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Energy-Efficient Resource Allocation for OFDMA
Heterogeneous Networks

Nam-Tran Le, Le-Nam Tran, Senior Member, IEEE, Quang-Doanh Vu, Member, IEEE,
Dhammika Jayalath, Senior Member, IEEE

Abstract—We proposed several energy-efficient resource allo-
cation algorithms for the downlink of an orthogonal frequency-
division-multiple-access (OFDMA) based femtocell heterogeneous
networks (HetNets). Heterogeneous QoS and fairness in rate
are investigated in the proposed resource allocation problem. A
dense deployment of femtocells in the coverage area of a central
macrocell is considered and energy usage of both femtocell
and macrocell users are optimized simultaneously. We aim to
maximize the weighted sum of the individual energy efficiencies
(WSEEMax) and the network energy efficiency (NEEMax) while
satisfying the following: (1) minimum throughput for delay-
sensitive (DS) users, (2) fairness constraint for delay-tolerant
(DT) users, (3) required constraints of OFDMA systems. The
problem is formulated in three different forms: mixed 0-1
integer programming formulation, time-sharing formulation and
sparsity-inducing formulation. The proposed resource block (RB)
and power optimization problems are combinatorial and highly
non-convex due to the fractional form of the objective function,
the integer constraint of OFDMA RBs and non-affine fairness.
We adopt the successive convex approximation (SCA) approach
and transform the problems into a sequence of convex subprob-
lems. With the proposed algorithms, we show that the overall
joint RB and power allocation schemes converge to suboptimal
solutions. Numerical examples confirm the merits of the proposed
algorithms.

Index Terms—Femtocells, OFDMA, heterogeneous networks,
resource allocation, successive convex approximation.

I. INTRODUCTION

Network densification is considered as one of the promising
ways to jointly meet the exponentially rising demand for
higher throughput and ubiquitous coverage. The main idea is
to increase explosively number of end-users which are served

This work was funded by Australian Government under the Endeavour
Postgraduate Scholarship Program and by the Science and Engineering
Faculty, Queensland University of Technology, Australia under the Faculty
Write-up Scholarship. This publication has emanated from research supported
in part by a Grant from Science Foundation Ireland under Grant number
17/CDA/4786. The work of Vu was supported by the projects ”Flexible
Uplink-Downlink Resource Management for Energy and Spectral Efficiency
Enhancing in Future Wireless Networks (FURMESFuN)” funded by the
Academy of Finland under Grant 31089, and ”6Genesis Flagship” funded
by the Academy of Finland under Grant 318927.

Nam-Tran Le and Dhammika Jayalath are with the Science and Engineering
Faculty, Queensland University of Technology, Queensland, Australia. Nam-
Tran Le is also with the Institute of Research and Development, Duy Tan
University, Da Nang 550000, Vietnam.(email: namtran.le@hdr.qut.edu.au;
dhammika.jayalath@qut.edu.au)

Le-Nam Tran is with the School of Electrical and Electronic Engi-
neering, University College Dublin, Dublin D04 V1W8, Ireland (e-mail:
nam.tran@ucd.ie).

Quang-Doanh Vu is with the Centre for Wireless Communications,
University of Oulu, P.O.Box 4500, FI-90014, Oulu, Finland. (email:
doanh.vu@oulu.fi).

.

by a large number of small cell base stations (BSs) [1]. Among
different kinds of small cells, femtocell is perhaps the most
popular because of its unique features including small form-
factor, IP based backhaul, and end-users supported ad-hoc
deployment without any network planing and site survey [2].
Recent surveys show that 70% of mobile data and 50% of
voice services originate from indoor femtocell BSs [3], [4].

Femtocell heterogeneous networks (Hetnets) are the deploy-
ment of femtocells in an existing area on top of traditional
macrocells. Such an architecture can provide many benefits
including higher coverage area and low-power transmission,
improved network capacity, reduced macrocell loading and
cost benefits, to name but a few [3], [5], [6]. Consequently,
dense small cell HetNets are going to be the main network
architecture for the fifth generation (5G) systems [7]. On
the other hand, orthogonal frequency division multiple access
(OFDMA) technology is expected to improve the system
capacity without intra-cell interference. Collectively, dense
OFDMA femtocell Hetnets are likely to be the core network
in the near future [8].

Over the last decade, energy efficiency (EE) has become
one of the main criteria for designing wireless systems due
to the concern of sustainable development [9]. In dense small
cell Hetnets, EE design has received significant attention since
operating a massive number of BSs may consume enormous
energy. There are two common metrics for EE [9]: network
EE (NEE) defined as a ratio between sum of all individual
throughputs and total consumed power, and weighted sum
of the individual EE (WSEE). The former focuses on the
performance of overall network while the latter balances the
individual EEs of different BSs leading to the EE fairness.
Beside the two mentioned EE metrics, the exponentially-
weighted product of the energy efficiencies over all subcarriers
and all BSs was considered in [10]. Herein, we will focus on
maximizing NEE and WSEE.

Energy efficiency resource allocation should account for dif-
ferent practical requirements. Specifically, beside the transmit
power budget at BSs, minimum data rate for delay-sensitive
(DS) users and the fairness between delay-tolerant (DT) users
also need to be considered. Here, the minimum data rate
requirement is to satisfy some quality-of-service (QoS) or
to stabilize queuing (e.g. keeping the queuing sizes small).
On the other hand, the fairness between DT users should
be maintained due to the fact that users with less favourable
channel gains may not be able to receive any data at a given
time, because most of resources are assigned to the users of
better channel gains.
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A. Related work

Dense small cell networks were investigated in many works
with different scenarios. For examples, in [11], authors devel-
oped a model of an artificial immune system that automat-
ically turns on/off depending on traffic demands. Assuming
stochastic traffic arrivals, an optimization-based scheme for
the EE resource management in pico-transceiver Hetnets was
proposed in [12]. The work of [13] studied the problem
of determining the number of deployed antennas, transmit
power levels and optimal BS density for EE maximization
in dense small cell networks with massive MIMO technique.
An EE optimization framework that minimizes small cells’
energy under the guarantee of minimum average user rate or
instantaneous user rate was considered in [14]. [15] investi-
gated WSEE and NEE maximization problems in multicarrier
wireless networks. However, the approach in [15] cannot be
applied to OFDMA systems since it does not consider the
OFDMA principle that a specific resource block (RB) can only
be allocated to one user.

There exist many works considering joint subcarrier and
power allocation in OFDMA systems. In [16], an energy
optimization algorithm was proposed for dense OFDM net-
works, considering the load factor of OFDM systems. For
EE resource allocation in OFDMA systems, an algorithm
of power minimization was proposed in [17]. In [18], a
resource allocation algorithm for EE optimization was studied
in conventional OFDMA systems. An EE optimization scheme
for both RB and power allocation was investigated for MIMO-
OFDMA systems in [19]. [20] studied resource allocation for
EE in MIMO OFDMA wireless networks. However, DT and
DS constraints were not considered. [21] studied thWSEE
maximization problem under the DS constraint only. In [22],
EE resource allocation was considered with both DS and
DT services. Generally, these works considered conventional
OFDM systems where there is one BS, i.e. the intercell
interference does not exist. Thus the approaches in these
works are not straightforwardly applicable to OFDM Hetnets,
especially for dense deployment, where co-tier and cross-tier
interference should be carefully controlled.

Resouce allocation for OFDM Hetnets was studied in [8],
[23]–[25]. In particular, [8], [23] proposed spectral efficiency
(SE) frameworks which maximize throughput under con-
straints of users’ power. Recently, a joint allocation of RB and
power for EE maximization was proposed in [24], which only
includes DS constraints. Therein, the intercell interference is
assumed to be zero. The assumption is quite strong in practical
implementation. Power minimization only with DS constraints
was considered in [25]. An interference-aware EE scheme was
developed for both tiers in OFDMA femtocell Hetnets in [26],
which did not include DT constraints. [27] proposed a power
minimization transmission method for the two-tier LTE macro-
femtocell network. To the best of our knowledge, resource
allocation for EE maximization in OFDMA-based femtocell
Hetnets under DS and DT constraints has not been addressed
previously.

