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Abstract

Background: Although many of the genic features in Mycobacterium abscessus
have been fully validated, a comprehensive understanding of the regulatory elements
remains lacking. Moreover, there is little understanding of how the organism regulates
its transcriptomic profile, enabling cells to survive in hostile environments. Here, to
computationally infer the gene regulatory network for Mycobacterium abscessus we
propose a novel statistical computational modelling approach: BayesIan gene regula-
tory Networks inferreD via gene coExpression and compaRative genomics (BINDER).
In tandem with derived experimental coexpression data, the property of genomic con-
servation is exploited to probabilistically infer a gene regulatory network in Mycobac-
terium abscessus.

Inference on regulatory interactions is conducted by combining ‘primary’ and ‘aux-
iliary’ data strata. The data forming the primary and auxiliary strata are derived from
RNA-seq experiments and sequence information in the primary organism Mycobac-
terium abscessus as well as ChIP-seq data extracted from a related proxy organism
Mycobacterium tuberculosis. The primary and auxiliary data are combined in a hier-
archical Bayesian framework, informing the apposite bivariate likelihood function and
prior distributions respectively. The inferred relationships provide insight to regulon
groupings in Mycobacterium abscessus.

Results: We implement BINDER on data relating to a collection of 167,280
regulator-target pairs resulting in the identification of 54 regulator-target pairs, across
5 transcription factors, for which there is strong probability of regulatory interaction.

Conclusions: The inferred regulatory interactions provide insight to, and a valu-
able resource for further studies of, transcriptional control inMycobacterium abscessus,
and in the family ofMycobacteriaceae more generally. Further, the developed BINDER
framework has broad applicability, useable in settings where computational inference
of a gene regulatory network requires integration of data sources derived from both
the primary organism of interest and from related proxy organisms.

Keywords— gene regulatory network, Mycobacterium abscessus, Bayesian inference, data
integration
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1 Background

Mycobacterium abscessus is a rapidly growing mycobacteria capable of causing a variety of soft
tissue infections, primarily affecting subjects with immuno-deficiencies. Mycobacterium abscessus
(M. abscessus) is considered a major pathogen involved in broncho-pulmonary infection in patients
with cystic fibrosis or chronic pulmonary disease (1). In addition, M. abscessus is responsible for
several skin and soft tissue diseases, central nervous system infections, bacteremia, and ocular and
other infections (2). Owing to a range of cellular mechanisms, one of the most salient aspects
of pathogenesis resulting from M. abscessus infection is its multi-drug resistance. It is the most
chemotherapy-resistant rapid-growing mycobacterium (3).

While many genic features in M. abscessus have been fully validated and characterised in terms
of the expression landscape at the transcriptional, post-transcriptional and translational levels (4),
a comprehensive understanding of regulatory elements is lacking. Without functional identification
of the modes of regulation present, a complete understanding of how M. abscessus modulates its
transcriptomic tendencies, enabling cells to survive and thrive in hostile environments such as in
the presence of antibiotics or in the host sputum, remains out of reach.

Gene regulatory network (GRN) resources are typically split into two categories: generalist
resources and specialist resources. The former category provides regulatory information (such as
transcription factors, putative and confirmed target genes/operon structures, transcription factor
binding sites (TFBS) motifs, upstream location coordinates) for a wide group of organisms. Col-
lecTF (5) is one such resource that hosts a large collection of DNA binding sites for prokaryotic
transcription factors. Although CollecTF comprises a small amount of regulatory information per-
taining to mycobacteria, it currently does not contain any information on M. abscessus. Indeed
most generalist resources tend not to comprise much content on regulatory information directly
relevant to M. abscessus.

Specialist resources tend to provide regulatory information for a much narrower subgroup of
organisms such as a single species or genus; RegulonDB (6) is one such resource which comprises
information regarding transcriptional regulation in Escherichia coli. Most resources of both types
provide curation based on techniques such as SELEX-based methods (7) as well as ChIP-seq (8).
Currently, for M. abscessus, there is no such existing specialist resource.

