms would have to be in place to avoid early convergence to a very
reduced set of BBs, but this could also be achieved through individual BB analysis.

Appendix: Actions, Conditions, Filters and Sub-Trees for Mario

This section contains tables with the actions, conditions, filters and sub-trees used by
the approaches described in this chapter to evolve Behaviour Trees. Note that some
actions and conditions can be analogous in both the controllers with and without
A* (i.e. IsBreakableUp vs. UnderBrick); they are, however, different: while the A*
version checks the nodes in the graph, the no-A* implementation needs to analyse
the contents of each cell. Also, note that actions use the terms left and right, which
imply movement, while conditions use ahead (for right) and back (for left). Entries
marked with a † denote sub-trees that have an analogous left (or back) variant.

Filters
Name ¬A* A* Description

Loop X X Repeats the execution of its child sub-tree N times.
Non X X Negates the result given by its sub-tree.
UntilFails X X Repeats the execution of its sub-tree until it receives a failure.
UntilFailsLimited X X Repeats the execution of its sub-tree N times or until failure.

Table 4: Filters available to the GE to evolve a BT.
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Name ¬A* A* Description
Conditions

CanIFire X X Checks if Mario is able to shoot fireballs.
CanIJump X X Indicates if Mario is able to jump (if he is on the ground).
IsFollowingPath X X Indicates if Mario is following a path given by A*.
IsStuck X X Checks if Mario has been idle for many cycles.
UnderBrick/Question X X Verifies if there is a brick/question block over Mario.
EnemyAhead † X X Checks if there is an enemy ahead of Mario.
EnemyAheadUp/Down † X X Queries for an enemy ahead and over/below Mario.
JumpableEnemyAhead † X X Checks ahead for an enemy that can be stomped.
NoJumpableEnemyAhead † X X Checks ahead for an enemy that cannot be stomped.
IsBulletToHead/Feet X X Checks for a bullet coming towards Mario’s head/feet.
AvailableJumpAhead † X Verifies if there are no obstacles over and ahead of Mario.
HoleAhead † X Indicates if there is a hole ahead of Mario.
IsGapAhead † X Indicates if there is a free gap in front of Mario.
IsBreakableUp/Ahead X Checks for a breakable block above/ahead of Mario.
IsClimbableUp/Ahead X Checks for a climbable platform over/ahead of Mario.
IsJumpPlatformUpAhead † X Verifies if there is a platform ahead and over Mario.
IsPushableUp/Ahead X Checks for a question mark block over/ahead of Mario.
ObstacleAhead † X Verifies if there is an obstacle ahead of Mario.
ObstacleHead † X Indicates if there is an obstacle ahead, at Mario’s head.

Actions
NOP, Down, Fire X X No action and atomic actions for Down and Fire, resp.
WalkRight † X X Atomic action Right.
RunRight † X X Combination of the atomic actions Right and Fire.
GetPathToClosestBrick X Uses A* to get a path to the closest brick block to Mario.
GetPathToClosestQuestion X Uses A* to get a path to the closest question mark block.
GetPathToClosestItem X Uses A* to get a path to the closest item to Mario.
GetPathToGround X Gets a path (with A*) to lowest position seen in the level.
GetPathToTop X Gets a path to highest position seen in the level.
GetPathToClosestRightMost X Gets a path to rightmost position seen in the level.
GetPathToClosestLeftMost X Gets a path to leftmost position seen in the level.

Sub-Trees

UseRightGap † X
Moves Mario to the right until no blocks are over him to
then jump to a higher platform and continue from there.

AvoidRightTrap † X
Attempts to overcome a dead end. Takes Mario back to
the previous bifurcation point to then use UseLeftGap.

GoUnderRight † X
Passes structures traversable only if Mario is small; or he
runs, crouches and slides under it.

DefaultPathPlanner X Gets the path to the rightmost position on the screen.
PathFollower X Follows the last path calculated.

JumpRightLong † X X
Shown in Fig. 4. Makes a long jump to the right. The filter
executes the JumpRight action 9 frames.

JumpRightRunLong † X X As above, with JumpRightRun (jump, right, run).
JumpRightShort † X X As JumpRightLong, with JumpRight executed 3 frames.
JumpRightRunShort † X X As the one above, with JumpRightRun.

WalkRightSafe † X X
Moves Mario to the right, checking for hazards, trying to
jump (or kill, if enemy can be stomped) over them.

RunRightSafe † X X As WalkRightSafe, but the input run is always on.
VerticalJumpLong X X As JumpRightLong, but the action is Jump (input jump).
VerticalJumpShort X X As JumpRightShort, but the action is Jump.

Table 5: Conditions, Actions and Sub-Trees available to the GE to evolve a BT.
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