B. Main contributions

Motivated by the above discussions, we consider the EE
resource allocation problem in OFDMA-based femtocell Het-
nets with dense deployment. The aim is to jointly design RB
and power allocation at macrocell and femtocell BSs such
that the EE performance is maximized under both DS and
DT constraints. Both WSEE and NEE metrics are considered.
Here, for OFDMA-based systems, the joint allocation of RB
and power may achieve better EE performance compared to
only power optimization, which can be understood from the
definition of EE. With the property of OFDMA systems that a
BS allocate a RB to only one user, both throughput and power
consumption are the functions of RB and power.

The considered design problems are highly intractable
which combines the difficulties from combinatoric nature and
(continuous) nonconvex functions. Thus, we focus on develop-
ing efficient sub-optimal solutions. To this end, we tackle the
combinatoric nature by three different approaches: (1) mixed-
integer programming formulation, (2) time-sharing formula-
tion and (3) sparsity-inducing formulation. These formulations
lead to the relaxed problems which are continuous nonconvex
programs. Inspired by the efficiency of successive convex
approximation (SCA) framework [28] in wireless network
design, we then customize this technique to deal with the
nonconvexity. Consequently, the solutions are achieved by
iterative procedures which are provably convergent. In par-
ticular, in each iteration, only one second-order cone program
(SOCP) needs to be solved. The convergence and effectiveness
of the proposed algorithms are then evaluated by extensive
simulations.

We summarized the contributions of this paper as follows:

• Dense deployment of femtocells with both co-tier and
cross-tier interference is considered.

• The proposed EE resource allocation algorithms support
heterogeneous services including delay-sensitive (DS)
users with minimum data rate requirement and delay-
tolerant (DT) users with fairness in data rate.

• Both WSEE and NEE maximization problems are con-
sidered in the three formulations.

The rest of the paper is organized as follows. The system
model, power consumption model and EE metrics are dis-
cussed in Section II. The three formulations of EE problems
are presented in Section III. The proposed solutions for the for-
mulations are provided in Sections IV, V, and VI. We discuss
the convergence property and computational complexity of the
proposed solutions in Section VII. The Numerical results are
provided in Section VIII. Finally, Section IX summarizes the
work.

Notation: The following notations are used throughout the
paper. Bold lower and upper case letters represent vectors and
matrices, respectively; calligraphic upper case letters represent
sets; |A| denotes cardinality of set A; ‖a‖q is the `q-norm of
the vector a; notation � denotes Schur-Hadamard (element-
wise) multiplication of two matrices; AT is normal transpose
of matrix A; CN (0, a) denotes complex Gaussian random
variable with zero mean and variance a.
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II. ENERGY EFFICIENCY FRAMEWORK OF OFDMA
HETEROGENEOUS NETWORKS

A. System Model

Macro base station

Femto base station

User

Interference signal

Desire signal

Fig. 1. A scenario of downlink transmission in OFDMA HetNets.

We consider a downlink transmission in OFDMA HetNets
as shown in Fig. 1 where there are one macro base station
(BS) and a set of K femto BSs. Let K , {0, 1, 2, ...,K}
denote the set of all BSs where macro BS is referred as BS
0. BS k, k ∈ K, serves a set of Uk users denoted by Uk ,
{1, 2, ..., Uk}. We assume that each user is served by only one
BS, i.e. Uk ∩ Uj = ∅ where k, j ∈ K and k 6= j. Here, the
heterogeneous services include two categories: delay-sensitive
(DS) data with minimum data rate requirements and delay-
tolerant (DT) data with proportional fairness [29], [30]. Let
US
k ⊆ Uk and UT

k ⊆ Uk be the set of DS users and DT
users served by BS k, respectively. We assume that each user
only receives one kind of service category at a given time, i.e.
US
k ∩ UT

k = ∅ and |US
k | + |UT

k | = Uk for all k. Let N be the
number of orthogonal resource blocks (RB) with a bandwidth
W .1 From now on, without loss of generality, let us suppose
W = 1 Hz for notational convenience.2 For OFDMA systems,
BS k assigns a specific RB to only one user of Uk so that there
exists no intra-cell interference. Let ku denote user u served
by BS k, hj,ku,n denote the channel gain between BS j and
user ku on RB n, and pku,n denote the power allocated to
user ku on RB n. Note that pku,n is nonzero only when RB
n is assigned to user ku. With these notations and the above
assumptions, the signal-to-interference-plus-noise ratio (SINR)
at user ku on RB n can be written as [8]

γku,n(p) =
pku,nhk,ku,n∑

j∈K\{k}
∑
v∈Uj pjv,nhj,ku,n + σ2

ku,n

(1)

where p denotes a vector stacking all pku,n, and σ2
ku,n

is
the variance of the zero mean additive white Gaussian noise

1In Long-Term Evolution (LTE) system, one RB includes a group of 12
adjacent subcarriers and 6 or 7 consecutive OFDM symbols [31].

2The practical value of bandwith W will be considered in the simulation
section.

(AWGN). And the total achievable data rate of user ku is given
by

Rku(p) =

N∑
n=1

log(1 + γku,n(p)). (2)

The considered system model is inspired from the coor-
dinated beamforming, which is one of the coordinated multi
point (CoMP) transmission techniques in LTE networks. In
coordinated beamforming, the base stations cooperate to de-
sign their beamforming vectors (i.e. the power levels herein),
but data is just transmitted from a serving base station. On
the other hand, joint transmission CoMP (i.e. a user can
simultaneously receive data from multiple BSs) can improve
the performance. But this tranmission scheme is very hard to
implement in reality since it requires very strict synchroniza-
tion between BSs.3

B. Power Consumption Model

We develop the power consumption model for the consid-
ered network based on the one widely used in the works related
to EE designs [32]–[34]. In particular, the consumed power
at BS k operating in the transmit mode, can be divided into
two parts called static power and dynamic power. The static
part includes the power for operating circuits and preparing
the transmitted signal including filters, coolers, baseband pro-
cessing, frequency synthesizer, RF chains, etc. This part is
commonly assumed to be fixed. The dynamic part includes
the power dissipated in the power amplifier for sending the RF
signal, which is linearly dependent with the radiated power.
In case of the users, who operate in the reception mode, the
main consumed power is for operating circuits which is also
fixed. Based on the discussion, let us denote by P̃ sta

k and P̄ sta
ku

the static power consumed at BS k and user ku, respectively.
Then the total power consumed by BS k and its served users
Uk can be written as

gk(p) =
1

ξk

(∑
u∈Uk

N∑
n=1

pku,n

)
︸ ︷︷ ︸

dynamic power

+ P̃ sta
k +

∑
u∈Uk

P̄ sta
ku︸ ︷︷ ︸

static power

(3)

where ξk ∈ (0, 1) is the efficiency of the power amplifier at
BS k.

C. Energy Efficiency Metrics

In this paper we consider two widely used EE design
criteria. The first one is called weighted sum EE (WSEE)
defined as [33]–[35]

EWS(p) ,
∑
k∈K

wk

∑
u∈Uk Rku(p)

gk(p)
(4)

where the term
∑

u∈Uk
Rku (p)

gk(p)
is the EE of cell k, and the

weighting factor wk is introduced to achieve some degree of
EE fairness among cells, which is critical in HetNets.

3It is possible to modify the proposed solutions to deal with joint trans-
mission CoMP. In this case, the SINR given in (1) is a linear combination of
the power allocation coefficients. The same observation is also applied to the
denominator in (1).
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The second criterion is to focus on the EE of the overall
system called network EE (NEE) which is defined as [36],
[37]

ENet(p) ,

∑
k∈K

∑
u∈Uk Rku(p)∑

k∈K gk(p)
(5)

where the numerator and denominator account for the total
transmitted data and total consumed power over entire system,
respectively.