Many approaches have been designed for in silico inference of prokaryotic GRNs. Two popular
strategies for regulon mapping include (1) the use of conservation data arising from comparative
genomics analyses and (2) expression data in the form of transcriptional abundance comparison.
The conservation approach relies on the observation that TFBSs are often conserved between
related species. This implies that regulatory resources from a given organism can be leveraged to
elucidate on transcriptional control in closely related organisms (9). Further, if two organisms with
a non-distant common ancestor share an orthologous gene that is understood to assist in achieving a
certain biological process (such as transcriptional regulation) in one organism, it is likely to perform
a similar role in the other organism (10). Phylogenetic footprinting provides a conservation-based
approach for determining conserved noncoding sequences and associated TFBSs; such methods
typically involve quantifying the rate of occurrence of noncoding DNA sequences in the upstream
regions of orthologs of genes of interest in related species (11; 12).

Expression-based approaches tend to model the expression of a target gene candidate as a
function of the expression or activation of a regulator gene. The GENIE3 (13) method frames
the problem of deriving a regulatory network between p genes as p different regression tree-based
ensemble models where the expression pattern of one gene is predicted by the expression pat-
tern of all other genes in the collection. Other authors have noted the observed property that
genes sharing a common network have a greater tendency to exhibit strong coexpression (14).
Weighted correlation network analysis (WGCNA) (15) is a software package that implements a
suite of correlation-based methods for describing the coexpression patterns among genes across
experimental samples designed with a view to uncovering gene networks of several varieties.

The literature on prokaryotic gene regulation is replete with ChIP-seq experiments detailing the
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specifics of transcriptomic control (16; 17). ChIP-seq provides a means of isolating target DNA
sequences and transcription factor bound protein complexes stimulated in response to induced
transcription factor production. This process facilitates the ascertaining of relationships between
specific transcription factors and target binding site DNA sequences (including their downstream
genic and intergenic units). Such data are not presently available for M. abscessus, due to its status
as an emerging pathogen (3). However, similar resources exist to varying degrees of completeness
for closely related organisms, such as those in the family of Mycobacteriaceae (18; 19). Many
efforts have focussed on the integration of ChIP-seq experimental data with RNA-based expression
results to improve GRN inference (20).

In general, the concept of designing hybrid models that integrate existing regulatory informa-
tion and expression abundance results has been the focus of much research. For example, iRafNet
(21) implements a random forest approach to inferring GRNs while incorporating prior regulatory
knowledge such that putative regulators used to build individual trees are sampled in accordance
with the provided prior information. GRACE (22) integrates biological a priori data as well as
heterogeneous data and makes use of Markov random fields to infer regulatory networks in eurkary-
otic organisms. The RNEA (23) approach also combines prior knowledge from manual literature
curation and experimental data with enrichment analysis to infer relevant subnetworks under ex-
perimental conditions. The multi-species cMonkey approach (24) includes gene expression data
for multiple related organisms in addition to upstream sequence information and other network
knowledge, iteratively building biclusters to detect putative co-regulated gene groupings.

Hierarchical Bayesian frameworks provide a natural choice for heterogenous data integration;
Bayesian methods like COGRIM (25) and CRNET (26) have sought to exploit this quality. With a
view to inferring GRNs, integrative Bayesian methods have focussed on directly modelling putative
target gene expression data as a function of regulator activity in addition to binding strength and
sequence information.

Herein, we introduce a novel statistical modelling approach to computationally inferring the
GRN for M. abscessus: BayesIan gene regulatory Networks inferreD via gene coExpression and
compaRative genomics (BINDER). BINDER is an integrative approach, hybridising coexpression
data and comparative genomics profiles to infer prokaryotic regulons. BINDER requires two or-
ganisms: an organism of interest, here M. abscessus, and an annotated proxy organism, here
Mycobacterium tuberculosis (M. tuberculosis). To computationally infer the GRN for M. abscessus
we leverage existing resources: specifically we exploit several RNA-seq libraries elicited from M.
abscessus generated across a range of experimental conditions, and the unique availability of a
high-quality and comprehensively catalogued ChIP-seq-derived regulatory network in M. tubercu-
losis (27). BINDER utilises a primary data stratum and an auxiliary data stratum. Here, the
data forming the primary and auxiliary strata are derived from RNA-seq experiments and sequence
information from M. abscessus as well as ChIP-seq data extracted from the related M. tuberculo-
sis. BINDER is a Bayesian hierarchical model that appositely models the type and structure of
both this primary and auxiliary data to infer the probability of a regulatory interaction between a
regulator-target pair. The auxiliary data inform the prior distributions and the posterior distribu-
tions are updated by accounting for the primary coexpression data in a novel, apposite bivariate
likelihood function. BINDER’s Bayesian framework facilitates the borrowing of information across
the genome yielding estimates of the probability of regulation between regulator and target can-
didate genes, as well as quantification of the inherent uncertainty in a probabilistically principled
manner.

