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Amyloid-b nanotubes are associated with prion
protein-dependent synaptotoxicity
Andrew J. Nicoll1, Silvia Panico2,w, Darragh B. Freir1,3, Daniel Wright1, Cassandra Terry1, Emmanuel Risse1,

Caroline E. Herron3, Tiernan O’Malley3,4, Jonathan D.F. Wadsworth1, Mark A. Farrow1, Dominic M. Walsh4,

Helen R. Saibil2 & John Collinge1

Growing evidence suggests water-soluble, non-fibrillar forms of amyloid-b protein (Ab) have

important roles in Alzheimer’s disease with toxicities mimicked by synthetic Ab1–42. However,

no defined toxic structures acting via specific receptors have been identified and roles of

proposed receptors, such as prion protein (PrP), remain controversial. Here we quantify

binding to PrP of Ab1–42 after different durations of aggregation. We show PrP-binding and

PrP-dependent inhibition of long-term potentiation (LTP) correlate with the presence of

protofibrils. Globular oligomers bind less avidly to PrP and do not inhibit LTP, whereas fibrils

inhibit LTP in a PrP-independent manner. That only certain transient Ab assemblies cause

PrP-dependent toxicity explains conflicting reports regarding the involvement of PrP in

Ab-induced impairments. We show that these protofibrils contain a defined nanotubular

structure with a previously unidentified triple helical conformation. Blocking the formation of

Ab nanotubes or their interaction with PrP might have a role in treatment of Alzheimer’s

disease.
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P
ersuasive genetic and biomarker evidence indicates that the
amyloid-b protein (Ab) is the root cause of Alzheimer’s
disease (AD)1. Like many proteins associated with

neurodegenerative conditions, Ab is prone to self-association
and aggregation, and can exist in a large number of different
assembly forms. Importantly, certain preparations of synthetic
Ab possess disease-relevant activity, including the ability to
disrupt synaptic plasticity in vitro and in vivo. However, the
forms of Ab that mediate this effect and the mechanism by which
this occurs remain obscure. For instance, it is not clear if a single
oligomeric form of Ab or a range of Ab species are required and
whether this involves specific cellular receptors2,3. Most attention
is now focused on soluble, oligomeric forms of Ab, partly because
these species are believed to display relatively higher neurotoxicity
than either monomeric Ab or mature amyloid fibrils2,3. However,
soluble oligomers vary in size from dimers through to complex
structures containing hundreds of peptide units in different
morphologies4 and a number of receptors for toxic Ab assemblies
have been proposed5–8. Due to difficulties in isolating sufficiently
pure native Ab assemblies from AD brain, synthetic preparations
of Ab that produce specific toxic effects have been extensively
studied2,4,9. However, these preparations are heterogeneous,
contain an ensemble of different species2,10 and to date no
defined Ab structure has been shown to produce neurotoxicity via
a specific receptor.

One suggested receptor for toxic Ab assemblies is prion protein
(PrP)6,11–18. Inhibition of long-term potentiation (LTP)15 and
activation of Fyn19 by AD brain have been shown to be PrP-
dependent and mimicked by synthetic Ab preparations. Ab
assemblies that bind to PrP have also been specifically detected in
AD brain19, although their size and structure remain unknown.
Whilst the ability of certain preparations of Ab to form an avid
complex with PrP has not been disputed6,11,14,15,20, the relevance
of the interaction to AD has been questioned10,11,20,21, with
one report unable to replicate the PrP-dependent inhibition of
LTP by Ab oligomers22. Given these uncertainties, and the
heterogeneity and lack of characterization of different synthetic
Ab preparations10, it is important to define the active PrP-
dependent, PrP-independent and benign species. Such
characterization of PrP-dependent toxic Ab assemblies would
then allow a search for these species in vivo and attempts to
correlate their presence with AD pathogenesis and progression.

Here, we identify protofibrils as the most avid PrP-binding
species relative to monomer, globular oligomers or fibrils and show
that their presence correlates with PrP-dependent synaptotoxicity.
Using electron microscopy (EM), we reveal that these PrP-binding
protofibrils are in fact Ab nanotubes comprising a triple helical
structure. We also demonstrate that Ab fibrils, produced in the
same conditions, cause PrP-independent inhibition of LTP. These
data resolve some of the conflicting reports regarding PrP-
dependent synaptotoxicity of Ab and identify a novel Ab structural
fingerprint that can now be pursued in AD brain.