By definitions, EE design criteria (4) and (5) are measured
in bits (or nats) per Joule.

III. ENERGY EFFICIENCY PROBLEM FORMULATIONS

We focus on the problems of WSEE maximization
(WSEEMax) and NEE maximization (NEEMax), subject to
some specific constraints on BSs’ transmit power, QoS, and
users’ fairness. As mentioned in the previous section, the
requirement in OFDMA systems is that a RB can only be
assigned to a single user by a BS. This naturally makes
the considered problems a combinatorial program (commonly
known as mixed-integer program). In general, a mixed-integer
program is NP-hard [38]. Additionally, both EWS(p) and
ENet(p) are intractable due to the SINR term. In the rest
of the section, we introduce three different formulations that
lead to efficient solutions. The motivation for applying dif-
ferent approaches is that one of these may produce a better
performance than the others for a specific scenario.

A. Formulation 1: Mixed 0-1 Integer Programming Approach

We start with a mixed 0-1 integer programming formulation
that arises naturally from the principle of OFDMA systems.
Let us introduce a Boolean variable aku,n which represents
the connection status between RB n and user ku. Specifically,

aku,n =

{
1 if RB n is allocated to user ku
0 otherwise.

.

Then the WSEEMax and NEEMax problems can be formu-
lated as

maximize
a,p

f(p) (6a)

subject to pku,n ≤ aku,nPmax
k ,∀k ∈ K, u ∈ Uk, n = 1, ..., N

(6b)∑
u∈Uk

N∑
n=1

pku,n ≤ Pmax
k ,∀k ∈ K (6c)

Rku(p) ≥ Rmin
ku ,∀u ∈ U

S
k , k ∈ K (6d)

pku,n ≥ 0,∀k ∈ K, u ∈ Uk, n = 1, ..., N (6e)
aku,n ∈ {0, 1},∀k ∈ K, u ∈ Uk, n = 1, ..., N (6f)∑
u∈Uk

aku,n = 1,∀k ∈ K, n = 1, ..., N (6g)

Rku(p)∑
v∈UT

k
Rkv (p)

= cku ,∀u ∈ UT
k , k ∈ K (6h)

where a denotes a vector stacking all aku,n’s; f(p) stands
for EWS(p) and ENet(p) in the WSEEMax and NEEMax

problems, respectively; Pmax
k denotes the maximum transmit

power at BS k; Rmin
ku

denotes the minimum data rate for DS
user ku, u ∈ US

k ; and cku represents the priority of user ku
among the DT users where

∑
u∈UD

k
cku = 1.

Next, let us discuss the physical interpretation of the con-
straints in (6). Constraint (6b) based on the big-M formulation
theory is to ensure that if aku,n = 0, then pku,n = 0 [38]. This
means no power is allocated to user ku on RB n, if RB n is
not assigned to user ku. (6c) represents the power constraint
at the BSs. Constraint (6d) is to guarantee the QoS for the DS
users. (6g) is taken into account to make sure that a specific
RB is assigned to only a single user in each cell. Constraint
(6h) provides the proportional fairness among the DT users. In
practice, (6h) is hardly achieved as the equality constraint is
relatively strict, which makes the feasible region really small.
Here, we overcome the issue by adopting a simple relaxed
version of (6h), which is written as

(1− αf )cku

(∑
v∈UT

k

Rkv (p)

)
≤ Rku(p)

≤ (1 + αf )cku

(∑
v∈UT

k

Rkv (p)

)
, ∀u ∈ UT

k , k ∈ K (7)

where αf ∈ [0, 1] is the parameter controlling the degree of
relaxation, i.e. the smaller αf , the tighter relaxation. Clearly,
when αf → 0, (7) approaches (6h).

B. Formulation 2: Time-Sharing Approach

The second formulation is obtained based on the time-
sharing approach, the technique widely used in designing
OFDMA systems [20], [24], [39], [40]. By abuse of notation,
we let aku,n ∈ [0, 1] stand for the time-sharing factor of user
ku over RB n. More explicitly, aku,n can be viewed as the
fraction of time that RB n is assigned to user ku during one
transmission frame. Accordingly, the actual power allocated to
user ku is aku,npku,n. Thus the SINR in (1) is modified into
[40]

γku,n(p,a) =
aku,npku,nhk,ku,n∑

j∈K\{k}
∑
v∈Uj ajv,npjv,nhj,ku,n + σ2

ku,n

.

(8)
Similarly, the sum rate at user ku in (2) and the total transmit
power of cell k in (3) are rewritten as [40]

Rku(p,a) =

N∑
n=1

aku,n log
(
1 + γku,n(p,a)

)
(9)

gk(p,a) =
1

ξk

(∑
u∈Uk

N∑
n=1

aku,npku,n

)
+ P sta

k (10)

respectively, where P sta
k = P̃ sta

k +
∑
u∈Uk P̄

sta
ku

. Clearly, (8),
(9), and (10) become (1), (2), and (3), respectively, when a
is a Boolean vector. With the introduced time-sharing factors,
the WSEEMax and NEEMax problems are now formulated as

maximize
p,a

f̃(p,a) (11a)
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subject to
∑
u∈Uk

N∑
n=1

aku,npku,n ≤ Pmax
k ,∀k ∈ K (11b)

Rku(p,a) ≥ Rmin
ku ,∀u ∈ U

S
k ,∀k ∈ K (11c)

pku,n ≥ 0,∀k ∈ K, u ∈ Uk, n = 1, ..., N (11d)
aku,n ∈ [0, 1],∀k ∈ K, u ∈ Uk, n = 1, ..., N (11e)∑
u∈Uk

aku,n = 1,∀k ∈ K, n = 1, ..., N (11f)

(1− αf )cku

(∑
v∈UT

k

Rkv (p)

)
≤ Rku(p),

∀u ∈ UT
k , k ∈ K (11g)

Rku(p) ≤ (1 + αf )cku

(∑
v∈UT

k

Rkv (p)

)
,

∀u ∈ UT
k , k ∈ K. (11h)

where f̃(p,a) represents the two EE metrics constructed from
Rku(p,a) and gk(p,a).

We note that Formulation 2 is not a linear relaxation of
Formulation 1. Formulation 2 uses the time sharing relaxation,
which means that RBn is assigned to user ku in a fraction of
one time slot. With this understanding, there is no intra-tier
interference in the same cell. On the other hand, Formulation
1 with continuous relaxation suffer the intra-tier interference,
which is different from Formulation 2.

C. Formulation 3: Sparsity Inducing Approach

The third formulation is inspired from the context of spar-
sity inducing regularization methods [32], [41]. Let pk,n =
[pk1,n, pk2,n, ..., pkUk

,n]T be the vector composing of all allo-
cated powers at BS k on RB n. We recall that the principle
of OFDMA systems implies that only one element of pk,n
are nonzero, which is mathematically written as ‖pk,n‖0 = 1.
Accordingly, the WSEEMax and NEEMax problems can be
formulated as

maximize
p

f(p) (12a)

subject to ‖pk,n‖0 = 1,∀k ∈ K, n = 1, ..., N. (12b)
(6c)-(6e), (11g), (11h). (12c)

An advantage of formulation (12) is that it does not require
introducing variables related to RB assignment, and thus the
number of variables is smaller compared to that of the other
formulations.

The three formulations is highly intractable due to the mixed
integer and/or nonconvexity, computing globally optimal so-
lutions is challenging and is often not of practical interest. In
the following sections, we propose efficient methods finding
high-quality feasible solutions to these problems.