In what follows, we explore the performance of BINDER under a range of challenging simulated
data settings, as well as in two case studies using Bacillus subtilis (B. subtilis) and Escherichia
coli (E. coli) as the primary organisms of interest, for which regulatory interactions have been
well-established. We present the regulatory interactions inferred on M. abscessus by BINDER,
and explore in detail the putative inferred regulon corresponding to the transcriptional regulator
zur. We also include an exploration of prior sensitivity concerns and some discussion. The Methods
section (Section 5) describes the data utilised and details the architecture of the BINDER approach.
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The results of this effort provide insight to, and a valuable resource for further studies of, tran-
scriptional control in M. abscessus, and in the family of Mycobacteriaceae more generally. Further,
the developed BINDER framework has broad applicability, useable in settings where computational
inference of a GRN requires integration of data sources derived from both the primary organism of
interest and from a related proxy organism. A software implementation for BINDER is provided
by its associated R package, which is freely available from github.com/ptrcksn/BINDER.

2 Results

2.1 Exploring M. abscessus and M. tuberculosis shared orthology

It has been established that there is high retention of gene regulation in prokaryotes between
species (28). Moreover, it has been demonstrated that gene function is also retained across wide
phylogenetic distances in prokaryotes (29). Given the availability of a large number of experimen-
tally validated regulatory networks in M. tuberculosis (27), from the standpoint of inferring a GRN
in M. abscessus using conservation phenomena, we quantifed the extent to which genes present in
M. tuberculosis are conserved in M. abscessus. To do so, we employ the Ortholuge (64) procedure
which facilitates bacterial and archaeal comparative genomic analysis and large-scale ortholog pre-
dictions. Through Ortholuge, we categorise orthologs as belonging to one of five tiers, ranging
from more reliable to less reliable: supporting-species-divergence (SSD), borderline supporting-
species-divergence (borderline SSD), reciprocal best blast (RBB), similar non-supporting-species-
divergence (similar non-SSD) and non-supporting-species-divergence (non-SSD). We found 1,343
SSD putative orthologs, 116 borderline SSD putative orthologs, 845 genes that satisfied the RBB
criteria but did not undergo any further analysis, 6 similar non-SSD putative orthologs and 85
non-SSD putative orthologs. In total, we found 2,395 predicted orthologs of all qualities, equating
to ≈ 48% of all annotated genes in M. abscessus.

In terms of regulatory interactions, for 34 orthologous regulators of interest and where possible,
we performed a one-to-one mapping of all validated regulatory interactions in M. tuberculosis to
their corresponding orthologs in M. abscessus. We found a mean regulon size in M. tuberculosis
of 107.91 genes (sd: 128.78). Of these 34 regulons, the mean regulon proportion comprising
orthologous interactions in M. abscessus is 0.61 (sd: 0.16) (Figure 1). These results are suggestive
of conserved regulatory interactions between M. tuberculosis and M. abscessus.

2.2 BINDER Simulation Study

In order to evaluate the performance of BINDER (Section 5.2), we perform a simulation study
across a number of settings. Our focus is on exploring the impact of BINDER’s hierarchical
Bayesian model structure and on the influence of the inclusion of the auxiliary data when inferring
a GRN. Specifically we focus on the parameter θr,t representing the probability of an interaction
in the (r, t)th regulator-target pair and consider two simplified versions of the BINDER model:

• Deterministic model : each θr,t is modelled deterministically as a linear function of the aux-
iliary data. Thus BINDER’s prior on θr,t is replaced by:

logit(θr,t) = ζr + τMErMEr,t + τPErPEr,t

• Non-auxiliary model : no auxiliary data are used during inference on θr,t, which are instead
inferred based on the primary data only. In this case BINDER’s prior on θr,t is instead
replaced by the prior logit(θr,t) ∼ U(−∞,∞).

In addition, the impact on inference of noisy primary data and of large variability in the true
underlying θr,t parameters is also of interest. Since the primary data CP and CM are assumed
to be Nl{logit(θr,t), ψkr} for k ∈ {CP, CM}, larger values of ψkr reflect noisier primary data.
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Figure 1: Number of target genes in the 34 orthologous M. tuberculosis regulons. Also
illustrated is the the extent of orthology between M. tuberculosis and M. abscessus.