Results
PrP-binding correlates with presence of Ab protofibrils. Cer-
tain preparations of Ab that contain mixtures of monomer,
globular oligomers and protofibrils inhibit LTP in a PrP-depen-
dent manner6,15. As pure monomeric Ab1–42 seems to not inhibit
LTP23,24 and does not form a high affinity interaction with
PrP11,14,15, we focused our studies on aggregated non-monomeric
forms of Ab1–42. To investigate the activity of globular oligomers,
protofibrils and mature fibrils we utilized an experimental
paradigm that allowed us to temporally resolve pools of Ab
enriched in each of these species (Fig. 1a–c), based on a modified
version of the Ab-derived diffusible ligand preparations6,9,15. This

involved dissolving hexafluoro-2-propanol (HFIP)-treated Ab1–42

in dimethylsulphoxide (DMSO), dilution into phenol red-free
Hams-F12 medium, centrifugation and incubation at 22 �C for up
to 2 weeks (0–336 h). Samples were aliquoted and snap frozen at
regular intervals over the time course. Ab assembly states were
visualized by negative stain EM and relative levels of PrP-binding
at 120 nM concentration were determined by an enzyme-linked
immunosorbent assay (ELISA)-based protocol detected by
dissociation-enhanced lanthanide fluorescent immunoassay
(DELFIA)25 (Fig. 1d). The concentration-dependent binding
seems to conform to a non-cooperative Langmuir-type isotherm
with occupancy increasing from 10 to 90% over a 100-fold
concentration range15. However, because of uncertainty of
the valency of the interactions15 and because Ab appears to
irreversibly bind to PrP14, true equilibrium dissociation constants
cannot be determined. Nevertheless, at Ab concentrations where
nonspecific binding is absent and binding occupancy is
below 90%, relative estimates of binding can be made. The
nanomolar sensitivity of DELFIA gives an advantage over other
techniques, such as surface plasmon resonance, electron
paramagnetic resonance or NMR that probe the Ab:PrP
interaction at micromolar concentrations, so may not identify
subtle differences in binding seen at lower, more physiologically
relevant concentrations.

Freshly dissolved Ab1–42 (t¼ 0 h) contained small globular
assemblies (11±4 nm) and Ab monomer (Fig. 1a–c) and bound
only weakly to PrP. Globular assemblies visualized by atomic
force microscopy and prepared in phosphate buffer have
previously been shown to bind to PrP by surface plasmon
resonance, but the interaction did not saturate by 2 mM,
suggesting the interaction may be relatively weak14. However,
on incubation Ab readily assembled to form protofibrils 20–
200 nm in length (Fig. 1a–c) and Ab in these solutions bound
more avidly to PrP (Fig. 1d). At later times, when the number of
protofibrils had decreased and fibrils predominated, PrP-binding
activity declined (Fig. 1d). The low binding at 0 and 336 h was
still significantly higher than background monomer binding15

suggesting that these preparations contained some PrP-binding
assemblies. Aliquoted samples could be defrosted and
tested many weeks apart or diluted and left for 24 h at room
temperature without changing the PrP-binding profile
(Supplementary Fig. S1). A large-scale repeat of four key time
points (0, 16, 72 and 336 h) demonstrated that the trend of low
initial binding, rapid increase, a plateau then decrease was
qualitatively reproducible (Fig. 1d) and not saturated at the
nanomolar concentrations used for comparison (Fig. 1e). This
also confirmed that the PrP-binding and presence of protofibrils
remained relatively stable between 16 and 72 h. The retention of
higher levels of PrP-binding by some samples incubated for 336 h
was consistently associated with presence of short protofibrils and
globular structures in those preparations (Supplementary
Fig. S2b–d). This suggested that protofibrils, rather than
monomer or mature fibrils, were the Ab species that bound
most avidly to PrP. The N1 fragment of PrP (23–111) contains
the same two Ab-binding sites as full length PrP14,15, and has
been shown to bind both synthetic and AD brain-derived Ab
oligomers19,26. When we investigated the binding of Ab to N1 we
found that N1 bound protofibrils to a similar degree as full length
PrP, but with greater selectivity (Supplementary Fig. S3a) and that
the presence of oligomers longer than 20 nm in length best
correlated with binding (Supplementary Fig. S3b).

The repeat preparation showed a similar PrP-binding profile to
the initial experiment with the same evolution from globular
assemblies to protofibrils then fibrils (Fig. 1a). Surface-enhanced
laser desorption/ionization-time of flight (SELDI-TOF) mass
spectrometry (Supplementary Fig. S4a) confirmed that the change
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in binding was not caused by peptide degradation or modifica-
tion, SDS–polyacrylamide gel electrophoresis (SDS–PAGE)
(Supplementary Fig. S4b) showed that most of the peptide
remained soluble in SDS up to 72 h, and reactivity with
conformation-specific A11 and OC antibodies27,28 suggested
that all samples contained ‘fibrillar oligomers’ (Supplementary
Fig. S4c) that have been shown to have cross-b structure29. The
level of OC immunoreactivity in DELFIA correlated with total Ab

observed using 6E10, suggesting that the majority of Ab-binding
was in an OC-reactive conformation (Supplementary Fig. S4d,e).
In contrast, A11 interacted with the high-density PrP28 saturated
on the surface of the plate, but showed no change in signal on
addition of any Ab. Size-exclusion chromatography showed the
conversion of monomer to oligomer and then loss of buffer-
soluble material (Fig. 1c) that is most likely due to precipitation or
interaction with the column. The identity of monomeric Ab was
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Figure 1 | Time-dependent aggregation of Ab1–42 and binding to PrP. Disaggregated films of Ab1–42 were dissolved in DMSO and Ham’s F12

media, vortexed and centrifuged before incubating at 22 �C for different periods of time without agitation. (a) Representative images of aggregated Ab
assemblies seen by negative stain EM at 0 (blue), 16 (green), 72 (orange) and 336 h (red) with a scale bar of 50 nm. (b) Measurement of the longest

dimension of aggregated Ab assemblies seen by negative stain EM on a carbon-coated film at 0 (blue), 16 (green) and 72 h (orange). Lengths could not

reliably be measured for aggregated Ab assemblies seen at 336 h. (c) Size-exclusion chromatography (SEC) analysis of Ab assemblies at 0 (blue),