IV. PROPOSED SOLUTION TO FORMULATION 1

A. A Tighter Big-M Formulation for Continuous Relaxation

The common approach dealing with discrete variables is
relaxing them into continuous domain. To this end, we will
manipulate continuous relaxation (CR) of (6), and thus a tight

CR is desired. We remark that big-M formulation (6b) usually
offers a relatively poor CR. In order to obtain a tighter CR,
we propose to replace (6b) by

pku,n ≤
(
aku,n

)q
Pmax
k ,∀k ∈ K, u ∈ Uk, n = 1, ..., N (13)

for any integer q ≥ 1. Note that aku,n =
(
aku,n

)q
for ank,u ∈

{0, 1}, and thus (6b) and (13) are indeed equivalent. However,
the CR results in different tightness. Indeed, when aku,n is
relaxed to be continuous over the interval [0, 1], it holds that(
aku,n

)q ≤ aku,n for q ≥ 1. Thus, if aku,n is feasible to
(13), it is also feasible to (6b). Let f∗ and f∗q be the optimal
objective of (6) and the CR of (6) with (13), respectively. Then
we have the following inequality

f∗ ≤ · · · ≤ f∗q ≤ · · · f∗1 . (14)

which comes from the fact that the wider the feasible set, the
bigger the optimal value. Clearly, inequality (14) promotes the
use of (13) in the sequel.

B. Solution to WSEEMax

Let us first focus on the WSEEMax problem. From the
discussion in the previous subsection, the CR of (6) can be
written as

maximize
a,p,η,θ,x

∑
k∈K

wkηk (15a)

subject to

∑
u∈Uk

∑N
n=1 xku,n

gk(p)
≥ ηk,∀k (15b)

pku,nhk,ku,n
βku,n(p)

≥ θku,n,∀k, u ∈ Uk, n (15c)

pku,n ≤
(
aku,n

)q
Pmax
k ,∀k, u ∈ Uk, n (15d)

log (1 + θku,n) ≥ xku,n,∀k, u ∈ Uk, n (15e)
N∑
n=1

xku,n ≥ Rmin
ku ,∀u ∈ U

S
k ,∀k (15f)

(1− αf )cku

(∑
v∈UT

k

N∑
n=1

xkv,n

)
≤

N∑
n=1

xku,n,

∀u ∈ UT
k ,∀k (15g)

N∑
n=1

xku,n ≤ (1 + αf )cku

(∑
v∈UT

k

N∑
n=1

xku,n

)
,

∀u ∈ UT
k ,∀k (15h)

0 ≤ aku,n ≤ 1,∀k, u ∈ Uk, n (15i)
(6c), (6e), (6g). (15j)

where βku,n(p) ,
∑
j∈K\{k}

∑
v∈Uj pjv,nhj,ku,n +∑

v∈Uk\{u} pkv,nhk,ku,n + σ2
ku,n

; η , {ηk}k∈K,
θ , {θku,n}k,u,n, and x , {xku,n}k,u,n are the newly
introduced slack variables. The purpose of the variable
introduction is to reveal the hidden convexity in the problem.
The second term in the denominator of the fraction in (15c),
i.e. βku,n(p), is added due to the CR. It is easy to justify
(by contradiction) that at the optimality, both (15b) and (15c)
hold with equality. Therefore (15) is indeed the CR of (6). In
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this regard, ηk represents the EE of cell k, and θku,n is the
SINR of user ku over RB n.

The nonconvexity of (15) is due to that of (15b), (15c) and
(15d). To solve (15) we apply the notion of successive convex
approximation (SCA) [42], [43], an efficient optimization tech-
niques overcoming nonconvex problems. The core idea is to
iteratively solve a sequence of convex approximate programs
of (15) until convergence is achieved. To proceed, let us first
consider (15b) and equivalently rewrite it as

∑
u∈Uk

N∑
n=1

xku,n ≥ ηkgk(p),∀k. (16)

Following the principle of SCA, we need to find a convex
upper bound of the right-hand-side (RHS) of (16). For this
purpose, we recall the following inequality [43]

ηkgk(p) ≤ yk
2
η2k +

1

2yk
g2k(p) (17)

for arbitrary constant yk > 0. Inequality (17) holds with
equality when yk = gk(p)

ηk
.

We now consider (15c). Similar to (15b), we rewrite (15c)
as pku,nhk,ku,n ≥ θku,nβku,n(p), and have a convex upper
bound of the RHS given as

θku,nβku,n(p) ≤ ϕku,n
2

θ2ku,n +
1

2ϕku,n

(
βku,n(p)

)2
(18)

for all constant ϕku,n > 0 where the equality holds at ϕku,n =
βku,n(p)
θku,n

.
We turn our attention to (15d) and note that its RHS is

convex for q > 1, aku,n ≥ 0. Again, following the SCA
framework, the RHS of (15d) is to be replaced by a lower
bound, which can be easily obtained by the first order Taylor
series approximation due to its convexity. Specifically, we have(
aku,n

)q ≥ (a(i)ku,n)q + q
(
a
(i)
ku,n

)q−1(
aku,n − a

(i)
ku,n

)
,∀k, u, n

(19)
where a

(i)
ku,n

∈ [0, 1]. In fact, we have linearized
(
aku,n

)q
around the operating point a(i)ku,n.

Remark 1. [Computationally Efficient Approximation]: With
the approximations provided in (17), (18), and (19), we are
ready to obtain a convex approximation of (15). However, the
resulted approximate problem is a generic convex program
due to the logarithm function in (15e), which leads to some
computational disadvantages those are lack of efficient off-
the-shelf solvers and, more importantly, the computational
complexity scales fast with the size of the problem [44].
These would become the major drawbacks in the considered
systems since the number of RBs (and thus the number of
variables) is usually large. In order to overcome the issue, we
use a concave lower bound of the logarithm function obtained
based on the SCA principle, which admits a second-order cone
(SOC) representation. In particular, we first have the lower
bound of log (1 + θku,n) given as [45]

log (1 + θku,n) ≥ log
(

1 + θ
(i)
ku,n

)
+ 1−

1 + θ
(i)
ku,n

1 + θku,n
. (20)

Algorithm 1 The proposed algorithm solving (15)
1: Initialization: Set i := 0 and generate a feasible point of

(15) denoted by (a(0),p(0),η(0),θ(0),x(0)).
2: repeat
3: Set ϕku,n :=

βku,n(p
(i))

θ
(i)
ku,n

, yk := gk(p
(i))

η
(i)
k

.

4: Solve (23) and denote the optimal as
(a∗,p∗,η∗,θ∗,x∗).

5: Update i := i + 1, and (a(i),p(i),η(i),θ(i),x(i)) :=
(a∗,p∗,η∗,θ∗,x∗).

6: until Convergence
7: Output: (a∗,p∗)

where θ(i)ku,n ≥ 0. From (20), we achieve a safe approximation
of (15e) given by(

log(1 + θ
(i)
ku,n

) + 1− xku,n
)

(1 + θku,n) ≥ 1 + θ
(i)
ku,n

.

(21)

The above inequality is in fact a rotated SOC, i.e. it can be
written as the following SOC [46]

log(1 + θ
(i)
ku,n

) + 2− xku,n + θku,n ≥√
4
(

1 + θ
(i)
ku,n

)
+
(

log(1 + θ
(i)
ku,n

)− xku,n − θku,n
)2
.

(22)

In summary, let (a(i),p(i),η(i),θ(i),x(i)) be a feasible
point of (15), then a convex approximation program of (15) is
given by

maximize
a,p,η,θ,x

∑
k∈K

wkηk (23a)

subject to
∑
u∈Uk

N∑
n=1

xku,n ≥
yk
2
η2k +

1

2yk
g2k(p),∀k (23b)

hk,ku,npku,n ≥
ϕku,n

2

(
θku,n

)2
+

1

2ϕku,n

(
βku,n(p)

)2
,

∀k, u, n (23c)

pku,n ≤ Pmax
k

(
a
(i)
ku,n

)q
+ Pmax

k q
(
a
(i)
ku,n

)q−1(
aku,n − a

(i)
ku,n

)
,

∀k, u, n (23d)
(15f)-(15j), (22). (23e)

which is an SOCP. And the proposed SCA-based procedure
solving (15) is outlined in Algorithm 1.