Similarly, logit(θr,t) ∼ N (γr,t, ϕr), with larger values of ϕr reflecting larger variation in the un-
derlying regulatory interaction probabilities. Hence, we compare the performance of BINDER,
the deterministic model and the non-auxiliary model on 9 distinct dispersion parameterisations
corresponding to the Cartesian product of ψr = {ψCMr , ψCPr} = {low = 1,mid = 2, high = 3} and
ϕr = {low = 1,mid = 2,high = 3}.

For each of the nine dispersion settings, we simulate three data sets, each with N = 1, 000
regulator-target pairs. To challenge the BINDER model, we consider weakly informative auxiliary
data: ME and PE are generated from a Bernoulli distribution with success parameter 0.1. We
compute γr,t according to (1) where (ζr, τMEr , τPEr) = (−3.5, 3.8, 2.9) and simulate logit(θr,t) ∼
N (γr,t, ϕr). Finally, for the primary data, we simulate CMr,t ∼ Nl(logit(θr,t), ψCPr) and CPr,t ∼
N (logit(θr,t), ψCMr). Model performance across the 27 settings considered was assessed using the
mean absolute deviation (MAD) (30) between each true simulated θr,t and its resulting posterior
mean estimate.

We observed competitive performance of the BINDER approach over both the deterministic
and non-auxiliary approaches for the majority of settings considered in terms of lower MAD (Figure
2). Specifically, the mean for the MAD statistics for the BINDER approach was 0.087 (sd: 0.034)
as compared with 0.120 (sd: 0.050) and 0.120 (sd: 0.056) for the deterministic and non-auxiliary
approaches respectively (standard deviations in parentheses). The deterministic approach has a
tendency to perform worse in instances where the dispersion around each θr,t value is large (i.e.
high values for ϕr). This is to be expected as the deterministic approach has insufficient flexibility
to model θr,t values that lie distant from their mean value resulting in higher MAD statistics.
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On the contrary, the deterministic approach does well in the setting of low ϕr. In contrast, the
non-auxiliary approach tends to be less sensitive to changes in the dispersion around the mean
of the distribution of θr,t. However, given that the non-auxiliary approach only uses the primary
data to infer θr,t, when the level of dispersion around the mean of CP and CM is high (i.e. high
values for ψr) the primary data contain a weaker signal leading to poor estimation of the true
θr,t and resulting in higher MAD statistics. As a compromise between the deterministic and non-
auxiliary approaches, BINDER utilises the information contained in the auxiliary data whilst,
simultaneously, providing the flexibility to accommodate observation-specific variation in the reg-
ulation interaction probabilities resulting in more accurate inference. BINDER outperforms the
non-auxiliary model in all settings considered, and is only marginally outperformed in a minority
of cases by the deterministic model in settings where ϕr is mid or low.
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Figure 2: Simulation results illustrating the mean absolute deviation (MAD) between the
true and estimated regulation interaction probabilities achieved by the deterministic, non-
auxiliary and BINDER approaches across a range of dispersion parameter settings.

2.3 Application of BINDER to Escherichia coli and Bacillus sub-
tilis data

As a benchmarking exercise to assess the performance of BINDER on a bona fide regulatory
interaction data set, we investigated BINDER’s ability to infer interaction plausibility for the fur
and lexA regulons in Escherichia coli (31) and Bacillus subtilis (32). Where E. coli constitutes the
organism of interest, Pseudomonas aeruginosa (P. aeruginosa) (33) constitutes the proxy organism
and where B. subtilis is the organism of interest, Listeria monocytogenes (L. monocytogenes) (34)
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fulfils the role of the proxy organism. Considering two regulons across these well researched settings
allows for intra-regulon and inter-regulon analysis as well as intra-organism and inter-organism
analysis.

The ferric uptake regulator, or fur, is a transcriptional factor originally described as a repressive
regulator of genes involved in iron import. Since then, aside from iron-homeostasis, fur has been
shown to be associated with processes such as resistance to oxidative stress, pH homeostasis and
quorum sensing as well as other cellular mechanisms (35). In bacteria, the SOS response provides
the means for responding to DNA damage; the expression of genes comprising the SOS regulatory
network is under the control of lexA (36). lexA is a global transcription factor that undergoes
cleavage during stress permitting expression of DNA repair functions (37). lexA also regulates
genes that are not comprised within the SOS response program (36).