16 (green), 72 (orange) and 336 h (red) in PBS. Although the depletion of monomer can be observed by absorbance, the size of the oligomer peaks and the

monomer/oligomer ratio cannot be quantified by absorbance due to a disproportional increase in the apparent oligomer absorbance, possibly due to

light scattering or an increased extinction coefficient in the oligomer state. (d) Relative binding of 120 nM Ab to huPrP detected by DELFIA for the initial

time course (black), a scaled-up repeat time course used for further characterization including LTP experiments (coloured) and the average of 11 separate

time courses (grey) (n¼ 3, error bars show s.d.). All individual time courses are scaled to the maximum binding sample within that set. A magnified version

showing the early time point is shown in Supplementary Fig. S2a. (e) Titration of the relative quantities of PrP-binding Ab assemblies at 0 (blue),

16 (green), 72 (orange), 336 h (red) and SEC-purified monomer (black) relative to starting concentration of Ab monomer (n¼ 3, error bars show s.d.).
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confirmed by static light scattering (molecular weight¼
4,500±400, Supplementary Fig. S5a) with a retention
time indistinguishable from NaOH-solublized Ab. The species
present at 16 and 72 h, eluting between 10 and 15 ml (Fig. 1c),
contained protofibrils (Fig. 1a and Supplementary Fig. S5b) with
molecular masses (estimated by static light scattering) from 105

to 106 (Supplementary Fig. S5a). Some aggregated and fibrillar
material was seen between 9 and 10 ml (Supplementary
Fig. S5a,b).

Given that at 0 h Ab had already formed small oligomeric
species, and as it has previously been demonstrated that
monomeric Ab does not interact with PrP in the low nanomolar
range6,11,14,15, we investigated if the smallest possible Ab
oligomer—a dimer—could bind to PrP. To do this, we used
Ab1–40 in which Ser26 was substituted with cysteine and the
monomers oxidatively crosslinked to produce dimers ((Ab1–

40S26C)2)(Supplementary Fig. S6a). Authentic (Ab1–40S26C)2

showed little interaction with PrP below micromolar concentra-
tions where binding to PrP becomes nonspecific (Supplementary
Fig. S6b), whereas (Ab1–40S26C)2 exchanged into PBS readily
formed larger assemblies that bound to PrP at low nanomolar
concentrations (Supplementary Fig. S6c). As we have previously
shown that (Ab1–40S26C)2 per se does not block LTP, but
protofibrils formed from (Ab1–40S26C)2 do, and that (Ab1–

40S26C)2 protofibrils transition only very slowly to fibrils30, our
new PrP-binding data support the conclusion that protofibrils are
the major PrP-binding species. Knowing that the Ab protofibrils
bound most avidly to PrP, we expected the presence of these, and
not amyloid fibrils or globular oligomers, to correlate with a PrP-
dependent form of neurotoxicity6,15,31.

Ab Protofibrils are associated with PrP-dependent toxicity. To
explore the relationship between PrP-binding and Ab-toxicity,
we tested the ability of four temporally resolved Ab popula-
tions to block LTP (Fig. 2). Freshly dissolved Ab (t¼ 0) con-
tains monomer and globular assemblies, bound weakly to PrP
and failed to inhibit LTP, suggesting these were not the
synaptotoxic assemblies responsible for PrP-dependent toxi-
city. Although globular Ab assemblies have previously been
reported to bind to PrP, their inhibitory effect on LTP was not
established14. In preparations where Ab protofibrils
predominate (16 and 72 h), LTP was significantly reduced
compared with buffer controls, demonstrating that Ab
preparations rich in protofibrils block LTP. Samples that
contained mostly mature fibrils (336 h) also significantly
inhibited LTP32, but not to a significantly greater extent than
the 16 or 72 h samples. As this batch of fibrils only very weakly
bound to PrP, including when binding experiments were
performed in artificial cerebrospinal fluid (ACSF)
(Supplementary Fig. S7a,b), this observation suggested
that fibrillar Ab may inhibit LTP through a PrP-independent
mechanism. It has previously been demonstrated that the
plasticity-disrupting activity of Ab samples from the 16-h time
point requires expression of PrP6,15. Samples of Ab incubated
for 72 h, which contain much lower monomer concentrations,
are also rich in protofibrils and bind avidly to PrP indicating
that they might inhibit LTP in a PrP-dependent manner
(Fig. 1 and Supplementary Fig. S3). Therefore, we sought
to confirm if differentially aggregated Ab samples could inhibit
LTP through distinct mechanisms with different PrP-
dependencies.