1) Finding a Feasible Point of (15): To start Algorithm 1,
we need to find a feasible point of (15) which is, in general,
as difficult as solving (15). To overcome this issue, we use an
efficient heuristic method based on a regularized formulation
of (23) which is given by [47]

maximize
a,p,η,θ,x

ε

∑
k∈K

wkηk − λ
(∑
k∈K

∑
u∈US

k

εku

)
(24a)

subject to
N∑
n=1

xku,n + εku ≥ Rmin
k ,∀u ∈ US

k , k (24b)

εku ≥ 0,∀u ∈ US
k , k (24c)

(15g)-(15j), (22), (23c), (23d). (24d)
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Algorithm 2 The proposed algorithm to find a feasible point
of (15).

1: Initialization: set i := 0 and randomly gen-
erate (a(0),p(0),η(0),θ(0),x(0)) that satisfies (15b)-
(15e),(15g)-(15j).

2: repeat
3: Set ϕku,n :=

βku,n(p
(i))

θ
(i)
ku,n

, yk := gk(p
(i))

η
(i)
k

.

4: Solve (24) and denote the optimal as
(a∗,p∗,η∗,θ∗,x∗, ε∗).

5: Update i := i + 1, and (a(i),p(i),η(i),θ(i),x(i)) :=
(a∗,p∗,η∗,θ∗,x∗).

6: until ε∗ = 0
7: Output: (a(i),p(i),η(i),θ(i),x(i))

where ε , {εku}k,u∈US
k

and λ is a positive param-
eter. We can see that the set S , {a,p,η,θ,x, ε|
(15b)-(15e), (15g)-(15j), (24b), (24c)} is a relaxed version of
the feasible set of (15), and a point of S with ε = 0
is also a feasible point of (15). In addition, it is easy
to find a point in S. Particularly, it is simple to generate
(a(0),p(0),η(0),θ(0),x(0)) such that (15b)-(15e),(15g)-(15j)
are satisfied. Then there always exists ε ≥ 0 satisfying (24b).
With this point of S, we can run an iterative procedure
similar to Algorithm 1, which solves (24) in each iteration.
And, by the maximization in (24a), it is expected that ε will
eventually decrease to zero after some iterations. As so, we
obtain a feasible point of (15), which can be used to execute
Algorithm 1. For physical interpretation, ε represents the
level of constraint violence in (15f). The second term in the
objective in (24a) is the penalty of the violence. And constant
λ determines a trade-off between optimization and feasibility.
In summary, the procedure to find a feasible point of (15) is
presented in Algorithm 2.

2) Post Processing Phase: We recall that (15) is the contin-
uous relaxation version of (6). Thus the output of Algorithm 1
needs to be processed in order to obtain a solution of (6). The
post processing phase includes two steps that are mapping the
RBs to the users and refining the allocated power. For the RB
mapping, since a RB is exclusively assigned to only one user
in an OFDMA system, it is reasonable to select user ku with
a value of a∗ku,n closest to 1 for a particular RB n. Hence, we
propose the following mapping rule

aku,n =

1 if u = arg max
v∈Uk

a∗kv,n

0 otherwise.
(25)

Once a is determined, power vector p is recalculated. In
particular, letNku ∈ {1, ..., N} denote the set of RBs allocated
to user ku, then the problem of power allocation, given vector
a, is given by

maximize
p,η,θ,x

∑
k∈K

wkηk (26a)

subject to

∑
u∈Uk

∑
n∈Nku

xku,n

1
ξk

(∑
u∈Uk

∑
n∈Nku

pku,n

)
+ P sta

k

≥ ηk,∀k

(26b)

pku,nhk,ku,n∑
j∈K\{k}

∑
v∈Uj pjv,nhj,ku,n + σ2

ku,n

≥ θku,n,

∀k, u ∈ Uk, n ∈ Nku (26c)
log (1 + θku,n) ≥ xku,n,∀k, u ∈ Uk, n ∈ Nku

(26d)∑
n∈Nku

xku,n ≥ Rmin
ku ,∀u ∈ U

S
k ,∀k (26e)

(1− αf )cku

(∑
v∈UT

k

∑
n∈Nkv

xkv,n

)
≤

∑
n∈Nku

xku,n,

∀u ∈ UT
k ,∀k (26f)∑

n∈Nku

xku,n ≤ (1 + αf )cku

(∑
v∈UT

k

∑
n∈Nkv

xku,n

)
,

∀u ∈ UT
k ,∀k (26g)∑

u∈Uk

∑
n∈Nku

pku,n ≤ Pmax
k ,∀k, pku,n ≥ 0,

∀k, u ∈ Uk, n ∈ Nku (26h)

in which the note that the number of entries in each of vectors
p, θ, and x is only KN . Although problem (26) is nonconvex,
we can use an SCA-based procedure similar to Algorithm 1
in order to obtain a solution.

We recall that, in a specific cell, a RB is assigned to
one user only (due to the OFDMA system principle). Thus,
if the relaxed assignment variables are far from ‘0’ or ‘1’
when Algorithm 1 converges (i.e indecisive cases), we need to
determine to whom the RB is allocated by means of rounding.
Without the post processing phase, significant performance
loss may occur since the power allocation is not optimized for
the rounded assignment variables, or even worst, the resulting
solution becomes infeasible. In our numerical experiments, we
observe that the relaxed assignment variables are uncertain
for most cases. Thus the post processing phase is normally
required.

C. Solution to NEEMax

Now we turn our consideration to the NEEMax problem.
It should be noted that the NEEMax is different from the
WSEEMax problem only in objective function. So we can
achieve a solution for the NEEMax problem by slightly mod-
ifying the procedure presented in Section IV-B. In particular,
a convex approximation of the CR version of the NEEMax
problem is given by

maximize
a,p,η,θ,x

η (27a)

subject to
∑
k∈K

∑
u∈Uk

N∑
n=1

xku,n ≥
y

2
η2 +

1

2y

(∑
k∈K

gk(p)

)2

(27b)
(23c)-(23e). (27c)

Also, after solving the CR problem, the post processing phase
is conducted in order to obtain a solution for the NEEmax
problem.
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V. PROPOSED SOLUTION TO FORMULATION 2

In this section, we develop the method solving (11). For
notational brevity, let us introduce variables s , {sku,n}k,u,n
which represent the actual power allocated to the users, i.e.,

sku,n = aku,npku,n,∀k ∈ K, u ∈ Uk, n = 1, ..., N (28)

Then, the SINR in (8) becomes

γku,n(s) =
sku,nhk,ku,n∑

j∈K\{k}
∑
v∈Uj sjv,nhj,ku,n + σ2

ku,n

. (29)

Also, the data rate for user ku and the total consumed power
of cell k ∈ K (in (9) and (10)) are respectively rewritten as

Rku(s,a) =

N∑
n=1

aku,n log
(
1 + γku,n(s)

)
(30)

gk(s) =
1

ξk

(∑
u∈Uk

N∑
n=1

sku,n

)
+ P sta

k (31)

With these introduced notations, problem (11) can be refor-
mulated as

maximize
s,a

f̃(s,a) (32a)

subject to
∑
u∈Uk

N∑
n=1

sku,n ≤ Pmax
k ,∀k (32b)

Rku(s,a) ≥ Rmin
ku ,∀k, u ∈ U

S
k (32c)

sku,n ≥ 0,∀k, u, n (32d)
aku,n ∈ [0, 1],∀k, u, n (32e)∑
u∈Uk

aku,n = 1,∀k, n (32f)

(1− αf )cku

(∑
v∈UT

k

Rkv (s,a)

)
≤ Rku(s,a),

∀u ∈ UT
k , k ∈ K (32g)

Rku(s,a) ≤ (1 + αf )cku

(∑
v∈UT

k

Rkv (s,a)

)
,

∀u ∈ UT
k , k ∈ K. (32h)

