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__________________________________________________________________________ 

Abstract 

The determination of the natural frequencies and mode shapes of structures requires an 

analytical, semi-analytical or numerical method. This paper presents a new semi-analytical 

approach to determine natural frequencies and mode shapes of a multi-span, continuous, 

orthotropic bridge deck. The suggested approach is based on the modal method, which differs 

from other approaches in its decomposition of the admissible functions defining the mode 

shapes. Implementation of this technique is simple and enables avoidance of cumbersome 

mathematical calculations. In this paper, application of the semi-analytic approach to a three-

span, orthotropic roadway bridge deck is compared in the first 16 modes of previously 

published fully analytical results and to a finite element method analysis. The simplified 

implementation matches within 2 % in all cases, with the additional benefit of including 

intermodal coupling. The approach can be extended to similar bridges with more than three 

spans. 

Key-words: Natural frequencies; natural mode shapes; multi-span bridge deck; orthotropic 

plate; free vibrations; modal method. 
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Nomenclature 

aij  modal amplitudes 

b  width of the bridge deck 

Dx, Dy  flexural rigidities for the x- and y- directions respectively 

Dxy  flexural rigidity for the x-y plane  

Ex, Ey  Young's moduli for the x- and y- directions respectively 

Gxy  shear modulus in bending for the x-y plane 

h  thickness of the bridge deck 

hij(y)  eigenfunctions of single span Euler-Bernoulli beam satisfying the  

  boundary conditions of a plate for the y- direction 

H  equivalent rigidity of the bridge deck 

ki, k1i  eigenvalues 

l  length of the bridge deck 

li  length of the ith span of the bridge deck 

t  time 

w(x,y,t)  vertical displacement of the bridge deck 

x, y, z   axis of the reference system 

νxy, νyx  Poisson's ratios 

ρ  mass density of the bridge deck 

ϕi(x)  eigenfunctions of multi-span continuous Euler-Bernoulli beam 

ϕri(xr)  ith mode shape in the rth span of the bridge deck for the x- direction 

φij(x,y)  mode shapes of multi-span continuous bridge-deck 

ψj(y)  eigenfunctions of single span Euler-Bernoulli beam 

ωij  natural frequency of multi-span continuous bridge deck 
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1. Introduction 

In bridge design, dynamic analysis offers a more complicated but potentially more critical 

assessment. As part of this, the analysis of free vibrations of roadway bridge decks is the first 

essential step to study forced vibrations due to passing vehicles. Such analysis requires 

determination of the natural frequencies and mode shapes. In general, roadway bridge decks 

have a rectangular form, which may be continuous over a number of intermediate line 

supports in the longitudinal direction and free in the transverse direction. In previous research, 

bridge decks have been modeled as thin, rectangular, isotropic or orthotropic plates [1,2] to 

consider the dynamic effects of roadway traffic on bridges and the resulting dynamic 

amplification factors from which major static effects are used to check limiting states. 

 

Several methods and techniques have been developed previously to determine natural 

frequencies and natural modes shapes of multi-span plates. Among the related studies, 

analytical methods represent a considerable portion. For example, Veletsos and Newmark [3] 

used Holzer's method for torsional vibration of shafts to determine natural frequencies of 

plates simply supported along the continuous edges. Dickinson and Warburton [4] utilized 

Bolotin's edge-effect method [5,6] for the study of two-span plates involving clamped, simply 

supported end, free edges. The modified Bolotin method, developed by Vijayakumar [7] and 

Elishakoff [8], was applied by Elishakoff and Sternberg [9] to determine eigenfrequencies of 

rectangular plates, with continuous over line supports with an arbitrary number of equal spans 

in one direction. More recently, the receptance method was exploited by Azimit et al. [10] in 

a similar application. Gorman and Garibaldi [11] applied the superposition method and the 

span-by-span approach to obtain an accurate analytical solution for free vibration of multi-

span bridge decks. Zhou [12], Zhu and Law [13], and Marchesiello et al. [14] employed 
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eigenfunctions of continuous multi-span beam in one direction and single-span beam in the 

other direction into the Rayleigh-Ritz method for determination of eigenfrequencies of a 

continuous multi-span rectangular bridge deck. 

 

These analytical and semi-analytical methods are precise, but they are limited to 

geometrically simple plates. Therefore, numerical methods may be considered to be more 

powerful, alternative tools for analysis of plates with complex geometries. Among these 

methods, the finite element method is dominant [15-18]. Arguably, problems having regular 

geometry can be solved more efficiently by approximate techniques. Cheung et al. [19] used 

the finite-strip method, while Wu and Cheung [20] devised a method of finite elements in 

conjunction with Bolotin’s method to analyze continuous plates in two directions. The 

transfer matrix method was developed by Mercer and Seavey [21] for analysis of such plates. 