Using a separate batch of Ab incubated for 72 h that was rich
in protofibrils (Fig. 3a), we investigated the effects of this
preparation on LTP in hippocampal slices from wild-type and
Prnpo/o C57Bl/6J mice. This batch fully inhibited LTP in wild-
type mice but had no effect in PrP knock-out mice (Fig. 3b).
Therefore, both the 16 and 72 h samples contain protofibrils and
require expression of PrP to inhibit LTP. In contrast, a batch of
fibrillar Ab blocked LTP in both Prnpo/o and wild-type animals
(Fig. 3c,d) suggesting that it induces synaptotoxicity through a
PrP-independent mechanism. Although LTP can be inhibited to a
similar extent by Ab protofibrils and fibrils, only protofibrillar
synaptotoxicity is reversed by PrP ablation. Thus, distinct
assemblies appear to elicit toxicity through different pathways
with PrP involved in at least one of these—that evoked by
protofibrils. PrP does not simply sensitize neurones equally to all
forms of Ab toxicity. These results imply that conflicting reports
regarding the required expression of PrP for Ab synaptotoxicity
may be explained due to some investigators using samples
contaminated with fibrillar Ab. Indeed it is noteworthy that
centrifugation at 16,100 g for 20 min failed to sediment all fibrillar
species, suggesting that oligomer preparations could become
contaminated with fibrillar Ab (Supplementary Fig. S7c). We
recommend that in future experiments, each aggregated Ab
preparation should be fully characterized to test for contaminat-
ing assemblies that may alter their biological activity or
specificity.

As we did not expect all Ab toxicity to be governed by PrP, we
tested the PrP-dependence of cell membrane leakage, which has
previously been suggested to be caused by direct binding to the
lipid bilayer rather than by a receptor-mediated mechanism33.
The induction of membrane leakage was PrP-independent and
did not correlate with the presence of Ab protofibrils or
inhibition of LTP (Fig. 3e,f), consistent with suggestions that
this phenomenon may be non-specific2 and requires the presence
of Ab monomer34,35. This highlights how different preparations
of Ab can have entirely different toxicities working via different
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Figure 2 | Inhibition of LTP induced by different preparations of Ab1–42.

Field EPSPs were recorded from the CA1 region of the hippocampus in

all cases. P-values were calculated using one-way analysis of variance

(ANOVA) and the Tukey–Kramer post hoc test. Extracellular recordings from

C57Bl/6J mice show stable LTP measured up to 1 h post theta burst (grey

squares, 179±8%, n¼ 8). Pretreatment of the slices with differentially

aggregated Ab (Fig. 1) for 30 min prior to theta burst showed different

effects. (a) Pretreatment with 0-h incubated Ab did not inhibit LTP (blue,

176±8%, n¼6). (b) Pretreatment with 16-h incubated Ab inhibited LTP

(green, 138±9%, Po0.01, n¼ 6). (c) Pretreatment with 72-h incubated Ab
inhibited LTP (orange, 149±9%, Po0.05, n¼6). (d) Pretreatment with

336-h incubated Ab inhibited LTP (red, 122±8%, Po0.01, n¼ 5). No

significant differences were observed between the levels of inhibition by the

16, 72 or 336 h time points (error bars show s.e.m.).
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mechanisms and that only some will require specific receptors
such as PrP.

Ab protofibrils are nanotubes with triple helical structure. To
investigate the structure of protofibrils that bound to PrP and
were present in Ab preparations showing PrP-dependent toxicity,
we performed structural analysis by EM (Fig. 4a). Although the
extended assemblies are very flexible, they showed signs of
repeating substructures. Three-dimensional (3D) analysis by
negative stain EM and tomography revealed that the protofibrils
are helical tubes B10 nm in diameter with a repeat of 7.8 nm
(Fig. 4b,d). Tomographic 3D reconstructions revealed that the
surface in contact with the support film was flattened, so that the
helical structure was only visible on the free surface, implying that
the structure is highly deformable. To get a clearer view of the 3D
structure, a single particle data set was collected and short seg-
ments of the tubes were extracted, aligned and classified. Many of
the class averages showed distinct patterns consistent with a
helical repeat (Fig. 4c). Using the helical repeat determined from
the tomograms, reconstructions of continuous helices were gen-
erated from the class averages. These showed consistent features
and six of these were aligned and averaged to give the structure
shown in Fig. 4e. The map reveals a triple helix of density wound
around a hollow core. An Ab amyloid fibril36, Ab b-arch37 and
the PrPc fold38 are shown for comparison (Fig. 4f,g,h). That an
inherently unstructured peptide can form such an elaborate
nanostructure is remarkable and could conceivably be the source
of the specific, PrP-dependent, toxic activity seen in preparations
containing Ab nanotubes. Analysis by tomography of protofibrils
that inhibited LTP in a PrP-dependent manner (Fig. 3a,b)
confirmed that these assemblies contained similar features,
consistent with the nanotube structure (Fig. 4i), even after
shipping on dry ice.