The nonconvexity of problem (32) comes from the fractional
form of the objective functions and (32c)-(32h). Again, we
adopt the SCA framework to tackle (32). Let us focus on
the WSEEMax problem, then the NEEmax problem is treated
similarly. Similar to (15), we first use slack variables to reveal
the hidden convexity in (32). Particularly, (32) is equivalent to

maximize
a,s,η,θ,x

∑
k∈K

wkηk (33a)

subject to

∑
u∈Uk

∑N
n=1 xku,n

gk(s)
≥ ηk,∀k (33b)

sku,nhk,ku,n∑
j∈K\{k}

∑
v∈Uj sjv,nhj,ku,n + σ2

ku,n

≥ θku,n,

∀k, u, n (33c)
aku,n log (1 + θku,n) ≥ xku,n,∀k, u, n (33d)

∑N

n=1
xku,n ≥ Rmin

ku ,∀k, u ∈ U
S
k (33e)

(1− αf )cku

(∑
v∈UT

k

N∑
n=1

xkv,n

)
≤

N∑
n=1

xku,n,

∀u ∈ UT
k ,∀k (33f)

N∑
n=1

xku,n ≤ (1 + αf )cku

(∑
v∈UT

k

N∑
n=1

xku,n

)
,

∀u ∈ UT
k ,∀k (33g)

(32b)-(32f) (33h)

Clearly, the difficulty in solving (33) is due to nonconvex
constraints (33b)-(33d), which is approximated to achieve the
convex approximated problem. In particular, the (33b) and
(33c) are approximated in the same way with (15b) and
(15c), respectively. In order to approximate (33d), we first
equivalently rewrite it as

θku,n log (1 + θku,n) ≥ xku,nθku,n
aku,n

(34)

which is then rearranged as

θku,n log (1 + θku,n) +
(xku,n − θku,n)2

4aku,n︸ ︷︷ ︸
,h(xku,n,θku,n,aku,n)

≥ (xku,n − θku,n)2

4aku,n
.

(35)
The first term in LHS of (35) is a negative entropy function
and the second term is a quadratic-over-linear function. Thus
h(xku,n, θku,n, aku,n) is convex with the involved variables
[48]. And the concave lower bound of h(xku,n, θku,n, aku,n)
can be obtained by its first order Taylor series approximation,
i.e. the convex approximation of (35) is

h(x
(i)
ku,n

, θ
(i)
ku,n

, a
(i)
ku,n

) +
(
θku,n − θ

(i)
ku,n

)
×−

(
x
(i)
ku,n
− θ(i)ku,n

)
2a

(i)
ku,n

+
θ
(i)
ku,n

θ
(i)
ku,n

+ 1
+ ln

(
θ
(i)
ku,n

+ 1
)

+
(
xku,n − x

(i)
ku,n

) (x(i)ku,n − θ(i)ku,n)
2a

(i)
ku,n

+
(
aku,n − a

(i)
ku,n

)−
(
x
(i)
ku,n
− θ(i)ku,n

)2
4(a

(i)
ku,n

)2


≥ (xku,n + θku,n)2

4aku,n
,∀k, u, n (36)

where (a(i), s(i),η(i),θ(i),x(i)) is a feasible point of (33).
Hence, an approximate problem of (33) is

maximize
a,s,η,θ,x

∑
k∈K

wkηk (37a)

subject to
∑
u∈Uk

∑N

n=1
xku,n ≥

yk
2
η2k +

1

2yk
g2k(s),∀k

(37b)

sku,nhk,ku,n ≥
ϕku,n

2

(
θku,n

)2
+

1

2ϕku,n

(
βku,n(s)

)2
,
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Algorithm 3 The proposed procedure solving (32).
1: Initialization: Set i := 0 and generate a feasible point of

(33) denoted by (a(0), s(0),η(0),θ(0),x(0)).
2: repeat
3: Set y(i)k := gk(s

(i))

η
(i)
k

and ϕ(i)
ku,n

:=
βku,n(s

(i))

θ
(i)
ku,n

.

4: Solve (37) and denote the optimal point by
(a∗, s∗,η∗,θ∗,x∗)

5: Update i := i + 1, and (a(i), s(i),η(i),θ(i),x(i)) :=
(a∗, s∗,η∗,θ∗,x∗)

6: until Convergence
7: Output: (a∗, s∗)

∀k, u, n (37c)
(33e)-(33h), (36) (37d)

where βku,n(s) ,
∑
j∈K\{k}

∑
v∈Uj sjv,nhj,ku,n + σ2

ku,n
;

{yk}k and {ϕku,n}k,u,n are the approximated parameters.
Finally, the proposed procedure solving (32) is outlined in

Algorithm 3. A feasible point for initializing the algorithm
can be obtained by using the regularized form of (37) and
the procedure similar to Algorithm 2. Also, output of Algo-
rithm 3 a∗ may be not Boolean. Therefore, the post processing
phase presented in Section IV-B2 is performed to reconstruct
the allocated power.

VI. PROPOSED SOLUTION TO FORMULATION 3

In this section, we present the solution for the third formu-
lation. We note that the SCA framework cannot be directly
applied to (12) due to the presence of `0-norm in (12b),
which causes (12) to be a combinatorial optimization program
[49]. Here, following [50]–[52], we overcome the issue by
regularizing the objective function with a penalty term of the
reweighted `1-norm, i.e.,

maximize
p

f(p)− φ

(∑
k∈K

N∑
n=1

∥∥ψk,n � pk,n
∥∥
1

)
(38a)

subject to (6c)-(6e), (11g), (11h) (38b)

where φ > 0 is the regularization parameter determining
a tradeoff between the desired objective and the degree of
sparsity in the solution of p; and ψk,n , {ψku,n}u∈Uk is the
nonnegative weight vector, which could improve the power
reconstruction, if it is set suitably. One possible approach for
setting the weights is using the power magnitude on the `1-
norm penalty function as [49, Eq. (5)]

ψku,n =

{
1

pku,n
, pku,n 6= 0

∞, pku,n = 0.
(39)

(39) means that the larger entry in pk,n has the smaller weight.
And, with the maximization in (38a), the small entries in pk,n
is expected to be forced to zero.

The penalty term in (38a) is convex, and the remaining term
in (38a) as well as the constraints in (38) are the same as those
in (6). Hence, we now can use the SCA technique to solve
(38). In particular, for the WSEEMax problem, the convex

Algorithm 4 The proposed algorithm to solve (38).
1: Initialization: Set i := 0, ψku,n := 1 for all k, u, n, and

generate a feasible point (p(0),η(0),θ(0),x(0)).
2: repeat
3: Set ϕ(i)

ku,n
:=

βku,n(p
(i))

θ
(i)
ku,n

, yk := gk(p
(i))

η
(i)
k

4: Solve (40), and denote the optimal solution by
(p∗,η∗,θ∗,x∗)

5: Update i := i + 1, (p(i),η(i),θ(i),x(i)) :=

(p∗,η∗,θ∗,x∗), and ψku,n :=


1

p
(i)
ku,n

, p
(i)
ku,n
6= 0

∞, p
(i)
ku,n

= 0.
for

all k, u, n.
6: until Convergence
7: Output: p∗

approximation program solved in each SCA iteration is given
by

maximize
p,η,θ,x

∑
k∈K

wkηk − φ

(∑
k∈K

N∑
n=1

∥∥ψk,n � pk,n
∥∥
1

)
(40a)

subject to (6c), (6e), (15f)-(15h), (22), (23b), (23c) (40b)

The iterative procedure is presented in Algorithm 4 where the
weights {ψku,n}u∈Uk are also updated in each iteration (i.e.
reweighting). It is worth noting that, for stability in practical
implementation, the weights can alternatively be updated as
ψku,n := 1

p
(i)
ku,n+τ

for all k, u, n where τ > 0 is a tolerant

parameter which should be sufficiently small [49]. On the
other hand, in case the output of Algorithm 4 does not satisfy
(12b), the post processing phase is conducted to determine the
allocated power.4

The similar procedure is used to tackle the NEEmax prob-
lem in formulation (12) which is skipped for the sake of
brevity.