Here we avail of well-established regulator-target interactions as detailed by RegulonDB (6) for
E. coli and well-established regulator-target interactions as per SubtiWiki (38) for B. subtilis. To
build the primary data, we used E. coli expression data from COLOMBOS (39) and B. subtilis
expression data from SubtiWiki (40). For the auxiliary data, we use regulatory sequence motifs
and orthologous target interactions from P. aeruginosa and L. monocytogenes curated by collecTF
(5).

We consider the BINDER, deterministic and non-auxiliary approaches to infer the GRNs in
Escherichia coli and in Bacillus subtilis from their primary and auxiliary data. Non-informative
priors were employed with mean hyperparameters set to 0 and standard deviation hyperparameters
set to 3, with the exception of the prior on ϕr which was set to ϕr ∼ N(0,∞)(1, 0.1) for regularisation
purposes. Further, we also consider iRafNet (21) which employs an integrative prior-information-
based approach to random forest inference of GRNs from expression data. For iRafNet, we applied
the algorithm to each target candidate of interest individually using the fur and lexA regulator
genes as predictors; further, in addition to the standardised expression matrix, for the iRafNet
prior information matrix W , the element wij , corresponding to the ith regulator and jth target
candidate, was configured such that wij = exp(1) if ME = 1 or PE = 1 and wij = exp(0) for i ̸= j.

In total, of the 4,221 uniquely labelled genes present in RegulonDB with available expression
data, 67 correspond to well-established regulatory interactions concerning fur and 23 correspond
to well-established interactions concerning lexA in E. coli. For B. subtilis, of the 4,162 uniquely
labelled genes with available expression data, 58 correspond to well-established regulatory interac-
tions with fur and 57 to well-established regulatory interactions with lexA.

For the fur regulon in E. coli, BINDER achieved an area under curve (AUC) of 0.880. No-
tably however, in contrast to BINDER, iRafNet omits data recorded under conditions for which
expression levels for all genes are not available. Thus, in order to fairly compare performance with
iRafNet, we applied BINDER to a reduced expression matrix comprising fewer conditions such
that no missing data were present. BINDER achieved an AUC of 0.787 as compared with 0.710,
0.654 and 0.725 for the non-auxiliary, deterministic and iRafNet approaches respectively (Figure
3, Table 1).

Interestingly, for BINDER applied to the reduced coexpression data, the mean posterior 50th
percentile θ50%fur,t∀t ∈ T corresponding to validated regulatory interactions was only 0.0050 as com-

pared with 0.0016 for the mean θ50%fur,t corresponding to observations without evidenced regulatory
interactions (Figure 4). That this BINDER implementation achieved a corresponding AUC of
0.787 suggests that the distribution of θ50%fur,t values is highly skewed to the right, and thus their
relative magnitude is of importance when observing BINDER’s output. Interestingly, we did not
observe this effect when BINDER was applied to the complete expression data. Thus, we imposed
a more informative prior ϕfur ∼ N(0,∞)(10, 0.01) and applied BINDER again resulting in a mean

θ50%fur,t corresponding to validated regulatory interactions of 0.2427 as compared with 0.1833 for the

mean θ50%fur,t corresponding to observations without evidenced regulatory interactions (Figure 4).
However, with this informative prior the AUC dropped to 0.729. This is almost identical to the
AUC for the non-auxiliary implementation which is intuitive because as ϕfur increases, the auxiliary
stratum provides diminishing influence (Figure 3, Table 1).
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For the lexA regulon in E. coli, BINDER achieves an AUC of 0.888. Once again, in order
to compare performance with iRafNet, we re-applied BINDER to a reduced expression matrix
comprising fewer conditions such that no missing data were present. For the reduced expression
data BINDER achieved an AUC of 0.857 as compared with 0.768, 0.778 and 0.829 for the non-
auxiliary, deterministic and iRafNet approaches respectively(Figure 3, Table 1).
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Figure 3: ROC analysis for θ50%r,t posterior estimates for the BINDER, deterministic and
non-auxiliary approaches and gene importance estimates for iRafNet for the r = fur and
r = lexA regulons in E. coli and B. subtilis. BINDER (all) denotes results from analysis of
BINDER applied to the complete coexpression data; BINDER relates to its application to
the reduced data set.

Performance was similar for the B. subtilis organism (Figure 3, Table 1). For the fur regulon,
BINDER achieved an AUC of 0.905 as compared with 0.878, 0.746 and 0.694 for the non-auxiliary,
deterministic and iRafNet approaches respectively. For the lexA regulon, BINDER achieves an
AUC of 0.855 as compared with 0.728, 0.767 and 0.819 for the non-auxiliary, deterministic and
iRafNet approaches respectively.