Elongated or tubular protofibrils have previously been observed
by negative stain EM of Ab assemblies39 and the residues forming
their b-strand structural elements have been identified by
NMR40,41. It is possible that several of these monomer
conformers may be present within larger structures such as
protofibrils or fibrils37,42. Hollow structures have been previously
described for Ab and other amyloid fibrils, but the amyloid fibrils
are much longer and less flexible, with a helical pitch of
40–60 nm, 4–6 times longer than the pitch of the helical
nanotubes36 (Fig. 4f). Such fibrillar structures could also be toxic,
although fibrils produced after 2 weeks in our preparations seem
to elicit toxicity through an as yet undefined PrP-independent
mechanism. Likewise, we show that membrane leakage does not
require PrP and the assemblies involved can be distinct from
those that cause either PrP-dependent or PrP-independent
inhibition of LTP.

Discussion
AD is a clinicopathological syndrome with multiple genetic and
environmental factors contributing to its aetiology and rate of
progression, and the many cellular and animal models of AD are
heterogeneous. As such, it seems implausible that a single
receptor molecule could be responsible for all toxicity in all
experimental paradigms containing distinct Ab assemblies,
let alone for all clinical and pathological features in the diverse
population of AD patients. However, a defined subset of toxic
effects may be both specific to a particular receptor and
therapeutically targetable, as seems to be the case for PrP-
dependent inhibition of synaptic plasticity6,15,31. Indeed, our data
demonstrating that protofibril synaptotoxicity requires PrP
expression and that water-soluble extracts of AD brain block
LTP in a PrP-dependent fashion15 imply that Ab nanotubes are

also present in human brain and have an important role in
disease. With regard to the conflicting results concerning the
involvement of PrP in phenotypes reported in amyloid precursor
protein transgenic mice, it may be that PrP-dependent12,13 and
PrP-independent effects20,21 seen in different animal models of
AD could in part be explained by the transitory nature of key Ab
species. The newly discovered order in Ab nanotubes could have
relevance for Ab toxicity in AD and may help explain apparent
inconsistencies regarding the role of PrP in different models of
this heterogeneous disease.

It will be important to determine if Ab nanotubes or other
recently identified structures29,43 are responsible for the PrP-
dependent, synaptic plasticity-impairing effects of ex vivo AD
brain extracts15. Targeting PrP–Ab nanotube interactions, for
example, with humanized versions of anti-PrP monoclonal
antibodies demonstrated to block the Ab-mediated disruption
of synaptic plasticity15, may have a role in AD therapeutics.

Methods
Production of differentially aggregated Ab. Ab1–42 was synthesized and purified
by Dr. James I. Elliott at Yale University (New Haven, CT). The peptide
(B1.25 mg) was weighed into a screw-cap 1.5 ml Eppendorf tube, dissolved in
ice-cold HFIP to a concentration of 1 mM, sonicated for 10 min, the tube sealed
and left to stand at room temperature for 1 h. The solution was then transferred
to a 2 ml glass vial and the HFIP evaporated under a stream of dry air/N2 to
produce a clear film. The peptide film was dissolved in anhydrous DMSO
with vigorous vortexing for 2 min to produce a 5 mM solution and then diluted to
100 mM in phenol red-free Ham’s F12 medium without L-glutamine (Caisson
Labs) and vortexed for 15 s. The sample was transferred to a 2 ml Eppendorf
tube, centrifuged at 16,100 g for 5 min to remove any large preformed aggregates
and the upper 90% for each solution collected, aliquoted, snap frozen in
liquid N2 and stored at � 80 �C. This was considered to be 0 h. For larger
time courses, multiple batches were produced and combined at 0 h. Samples
were then removed from the freezer and incubated at 22 �C without agitation
for between 0 and 336 h before being subaliquoted, snap frozen in liquid N2

and stored at � 80 �C. No further centrifugation was performed at this
point.

Protein expression and purification. Constructs of human PrP were expressed44

and purified45 in a similar manner to previously described, but with a second Ni-
NTA column after thrombin cleavage. Protein quality was confirmed
by SDS–PAGE, matrix-assisted laser desorption/ionization-time of flight
(MALDI-TOF) mass spectrometry and circular dichroism spectroscopy.

Mass spectrometry. Ten microlitres of differentially aggregated Ab (phenol red-
free Ham’s F12 medium, no L-glutamine, 2% DMSO) was applied to an NP20
SELDI-TOF chip (Bio-Rad), incubated for 2 min and removed. The samples were
then washed with 2� 10ml of mass spectrometry-grade water before the applica-
tion of a 2,5-dihydroxy benzoic acid film. Samples were run in low mass positive
ion mode on a SELDI-TOF ProteinChip Reader PBS-IIC.

Dot blot analysis. One microlitre of differentially aggregated Ab (phenol red-free
Ham’s F12 medium, no L-glutamine, 2% DMSO) was spotted directly onto
nitrocellulose membrane, air dried, blocked with Odyssey Blocking buffer (Licor)
for 1 h, then probed with either OC (Millipore) (1:500 dilution), A11 (Millipore)
(1:500 dilution) or 6E10 antibody (Covance) (1 mg ml� 1) in Odyssey Blocking
buffer (Licor) for 1 h. OC and A11 were detected with IRDye 800CW goat anti-
rabbit IgG antibody, whereas 6E10 was detected with IRDye 800CW goat anti-
mouse IgG antibody. The membrane was then dried and visualized using an
Odyssey scanner.