VII. CONVERGENCE AND COMPLEXITY ANALYSIS

In this section, we discuss the convergence property as
well as the computational complexity of the proposed methods
developed in the previous sections.

A. Convergence Discussion

We first focus on Algorithm 1. Following the same ar-
guments as those in [53], it can be shown that the obtained
objective sequence {

∑
k∈K wkη

(i)
k }∞i=0 is nondecreasing and

guaranteed to converge. More explicitly, consider problem
(23) in the (i + 1)th iteration, it can be easily examined
that all the constraints in the problem are satisfied by the
point (a(i),p(i),η(i),θ(i),x(i)), the solution of (23) in the
ith iteration. Thus, we have

∑
k∈K wkη

(i)
k ≤

∑
k∈K wkη

(i+1)
k .

Moreover, the problem is bounded above due to the power
constraints in (6c). Hence, {

∑
k∈K wkη

(i)
k }∞i=0 converges. The

same justification can be applied to Algorithm 3 pointing out
that sequence {

∑
k∈K wkη

(i)
k }∞i=0 obtained by this algorithm

is nondecreasing and converges.

4The mapping step is based on p instead of a as in Algorithm 1.
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For Algorithm 4, let us recall that the function π(p) ,∑
k∈K

∑
u∈Uk

∑N
n=1 log(pku,n + τ) is concave and mono-

tonic increasing. Thus, in the (i + 1)th iteration, the term
π(p(i)) +

∑
k∈K

∑N
n=1

∥∥∥ψk,n � (pk,n − p
(i)
k,n)

∥∥∥
1

is indeed

a convex upper bound of π(p) at p(i). Thus, following
the convergence results of the SCA technique, we have the
sequence {

∑
k∈K wkη

(i)
k −φπ(p(i))}∞i=0 is nondecreasing and

converges since (
∑
k∈K wkηk−φπ(p)) is upper bounded. This

property is used to stop Algorithm 4.
We note that the proposed algorithm is guaranteed to

converge and they can only provide a locally optimal solution,
which may not be a globally optimal due to the nonconvexity
of the considered problem.

B. Computational Complexity Discussion

We now discuss the computational cost of the proposed
methods. In particular, we provide the worst-case complexity
of a general interior point method solving SOCPs in each of
iterations based on the complexity estimates in [44, Chap. 6].

Let us denote by U =
∑
k∈K Uk the total number of users in

the network. In problem (23), there are 4NU+K+1 real vari-
ables, NU+K+1 SOC constraints of dimension 4, NU SOC
constraints of dimension 2, and (3N+1)U+(K+1)(N+1)+∑
k∈K |UT

k | linear constraints. Hence, the worst-case computa-
tional cost for solving (23) isO(((5N+1)U+(K+1)(N+2)+∑
k∈K |UT

k |)0.5 (4NU +K + 1)
2

((9N+1)U+(K+1)(N+
5)+

∑
k∈K |UT

k |)), which can be rewritten in a simple form as
O
(
N1.5 (5U +K)

0.5
(4NU +K)

2
(9U +K)

)
. This is also

the worst-case computational cost for solving (37) since the
two SOCPs have the same dimensions.

Problem (40) includes 3NU + K + 1 real variables,
NU + K + 1 SOC constraints of dimension 4, NU SOC
constraints of dimension 2, and (N + 1)U + K + 1 +∑
k∈K |UT

k | linear constraints. So, the worst-case computa-
tional cost for solving (40) is O(((3N + 1)U + 2(K + 1) +∑
k∈K |UT

k |)0.5 (3NU +K + 1)
2

((7N + 1)U + 5(K + 1) +∑
k∈K |UT

k |)), which can be rewritten in a simple form as
O((3NU + 2K)

0.5
(3NU +K)

2
(7NU+5K)). With smaller

numbers of variables and constraints, the worst-case com-
putational complexity of solving (40) is lower compared to
(23) and (37). The proposed algorithms show much lower
complexity when comparing with the exhaustive search for
RB allocation, which has the worst-case computational cost
of O

(∑
k∈K Uk

N
)

[40].

VIII. NUMERICAL RESULTS

In this section, we numerically investigate the EE per-
formances of the OFDMA-based HetNets. In the simulation
model, the macro BS covers a circle area with radius of 500m
centered at the origin. The femto BSs are randomly placed
inside the coverage area of macro BS, and the minimum
distance between femto BSs is 5m. Each femtocell covers
a circle area with radius of 20m centered at its BS. The
minimum distance between the users and the macro BS is
40m. In each femtocell, the minimum distance between a user
and the femto BS is 3m.

The channel coefficient between BS j and user ku on RB
n is modeled as

√
Γj,kuχj,ku,n where χj,ku,n is a complex

Gaussian distribution variable with zero mean and unit vari-
ance, i.e. χj,ku,n ∼ CN (0, 1), and Γj,ku composes of the
shadowing fading and path loss. In particular, the path loss
between a femto BS and a femto user follows the indoor model
and that between the macro BS and a macro user follows the
outdoor model, which are given by [54]{

127 + 30 log10(d) [dB] for indoor path loss
128.1 + 37.6 log10(d) [dB] for outdoor path loss

(41)

where d is the distance in meters. The outdoor wall penetration
loss is 10 dB. The log normal shadowing standard deviation
is 8.

The number of RBs is taken as N = 50, each of RBs
has a bandwidth of 180 KHz. So, the bandwidth of system is
10 MHz. These parameters correspond to LTE systems [55].5

The noise power density is −174 dBm/Hz [56]. The maximum
transmit power of macro BS is taken as Pmax

0 = 46 dBm [54].
QoS of all DS users are the same. Without loss of generality,
we take the amplifier efficiency as ξk = 1, ∀k ∈ K, for
simplicity. Also, for WSEEmax problem, we take wk = 1,
∀k ∈ K, i.e. all BSs have the same EE priority. The fairness
coefficient αf = 0.01.

For solving convex programs in this section, we use the
MATLAB modeling toobox YALMIP [57] with internal solver
MOSEK [58].

In Fig. 2, we numerically examine the convergence behavior
of the proposed algorithms for the two EE problems. The
results of the WSEEmax are shown in Fig. VIII and that of
the NEEmax are shown in Fig. VIII. We note that the results
include the procedure of finding feasible points. Therefore, in
some schemes, there are negative values at some first iterations
due to the large value of the penalty terms. We can clearly
observe that the proposed procedures require less than 15
iterations to find feasible points and converge. The results
indicate that our solutions achieve fast converge.

In Fig. 3, we study the variation of the EE perforamnces
of WSEEmax and NEEmax problems with the maximum
transmit power at femto BSs. The major observation is
that, in all cases of EE problems and formulations, the EE
performancers first increase then are unchaged when Pmax

k

increases. The result can be mathematically explained as
follows. When Pmax

k is small, the corresponding constraints
has strong impact on performances, and thus increasing Pmax

k

leads to the performance increase. However, when Pmax
k is

large enough, the other constraints dominate the performances.
So further increasing Pmax

k does not change the performances.
For the system design, the results indicate that providing more
transmit power budget for femtocell BSs does not always
bring additional EE benefits, and thus suggest that the BSs
with reasonable maximum transmit power should be used for
saving the implementation cost. Another observation is that

5If the number of RBs is varied, the same trends in the simulation results
are expected. However, we note that if the number of RBs is large, then more
frequency diversity gains can be obtained. On the other hand, the complexity
of the proposed algorithms increases accordingly.
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Fig. 2. Convergence performances of the proposed algorithms over a random channel realization. The network setting is taken as K = 2, Rmin
ku

= 18 Kbps
∀k, u ∈ US

k , Pmax
k = 24 dBm ∀k ∈ K \ {0}, P sta

k = 30 dBm and Uk = 4, ∀k ∈ K.
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(b) NEEmax problem

Fig. 3. The average EE performance of the two EE problems with the proposed algorithms versus the maximum transmit power at femtocell BSs, i.e. Pmax
k ,

∀k ∈ K \ {0}. The network setting is taken as K = 2, Rmin
ku

= 18 Kbps ∀k, u ∈ US
k , P sta

k = 30 dBm and Uk = 4 ∀k ∈ K.

the performances of the three formulations are close together.
Compared to Formulations 1 and 3, Formulation 2 is slightly
lower in the low regime of Pmax

k , but achieves good EE
performances in the high regime of Pmax

k . Formulations 1
and 3 are almost same together in WSEEmax problem while
in WSEEmax problem, Formulations 3 is slightly lower than
Formulations 1.