Not only does BINDER out perform all other considered approaches in terms of AUC, but,
considering false positive rates in the neighbourhood of 0, BINDER tends to achieve higher true
positive rates than any of the other approaches. This is particularly important because, owing to
sparse regulatory connectivity across a given genome, regulon mapping is typically a minority class
problem i.e. the vast majority of target candidates will constitute negatives for most regulators.
This implies that a low false positive rate can still translate to a large number of false positives.

The ability of BINDER to integrate and borrow information across primary and auxiliary data

8



Table 1: AUC scores achieved by each modelling approach for each regulon in each organism.

Model fur (E. coli) lexA (E. coli) fur (B. subtilis) lexA (B. subtilis)

iRafNet 0.725 0.829 0.694 0.819
Deterministic 0.654 0.778 0.746 0.767
Non-auxiliary 0.710 0.768 0.878 0.728
BINDER 0.787 0.857 0.905 0.855
BINDER (all) 0.880 0.888 - -
BINDER (informative p(ϕ)) 0.729 - - -
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Figure 4: Posterior estimates of θ50%r,t for the BINDER, deterministic and non-auxiliary ap-
proaches for r = fur and r = lexA regulons in E. coli and B. subtilis, factored by established
interaction status.

when inferring a GRN is demonstrated in Figure 5 for the particular case of the lexA regulator
in B. subtilis when there is no auxiliary evidence. Only the full BINDER implementation is
capable of tempering estimates when there is disagreement between interaction status and auxiliary
evidence; when there is an interaction but no auxiliary evidence BINDER is capable of exploiting
the individual primary data values, CM and CP, to provide higher estimates to the regulator-
target candidate; however, the deterministic approach lacks the flexibility to provide any high
θ50%lexA,t estimates in the absence of auxiliary evidence. Similarly, owing to the lack of auxiliary

evidence, BINDER is capable of tempering its estimates for θ50%lexA,t when there is no interaction
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and no auxiliary evidence; in contrast, the non-auxiliary approach results in high θ50%lexA,t estimates
for all observations with high primary data values CM and CP. BINDER’s hierarchical modelling
structure and ability to borrow local and global information from both the primary and auxiliary
data sources results in more realistic estimates: higher θ50%lexA,t estimates for putative interactions and

lower θ50%lexA,t estimates for putative non-interactions in general. Synoptically, BINDER’s ability to
integrate the information on whether a given regulator-target pair has an affinity for the predicted
motif and/or an orthologous regulatory interaction in the proxy organism with the information
provided in the primary data stratum provides greater flexibility.
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Figure 5: For the lexA regulon in B. subtilis and for targets where the auxiliary data
ME = 0 and PE = 0, estimates of θ50%lexA,t for the BINDER, deterministic and non-auxiliary
approaches, factored by known interaction status. The primary data values are CM and
CP; points are jittered slightly for visibility.

2.4 Application of BINDER to M. abscessus data

With a view to producing a model of regulation in M. abscessus, we leveraged data from across
34 orthologous ChIP-seq validated interactions in M. tuberculosis and from 32 RNA-seq libraries
from across 16 distinct experimental conditions in M. abscessus. We considered R = 34 orthologous
regulators in M. tuberculosis, and T = 4920 target candidates in the M. abscessus genome, yielding
N = 167, 280 regulator-target pairs. For computational efficiency, given the likelihood function can
be factored by regulator, we run BINDER on the R = 34 orthologous regulators’ data in parallel.
To computationally infer the gene regulatory network for M. abscessus the posterior distribution
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p(θr,t| . . .) is of key interest, for r ∈ R and t ∈ T with . . . denoting all auxiliary and primary data
and other model parameters.

2.4.1 Prior Sensitivity Analysis

In order to assess the sensitivity of inference to the prior distribution specifications, we constructed
three different prior parameterisation settings and compared the resulting inferences. The three
settings considered were labelled as ‘non-informative’, ‘informative’ and ‘precise’ (Table 2). In
particular, the informative settings reflect a priori beliefs that: (1) the auxiliary data PE and ME
would encode a reliable positive indication as to whether a given regulatory interaction exists and
(2) a negative intercept would be required to correctly model interaction plausibility. The precise
setting reflects more extreme versions of the informative setting (in terms of smaller auxiliary data
scale hyperparameters).