Plates with mixed boundary conditions, however, require other techniques. For example, Keer 

and Sthal [22] used Fredholm integral equations to calculate the eigenfrequencies of a simply 

supported plate partially clamped on the edge, while the differential quadrature method 

proposed by Bellman et al. [23] was adopted by Laura and Gutierez [24] and Lu et al. [25]. 

 

This paper presents a new, semi-analytical approach to determine the natural frequencies 

and the natural modes shapes of a multi-span continuous roadway bridge deck. The bridge 

deck is modeled as a three-span, continuous, orthotropic, rectangular plate with intermediate 

line rigid supports. The suggested approach is based on the modal method, which differs from 

other approaches in the decomposition of the admissible functions defining the mode shapes. 

The implementation of this method is simple and generates very satisfactory results in 

comparison with previously published values. 
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2. Natural frequencies and mode shapes of a bridge deck 

The bridge deck is modeled as a continuous, rectangular, orthotropic plate of length l, 

width b, uniform thickness h and mass density ρ as shown in fig. 1. The bridge deck is simply 

supported at two ends (x = 0, l), and the other edges are free (y = 0, b). A linear elastic 

behavior is assumed, and the effects of shear deformation and rotary inertia are neglected. The 

intermediate line supports of the bridge are linear, rigid, and orthogonal to the free edges of 

the plate. Since the horizontal dimension of the bridge deck is much larger than its thickness, 

a thin plate assumption is used. With these assumptions, the governing differential equation of 

free vibration of the orthotropic plate is given by eq. (1):   

                                                                          (1) 

where w(x,y,t) is the vertical displacement of the plate in z direction, , 

, , and  are flexural rigidities, in 

which Ex and Ey are Young's moduli in the x- and y-directions respectively, Gxy is the shear 

modulus,  and are Poisson's ratios. Using modal superposition, the vertical 

displacement for free vibration of the plate [3] may be expressed as: 

                                                                          (2) 

where φij(x,y) are the mode shapes of a multi-span continuous bridge deck corresponding to 

the ith mode in the x-direction and jth mode in the y-direction with associated natural 

frequency ωij, and aij is the unknown modal amplitude, while t is time, and . 

Substituting expression (2) into eq. (1) generates eq. (3) in the space variables x, y: 
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                                            (3) 

Such an approach (e.g. [11]) uses a set of functions that constitute a complete set (in the sense 

Functional Analysis definition). This ensures the uniform convergence of the solutions to the 

classic (exact) ones, with the advantage of the approach being in the general fashion of the 

admissible functions. 

 

Furthermore, several authors [12,13,14] use the Rayleigh-Ritz method to determine the 

natural frequencies of the vibration of the bridge deck. These authors decompose as 

the product of two admissible functions:   and , which are eigenfunctions of the 

continuous multi-span Euler-Bernoulli beam and eigenfunctions of the single-span, Euler-

Bernoulli beam, thereby, satisfying the boundary conditions in the x- and y-directions, 

respectively, and also the boundary and continuity conditions at the rigid line supports. This 

decomposition neglects the intermodal coupling. Moreover, several integrals must be 

evaluated.  

 

To take account of the intermodal coupling, one considers  as the mode shapes of a 

continuous, Euler-Bernoulli beam in the x-direction. While in the y-direction, mode shapes 

are presented by function , thus satisfying the boundary conditions of a plate at the free 

edges y = 0 and y = b of the bridge deck. This technique is simple and makes it possible to 

avoid cumbersome mathematical calculation. This decomposition may be expressed as eq. (4) 

                                                                                               (4) 

The mode shapes  of a continuous three-span Euler-Bernoulli beam in x-direction are 

shown in eq. (5) and further detailed in the appendix: 
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        (5) 

The differential eq. (3) must be satisfied for all values of x, but determining its resolution for 

every value of x is practically impossible to achieve. For this reason, it is proposed to 

substitute expression (4) into eq. (3), then multiply it by  and integrate the equation over 

the bridge length. From this one obtains eq. (6): 

                              (6) 

Dividing eq. (6) by , one obtains:   

                                                                  (7) 

with 

                                                                                               (8) 

Integrals that appear in expression (8) of the new frequency parameter k1i are simple to 

calculate. Hence, the solution of eq. (7) is given by the general form in eq. (9): 

                                                                                                                (9) 

Substituting expression (9) into eq. (7), one obtains eq. (10): 

                                                                           (10) 



8 

Solutions of the eq. (10) are eqs. (11a) and (11b):  

                                                (11a) 

                                         (11b) 

Note that the parameters r1ij and r2ij are not independent but are related by the pulsations ωij. 