In Fig. 4, we study the EE performances as functions
of the static consumed power P sta

k . We can observe from
the figure is that, for the two EE problems, when P sta

k

increases, the EE performances decrease. The observation is
reasonable since P sta

k is a part of the denominators in EWS(p)
and ENet(p). The result promotes a direction of designing
hardware elements that is reducing the circuit operation power
as much as possible since doing so always achieves better EE
performances.

Fig. 5 plots the EE performances of the proposed EE
schemes versus QoS of DS users Rmin

ku
. Again, all solutions

behave in the same manner that is the performances degrade
when Rmin

ku
increases. This is reasonable since more power

should be allocated to DS users, which could be under poor
channel conditions, in order to satisfy the QoS constraints. An-
other observation is that, when Rmin

ku
is large, Formulation 1

outperforms the other formulations and the gap between them
increases with Rmin

ku
. The result suggests using Formulation 1

for the scenario with large QoS.

In Fig. 6, we investigate the relation between EE per-
formances of the proposed algorithms with the number of
femtocell BSs K. In case of WSEEMax, we can observe
from Fig. 6(a) that the performace of all considered schemes
increase when K increases since the number of elements in
the summation of EWS(p) increases. However, the average
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Fig. 4. The average EE performance of the two EE problems with the proposed algorithms versus the static consumed power P sta
k , ∀k ∈ K. The network

setting is taken as K = 2, Rmin
ku

= 18 Kbps ∀k, u ∈ US
k , Pmax

k = 24 dBm ∀k ∈ K \ {0}, and Uk = 4 ∀k ∈ K.
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Fig. 5. The average EE performance of the two EE problems with the proposed algorithms versus the QoS of DS users Rmin
ku

,∀k, u ∈ US
k . The network

setting is taken as K = 2, Pmax
k = 24 dBm ∀k ∈ K \ {0}, P sta

k = 30 dBm and Uk = 4 ∀k ∈ K.

EE of individual cell, i.e. EWS(p)/K, of the EE schemes
decrease with K. This is because more femtocells results
in more interference signals. For NEEMax problem, we can
see that the performance first increases until a maximum
then decreases with K. This result can be explained as
follows. When K is small, there are few sources of inter-
cell interference. Thus the performance increases with K due
to the diversity gain. However, when K is large, the cells
are close together making the interference signal strong. In
addition, the total static consumed power also increases with
K. These lead to the reduction of the performance. For the
system design, the results in Fig. 6 imply that the number of
active femtocells should not be too large in order to achieve
good EE performances. Another important observation is that
the gap between Formulation 1,2 and Formulation 3 becomes
bigger when the size of the network increases. This result

indicates the best option of selecting Formulation 1 and 2,
instead of Formulation 3 in cases of large number of femtocell
BSs.

In Fig. 7, we report the average total run time of Algorithms
1,3,4 to converge as functions of number of RB. The results
for WSEEmax and NEEmax are shown in Figs. 7(a) and 7(b),
respectively. For WSEEmax, the total run time of the three
formulations are almost same. On the other hand, for NEEmax,
they are different where the Formulation 2 needs highest total
run time and the Formulation 3 need lowest total run time.
Another observation is that in all cases the run time increases
with the number of resource block. This is because the size
of the problems increase.

In the final set of experiments shown in Fig. 8, we
demonstrate the benefit in terms of EE of our approaches by
comparing to the performance of the sum rate maximization
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(a) WSEEmax problem (b) NEEmax problem

Fig. 6. The average EE performance of the two EE problems with the proposed algorithms versus the number of femtocell BSs K. The network setting is
taken as Rmin

ku
= 18 Kbps ∀k, u ∈ US

k , Pmax
k = 24 dBm ∀k ∈ K \ {0}, P sta

k = 30 dBm and Uk = 4 ∀k ∈ K.

(a) WSEEmax problem (b) NEEmax problem

Fig. 7. The average run time to converge of Algorithms 1, 3, and 4 of the two EE problems versus the number of RB N . The network setting is taken as
Rmin

ku
= 18 Kbps ∀k, u ∈ US

k , Pmax
k = 24 dBm ∀k ∈ K \ {0}, P sta

k = 30 dBm and Uk = 4, K = 2 ∀k ∈ K.

(SRmax) scheme in [8] which considered the scenario similar
to that in this paper.6. We can see that the gap between our
EE approachs and SRmax is remarkably large in all cases of
considered K, which confirms the validity of our approach in
terms of EE performances.

Throughout extensive simulation results presented above,
it can be seen that there is always a trade-off between the
achieved energy efficiency performance and the required com-
plexity among the proposed formulations and their associated
solutions. For example, solutions based on Formulation 1
generally have the best energy efficiency performance but

6We consider SRmax scheme because there is no work proposing EE
solution for the considered system. In this situation,the comparison between
EE and SE schemes are commonly used [32], [56]

they incur the most complexity. In contrast, Formulation 3
achieves the worst energy efficiency performance but is the
most computationally efficient. Formulation 2 more or less
stands in between. Therefore, for some network setting where
the performance of the three formulations are almost similar
(e.g. Fig. 3), we can choose Formulation 3 for computational
efficiency. However, when the performance of these formu-
lations are different to each other (e.g. Fig. 5), the trade-
off should be considered. Thus, generally, it is hard to judge
which of them is the best solution. The choice of any of the
proposed methods depends on the network situations and or
the network operators. In terms of energy efficiency metrics,
the metric NEEMax is the choice when performance of the
overall network is concerned. However, in the scenario where

Nam
Inserted Text
This gap can be explained as follows. The SRMax scheme is to maximize the spectral-efficiency  and thus transmits at full power. Recall that operating at the high power regime is not energy-efficient. Meanwhile, the proposed algorithms aim to strike a balance between SE and the total power consumption to maximize the energy efficiency of the whole network. Therefore, the energy efficiency of the proposed solutions outperform than the SRMax scheme by a large margin.
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Fig. 8. The average EE performance of the two EE problems with the proposed algorithms and the SRmax scheme in [8] versus the number of femtocell
BSs K. The network setting is taken as Rmin

ku
= 18 Kbps ∀k, u ∈ US

k , Pmax
k = 24 dBm ∀k ∈ K \ {0}, P sta

k = 30 dBm and Uk = 4 ∀k ∈ K.

the priority and/or fairness between BSs’s performance should
be guaranteed, the metric WSEEMax is more favorable which
controls the priority and fairness by adjusting the weighting
factor.

IX. CONCLUSION

We have studied the energy-efficient resource allocation
in OFDMA HetNets. In particular, we have considered both
metrics of WSEE and NEE under the constraints of minimum
data rate for DS users, rate fairness among DT users, and
BSs’ power budget. First, the interest problems have been
formulated based on three different approaches those are
big-M method, time-sharing technique, and sparsity inducing
norm. For each formulation, we have developed an efficient
optimization algorithm tackling the nonconvexity based on the
framework of SCA. Specifically, the proposed methods only
requires solving SOCP, whose solving cost is less sensitive to
problem size compared to other convex structures, and thus
are suitable for the considered system where the number of
variables is usually large. Finally, the numerical results have
been provided and analyzed. With the consideration of three
formulations of two definitions of energy efficiency, the paper
has provided a comprehensive insight and suggested some
useful guidelines for OFDM HetNets design in terms of EE.
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