SDS–PAGE silver staining. Ten microlitre aliquots of 100 mM differentially
aggregated Ab (phenol red-free Ham’s F12 medium, no L-glutamine, 2% DMSO)
were diluted into sample buffer, boiled, electrophoresed on 16% polyacrylamide
tris-tricine gels and visualized by silver staining.

Size-exclusion chromatography and multi-angle light scattering. Aliquots of
differentially aggregated Ab (phenol red-free Ham’s F12 medium, no L-glutamine,
2% DMSO) of 0.18 or 0.35 ml were injected onto a Superdex 200 10/30 column
(GE Healthcare) and eluted with PBS at a flow rate of 0.5 ml min� 1 using an
Agilent HPLC and peptide elution monitored by absorbance at 220 or 275 nm.
Light scattering was performed using a Wyatt DAWN HELEOS II multi-angle light
scattering module with Ab concentrations calculated using the extinction coeffi-
cient of tyrosine at 275 nm (1,400 M� 1 cm� 1). (Ab1–40S26C)2 aliquots of 0.5 ml
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Figure 3 | PrP-dependence of protofibrillar and fibrillar Ab assemblies. (a) Representative EM images of 72-h incubated Ab used in b (scale bar, 50 nm).

(b) Comparison of LTP from wild-type (filled symbols) and PrPo/o (hollow symbols) C57Bl/6J mice in the presence (orange symbols) and absence

(grey symbols) of 72-h incubated Ab. LTP from wild-type C57Bl/6J mice in the presence (filled orange circles, 171±16%, n¼ 5) and absence (filled grey

squares, 104±14%, n¼ 5) of 72-h incubated Ab were significantly different (Po0.05), whereas LTP from PrPo/o C57Bl/6J mice in the presence (hollow

orange circles, 175±16%, n¼ 5) and absence (hollow grey squares, 181±19%, n¼ 5) of 72-h incubated Ab show no significant difference. Field EPSPs were

recorded from the CA1 region of the hippocampus in all cases. P-values for b and d were calculated using one-way analysis of variance (ANOVA)

and the Tukey–Kramer post hoc test (error bars show s.e.m.). (c) Representative EM images of fibrillar Ab used in d (scale bar, 100 nm). (d) Overlay of wild-

type (filled symbols also shown in Fig. 2d) and PrPo/o (hollow symbols) C57Bl/6J mice in the presence (red symbols) and absence (grey symbols) of

fibrillar Ab. Pretreatment with 336-h incubated Ab also inhibited LTP in PrPo/o C57Bl/6J mice (hollow red circles, 105±10%, Po0.01, n¼ 5) compared

with 336-h incubated buffer (hollow grey squares, 156±13%, n¼ 5) suggesting the effect is PrP-independent. No significant differences were observed

between the levels of LTP induced in wild-type and PrPo/o mice (error bars show s.e.m.). (e) Representative images of calcein-AM leakage in untreated

controls (control; grey) or cells exposed to Ab aggregated for 0 (purple), 16 (green), 72 (orange) and 336 h (red) for 1 h with a scale bar of 50mm.

(f) Calcein-AM leakage in untreated controls (control; grey) or cells exposed to Ab aggregated for 0 (blue), 16 (green), 72 (orange) and 336 h (red) used in

Figs 1 and 2 for 1 h. PrP-overexpressing and knockdown cells (KD) are represented using darker and lighter shades, respectively. Calcein-AM fluorescence

was normalized by cell number and calculated with respect to untreated controls, where fluorescence was taken to be 100% (n¼ 3, error bars show s.e.m.).
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incubated overnight in 6 M guanidinium chloride were injected onto a Superdex
200 10/30 column and eluted with 25 mM ammonium acetate (pH 8.5) or PBS at a
flow rate of 0.5 ml min� 1 using an AKTA FPLC and peptide elution monitored by
absorbance at 280 nm.

Electron microscopy. Four microlitre drops of peptide solution were loaded onto
negatively glow-discharged copper grids that had been previously coated with a
continuous carbon film. Samples were left to adhere for 30 s and excess solution
blotted with grade 4 Whatman paper, stained with 2% uranyl acetate (6 ml) for 30 s,
blotted and air dried. For single particle reconstruction, low dose images were
recorded on an FEI Tecnai T12 electron microscope operating at 120 kV at
� 42,986 on Kodak SO-163 film, with a defocus range of 0.7–1 mm. Images were
digitized at a step size of 7 mm using a Zeiss SCAI scanner, giving a sampling of
1.63 Å per pixel. Other images were acquired on an FEI Tecnai T10 electron
microscope operating at 100 kV and recorded on a 1 k� 1 k charge-coupled
device (CCD) camera (Gatan) at a typical magnification of 34,000 with a pixel size
of 5.03 Å.