In order to reduce the writing, one omits the ij indices in r1ij and r2ij. Substituting solutions (11a 

and 11b) into expression (9), one obtains eq. (12): 

                                                               (12) 

where A1ij, A2ij, A3ij and A4ij are constants of integrations. The exponential functions can be 

expressed by trigonometric and hyperbolic functions. The eq. (12) can be written as: 

                                                       (13) 

where Cij, Dij, Eij and Fij are new constants of integration. They are determined by the 

application of the boundary conditions at the free edges of the bridge:  y = 0 and y = b. At 

these edges, the bending moment and the shear force are zero, thus  

                                                              (14) 

Taking account of the expressions (2) and (4), the boundary conditions for eq. (14) become: 
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                                                                 (15) 

The application of the boundary conditions from eq (15) in eq. (13), gives the following 

system (omitting the indices ij in r1ij, r2ij, α ij, θ ij, γ ij, and χ ij) as shown in eq. (16): 

                                               (16) 

with  

                                                                                                (17.a) 

                                                                                                  (17.b) 

                                                                               (17.c) 

                                                                                 (17.d) 

For non-trivial solutions of the system (16), the frequency equation is eq. (18) 

                                    (18) 

The parameters r1 or r2 can be solved from eq. (18), while the natural frequency ωij can be 

obtained from expressions (11a) and (11b). 
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To determine the natural mode shapes of the bridge, one simplifies the system (16) by the 

standardization of the first component Cij of the unknown vector with 1, thereby reducing the 

problem to 4 equations with 3 unknown. One then chooses 3 equations among the 4 available: 

                                     (19) 

From which one obtains the expressions for the constants Dij, Eij, and Fij : 

                                            (20.a) 

                                                                                                                    (20.b) 

                                                (20.c) 

Finally, the mode shapes of the multi-span bridge deck are represented by eq. (21)   

                                            (21) 

 

3. Numerical example 

In order to verify the suggested approach with other approaches, a numerical example was 

prepared. The bridge deck was modeled as an orthotropic, three-span plate. The following 

features of bridge deck were as reported elsewhere [13,26]:  l = 78 m, l1 = l3 =24 m, l2 =30 m, 

b = 13.715 m, h = 0.21157 m, ρ = 3265.295 kg m-3, Dx = 2.415 × 109 N m, Dy = 2.1807 × 107 

N m, Dxy = 1.1424 × 108 N m, νxy  = 0.3, Ex = 3.0576×1012 N m-2, Ey = 2.7607 × 1010 N m-2, 

Gxy = 1.4475 × 1011 N m-2.  
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To calculate the natural frequencies of the orthotropic bridge deck, first ki values were 

calculated (see appendix) and the k1i values using expression (8). Subsequently, Mathematica 

software was used to determine the roots r1ij or r2ij of the frequency eq. (18). Finally, natural 

frequencies of the bridge  were calculated by expressions (11a) and (11b). By comparing 

the natural frequencies obtained by the newly devised approach with those previously 

published by Zhu and Law [13], and those calculated with a finite element method using 

ANSYS software v.10, the method was verified. To obtain the ANSYS results, firstly, all 

material properties of orthotropic three span bridge deck herein reported were numerically 

modelled. The bridge deck consisted of a mesh 165× 20 resulting in 3120 elements of type 

shell63 (6 DOF per node). As ANSYS generates a maximum node number 3297 and number 

of equations 19782, the decision was made to calculate 50 modes. For convergence, ANSYS 

provides many tools to control mesh density, on a global and local level.  

 

Table 1 summarizes the differences between the values for the first 16 natural frequencies 

of the bridge. Excellent agreement is observed for all the frequencies with the ANSYS results 

(errors not exceeding 2%). This is mainly due to the weak influence of the side effects of 

shear deformation and rotary inertia, since the two ratios of span width and length of the 

bridge deck with respect to its height are very significant (65 and 114 respectively). 

According to Table 1, one sees that the natural frequencies of flexural mode shapes from Zhu 

and Law [13] are very close to the semi-analytically derived frequencies (error not exceeding 

0.2 %). This error becomes significant for the natural frequencies of torsional mode shapes. 

Zhu and Law [13] decomposed  as the product of two admissible functions  and 

, which are eigenfunctions of the continuous multi-span, simply-supported beam, and 

eigenfunctions of a single-span, free beam respectively. This decomposition does not consider 
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the effect of intermodal coupling. In contrast, the semi-analytic approach presented herein 

includes this effect by assuming that . Additionally, Zhu and Law [13] 

only considered two orders of torsional modes. In contrast, in Table 1 torsional modes of 

orders three and four appear before certain flexural and torsional modes of the first and 

second orders. Fig.s 2 and 3 show the first six modes shapes of the bridge deck obtained by 

the proposed approach and ANSYS software respectively. Excellent agreement between the 

mode shapes is seen.  

 

4. Conclusion 

 

In this paper, a new semi-analytical approach is described to determine natural frequencies 

and mode shapes of a multi-span, orthotropic, roadway bridge deck. This approach treats the 

function defining the mode shapes of the bridge deck as being the product of two admissible 

functions. One defines the longitudinal mode shapes of the bridge deck as being the mode 

shapes of a continuous simply supported beam. The other defines the mode shapes of a free 

beam with boundary conditions of a free plate, to incorporate the effect of intermodal 

coupling, which is usually neglected because of the further complexity. This decomposition 

leads to a differential equation with only space coordinates, which is highly complex. To 

solve this, an average meaning integration is introduced. The obtained results show agreement 

within 2% of previously published results, with the advantage of a vastly simplified 

implementation 

Appendix A 

Mode shapes of a three-span, simply-supported beam 
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To determine the natural mode shapes of a three-span, continuous, simply-supported beam 

(fig. A1), it is necessary to determine the natural mode shapes for each span, while taking into 

account the boundary conditions and the continuity conditions at the intermediate supports. 

Assuming that the flexural rigidity of the beam is the same for all spans; the expression of ith 

mode shape for the transverse vibration in the rth span is [26] as reflected in eq. (A1): 

                                       (A1) 

where , ,  et , are determined by the application of the boundary conditions and 

the continuity conditions at the intermediate supports 1 and 2,  is the eigenvalue of the ith 

mode shape of three-span beam vibration.  

 

The boundary conditions are as follows:  the vertical deflection is equal to zero at all supports, 

and the bending moments are equal to zero at the ends, i.e.  

                                                                       (A2) 

The slope and bending moments at the intermediate supports are continuity conditions:  

 ,       

 ,                                                              (A3) 

Thus, there are 12 boundary conditions for a three-span beam. Substituting the boundary and 

continuity conditions (A2) and (A3) into expression (A1), after simplifications, one obtains 

expressions (A4) for mode shapes of a continuous, three-span simply supported beam: 
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 (A4) 

with  

 A1i : normalized values  

   

                                                                                                         (A5) 

  

 , r = 1, 2, 3           

The frequency equation is given by expression (A6): 

                (A6) 

 

Mathematica enables determination of the roots ki of the frequency eq. (A6) with respect to a 

beam 78 m long, with three spans of unequal (lengths l1 = l3 = 24 m, l2 = 30 m) corresponding 
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to the numerical example of the orthotropic, bridge deck presented in this article (Table 1 and 

Fig. 2). The first eight mode shapes of a continuous, three-span simply supported beam are 

shown in Fig. A2. 
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Table 1. Mesh density convergence 
Table 2. Comparison of natural frequencies of the bridge deck 
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Figure/table captions: main text 

Fig. 1. Model of the continuous three span bridge deck 

Fig. 2. The first six mode shapes of the three span, bridge deck obtained through the proposed 

approach. Modes: (a) 1, f1 = 4.13 Hz; (b) 2, f2 = 5.45 Hz; (c) 3, f3 = 6.30 Hz; (d) 4, f4 = 7.59 

Hz; (e) 5, f5 = 7.75 Hz; (f) 6, f6 = 8.77 Hz  

 

 
 

 
 

 
 

 
Fig. 1. Model of the continuous three span bridge deck 
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                  Mode 1, f1 = 4.13 Hz                                           Mode 2, f2 = 5.45 Hz 
 
 
 
 
 
         
                    Mode 3, f3 = 6.30 Hz                                            Mode 4, f4 = 7.59 Hz 
 
 
 
 
 
                      
                    Mode 5, f5 = 7.75 Hz                                             Mode 6, f6 = 8.77 Hz 

 
Fig. 2. The first six mode shapes of the three span, bridge deck obtained through the proposed 

approach 
 

  

  

(a) (b) 

(c) (d) 
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Fig. 3. The first six mode shapes of the three span, bridge deck obtained through ANSYS. 

Modes: (a) 1, f1 = 4.13 Hz; (b) 2, f2 = 5.45 Hz; (c) 3, f3 = 6.30 Hz; (d) 4, f4 = 7.59 Hz; (e) 5, f5 

= 7.75 Hz; (f) 6, f6 = 8.79 Hz 

(e) (f) 
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Fig. A1: Continuous three-span simply supported beam 
 

 
 

 

 

l 

 x 

ϕ1(x1) ϕ2(x2) 
 

ϕ3(x3) 
 

 x1  x2  x3 

 o 

 l1 l2  l3  
 1  2 



24 

 

Figure/table captions: appendix A 

Fig. A1. Continuous three-span simply supported beam 

Fig. A2. Mode shape 1-6 for a continuous, three-span, simply supported beam. Modes: (a) 1, 

k1 = 0.1178; (b) 2, k2 = 0.1455; (c) 3, k3 = 0.1614; (d) 4, k4 = 0.2304; (e) 5, k5= 0.2736; (f) 6, 

k6 = 0.2857 