Tomography. Grids were prepared as described for negative stain analysis. Dual
axis tilt series were acquired on an FEI Tecnai F20 microscope operating at 200 kV
(Fig. 4b,d) or an FEI Tecnai T12 electron microscope operating at 120 kV (Fig. 4i).
The tilt range was between � 68� and þ 68� with 2� increments and the defocus
ranged from 1.5 to 3 mm. Images were either recorded on a 4 k� 4 k CCD camera
(Gatan) at a magnification of 38,000 giving a pixel size of 3.92 Å (Fig. 4b,d) or on a
1 k� 1 k CCD camera (Gatan) at a magnification of 42,000 with a pixel size of
4.15 Å (Fig. 4i). Tomograms were reconstructed from the tilt series with IMOD46

software using local patch tracking for alignment. From the final tomograms,
segments of oligomers showing ordered structural features were extracted and
visually inspected in CHIMERA. Volumes that showed strong helical features were
converted to SPIDER format and low-pass filtered and masked to remove noise.

Single particle reconstruction. Defocus parameters for each micrograph were
determined with the MRC program CTFFIND3 (ref. 47). Micrographs were
corrected for the phase reversals of the contrast transfer function using SPIDER48

and binned to 3.26 Å per pixel before particles (straight segments of the rod-like
structures) were manually picked in Boxer49 and extracted into 80 by 80 pixel
boxes. The particles were filtered between 100 and 10 Å and normalized using
IMAGIC50. Particles were initially aligned to a vertical rectangle and the aligned
images were then classified using multivariate statistical analysis (MSA) into classes
containing on average 25 images. Classes were manually inspected and ones
showing the highest similarity between the individual particles and their
corresponding class average were selected for multi-reference alignment (MRA).
Following two rounds of MRA/MSA, 3D reconstructions were calculated from the
class averages showing the clearest features, using helical symmetry in SPIDER.
The helical pitch repeat was estimated by helically averaging the clearest tomogram
reconstruction over a range of repeat values and cross-correlating the resulting
averages with the unaveraged tomographic reconstruction in CHIMERA. This
comparison gave a clear optimum for the helical repeat, at 7.8 nm, and this value
was used for helical reconstruction of the single particle class averages. Models
from six different class averages, containing a total of 155 segments, were averaged
in CHIMERA. As it was not possible to determine a subunit repeat from diffraction
patterns of the negatively stained images, probably due to the flexible nature of the
helical oligomer, the 3D maps were reconstructed with a subunit repeat of 1 pixel
(3.3 Å) to generate continuous helices.

Electrophysiology. Work with animals was performed under licence granted by
the UK Home Office (PPL 70/7274) and conformed to University College London
institutional and ARRIVE guidelines. Male, 2–4-month-old C57Bl/6J (Charles
River, Margate, UK) or PrP null C57Bl/6J mice (EMMA) were used to study the
effects of differentially aggregated Ab. Mice were anesthetized with isoflurane/O2

and decapitated. The brain was rapidly removed and immersed in ice-cold sucrose-
based artificial cerebrospinal fluid containing 87 mM NaCl, 2.5 mM KCl, 7 mM

Figure 4 | EM and tomography reveal a tubular helical structure in protofibrils from the 16 h time point. (a) A representative grid area used to

select Ab assemblies for single particle analysis with a scale bar of 50 nm. (b) Section through reconstructions of four negatively stained Ab assemblies by

electron tomography with a scale bar of 10 nm. Elongated segments of the flexible tubes suggest the presence of ordered substructures. (c) Upper row,

averages of classified images of segments of the tubes extracted for single particle analysis, showing distinct repeat patterns with a scale bar of 10 nm.

The lower row shows reprojections of the corresponding 3D reconstructions. (d) Isosurface view of a tomography reconstruction showing the helical nature

of the tube. The repeat distance is 7.8 nm. (e) Isosurface view of a 3D reconstruction obtained by averaging the structures from six single particle maps,

using the pitch repeat of 7.8 nm. The structure shows a triple helical tube (EM Databank accession code EMD-2433). (f) Isosurface view of a 3D

reconstruction of an Ab amyloid fibril (EM Databank accession code EMD-5052 (ref. 36)) has a similar width, but a much longer helical pitch. (g) Ribbon

structure of an Ab in a b-arch conformation from an amyloid-like assembly (PDB code 2LMQ) for a scale comparison. (h) Ribbon structure of the

ordered part of PrPc (PDB code 2L39) for comparison. (i) Sections through electron tomography reconstructions of four negatively stained Ab assemblies

incubated for 72 h also suggest the presence of tubes with ordered substructures (scale bar, 10 nm).
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MgSO4, 0.5 mM CaCl2, 25 mM NaHCO3, 25 mM glucose, 1.25 mM NaH2PO4 and
75 mM sucrose. Parasagital sections (350 mm) were prepared on a Leica VT1000S
vibratome using stainless steel razor blades (Campden, Loughborough, UK). Slices
were immediately transferred to a holding chamber (BSC-PC, Warner Instruments,
Hamden, CT) containing ACSF: 119 mM NaCl, 2.5 mM KCl, 1.3 mM MgSO4,
2.5 mM CaCl2, 26.2 mM NaHCO3, 11 mM glucose and 1.25 mM NaH2PO4. Cir-
culating ACSF was continuously bubbled with a mixture of 95% O2 and 5% CO2

and slices allowed to recover for at least 90 min at room temperature.
Extracellular recordings were performed as described previously15. Briefly,

slices were submerged in a recording chamber and perfused with oxygenated
ACSF at a rate of 2–3 ml min� 1 and the perfusate warmed to 30 �C. A stainless
steel microelectrode (FHC, Bowdoin, USA) was used to stimulate Schaffer
collateral fibres, and extracellular field EPSPs were recorded from stratum
radiatum of CA1 using a glass microelectrode. EPSPs were recorded using an
Axopatch 1D in tandem with a Digidata 1440A digitiser (Axon Instruments).
Data were collected using pClamp 10 software and analysed using Clampfit 10.2
(Molecular Devices). For all experiments, test stimuli were given once
every 30 s (0.033 Hz), and the stimulus intensity was set to give a baseline fEPSP
of 40–50% of the maximal response. A stable baseline was recorded for at least
20 min before application of Ab. In experiments using differentially aggregated
Ab (stock solutions were diluted 1:200 into ACSF to produce nominal
concentrations of 500 nM based on the starting weight of Ab1–42 monomer), the
sample was added to the perfusate 30 min before induction of LTP. LTP was
induced by theta burst stimulation (10 bursts of 4 stimuli at 100 Hz, with an
interburst interval of 200 ms) given at baseline intensity. The ACSF was recycled
using peristaltic pumps (101 U/R, Watson–Marlow, UK) ensuring that the Ab
was present for the duration of the experiment. LTP is expressed as the
mean±s.e.m. % of baseline fEPSP slope. Statistical comparisons used analysis of
variance with post hoc Tukey–Kramer test or unpaired Student’s t-test where
appropriate.

Dissociation-enhanced lanthanide fluorescent immunoassay. Fifty microlitres
of 1 mM human PrP23–231 or PrP23–111 (10 mM sodium carbonate, pH 9.6) was
bound to medium binding 96-well white plates (Greiner) with shaking at
400 r.p.m. for 1 h at 37 �C, washed with 3� 300 ml of PBS (0.05% Tween-20),
blocked with 300 ml Superblock (Thermo Scientific) with shaking at 400 r.p.m. at
37 �C for 1 h and washed with 3� 300 ml of PBS (0.05% Tween-20). Fifty
microlitres of different preparations of Ab1–42 were incubated in PBS (0.05%
Tween-20, 0.1% BSA) or ACSF (see above) for 1 h at 25 �C with shaking at
400 r.p.m. and washed with 3� 300 ml of PBS (0.1% Tween-20). Ab was detected
by 50 ml of 1 mg ml� 1 6E10 in DELFIA assay buffer (PerkinElmer) for 1 h at 25 �C
with shaking at 400 r.p.m., washed with 3� 300 ml of PBS (0.05% Tween-20),
incubated for 1 h at 25 �C with shaking at 400 r.p.m. with 300 ng ml� 1 of DELFIA
Eu-N1 anti-mouse antibody in DELFIA assay buffer (PerkinElmer), washed with
3� 300 ml of PBS (0.05% Tween-20) before enhancing with 100 ml of DELFIA
Enhancement Solution (PerkinElmer)25. Alternatively, 1:1,000 OC or A11
(Millipore) were used for detection along with 300 ng ml� 1 of DELFIA Eu-N1
anti-rabbit antibody. Plates were scanned for time-resolved fluorescence intensity
of the europium probe (lex¼ 320 nm, lem¼ 615 nm) using a PerkinElmer
EnVision plate reader. Apparent XC50 values were calculated using a 4-parameter
XC50 curve with the maximum plateau signal for a given series used to define full
occupancy. Defrosted time course samples that were assayed many weeks apart
showed similar binding profiles as did those diluted to 120 nM in PBS (0.05%
Tween-20) for 24 h.

Cell-based membrane leakage. Ab-induced membrane permeabilization was
assessed by monitoring calcein-AM leakage, as previously described51. PrP-
overexpressing and knockdown murine neuroblastoma (PK1) cells (D-Gen Ltd)52

were seeded on coverslips overnight and fixed for 30 min with PBS-buffered 4%
paraformaldehyde the next day. Cells were then loaded with 3 mM calcein-AM
(Invitrogen) for 30 min at 37 �C, washed four times with PBS and subsequently
exposed to 500 nM differentially aggregated Ab for 1 h at 37 �C. Cells were washed
four times with PBS, mounted using 40 ,6-diamidino-2-phenylindole (DAPI)-
containing medium (Abcam) and cells were visualized using a Zeiss confocal laser
scanning microscope (Carl Zeiss LSM 510). Images were acquired using a Plan-
Neofluar 40x/1.3 Oil DIC objective and lex¼ 405 nm (DAPI) or 488 nm (calcein-
AM), with ImageJ software (NIH) used to quantify images. To detect PrP, cells
were seeded on coverslips and fixed as previously described45. Cells were then
incubated for 1 h at 4 �C with 0.6 mg ml� 1 ICSM18 (in PBS), washed four times
with PBS, and subsequently incubated for 1 h at 4 �C with 2 mg ml� 1 fluorescein-
labelled anti-mouse IgG antibody (in PBS). Cells were washed a further four times
with PBS, mounted and visualized by confocal microscopy (lex¼ 488 nm for
fluorescein).
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