Inference was relatively insensitive to prior specification in terms of MAD scores for θ50%r,t (unin-
formative versus informative: 0.0040, sd: 0.0094; uninformative versus precise: 0.0183, sd: 0.0466;
informative versus precise: 0.0168, sd: 0.0437, Figure 6). Using a classification criterion such
that regulator-target pairs with a posterior 50th percentile θ50%r,t > 0.9 are classified as positive
regulation cases, comparing uninformative to informative positive regulation cases yielded an ad-
justed Rand index (41) of 0.9247, versus 0.5203 and 0.5553 for uninformative versus precise and
informative versus precise respectively (an adjusted Rand index of 1 indicates perfect agreement).
Thus, for the remainder of this work, with a view to allowing the data to determine the parameter
estimates without imposing strong beliefs, we focus on the uninformative parameterisation.

Table 2: Prior parameterisation settings considered for sensitivity analysis of BINDER.

Hyperparameter Uninformative Informative Precise

µζr 0 -3 -3
σζr 3 1 0.1
µτMEr

0 3 3
στMEr

3 1 0.1
µτPEr

0 3 3
στPEr

3 1 0.1
µϕr 0 0 0
σϕr 1 0.5 0.1
µψCPr

0 0 0
σψCPr

3 1.5 0.5
µψCMr

0 0 0
σψCMr

3 1.5 0.5

2.4.2 Inferred regulatory interactions in M. abscessus

Of the N = 167, 280 regulator-target pairs considered in M. abscessus, under the uninformative
parameterisation, BINDER identified 54 pairs across 5 transcription factors with a posterior 50th
percentile θ50%r,t > 0.9 (Table 3). Of these 54 interactions, 24 are known to have validated or-
thologous regulatory interactions in M. tuberculosis as per ChIP-seq data (Figure 7); the number
of interaction pairs almost doubles by reducing the threshold by 0.1 (102 pairs with 31 known
orthologous interactions satisfying θ50%r,t > 0.8 ). In comparison, under the informative param-
eterisation, a similar effect was observed with 54 pairs with 21 known orthologous interactions
satisfying θ50%r,t > 0.9. A more conservative effect was observed for the precise settings: 33 pairs

across 28 transcription factors with a posterior 50th percentile θ50%r,t > 0.9. As expected, for all
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Figure 6: Heat map illustrating the similarity between mean predicted θ50%r,t values achieved
by BINDER under three distinct prior distribution parameterisations (uninformative, infor-
mative, precise) on the set of N = 167, 280 regulator-target pairs.

parameterisations, the vast majority of posterior distributions of θ were centred at low values,
suggesting low levels of regulatory connectivity across the M. abscessus interactome; the mean
50th percentile for all of θ was 0.085 (sd: 0.106) for the uninformative parameterisation and 0.087
(sd: 0.105) and 0.0885 (sd: 0.0995) for the informative and precise parameterisations respectively.
It should be noted that in the benchmarking exercise (Section 2.3) we observed that the nominal
value of a regulator-target pair’s θ50%r,t is not always as informative as its relative magnitude to
{θr,1, . . . , θr,N}. In general, whilst there were many instances of plausible conserved interactions,
the results suggest evidence for many non-conserved interactions that may be unique to M. absces-
sus. Further, it can be observed that for a given regulator, many of the regulated genes appear to
be spatially clustered along the genome (Figure 7). This observation lends support to the concept
of gene colocalization arising as a means to affect efficient transcription (42; 43).

The parameter ζr in the auxiliary component influences the inferred probability of regulator-
target interaction before any further regulator-target pair information is taken into account, with
larger values of ζr meaning higher interaction probabilities. In this sense, each ζr is related to the
ubiquity of regulation by regulator r across the genome. Under the uninformative parameterisation,
we observed an average posterior mean of -6.63 across all regulator models (sd: 4.07). Hence,
intuitively, conditional on the auxiliary data ME and PE being zero, the probability of a regulatory
interaction is low.

The parameter τMEr captures the influence the auxiliary ME data has on the prior mean of
the inferred probability of a regulatory interaction between regulator r and target t, given all
other covariates. Across all regulators, under the uninformative parameterisation, we observed
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Table 3: Regulator-target pairs achieving a posterior θ50%r,t > 0.9 inM. abscessus by regulator
under the uninformative parameterisation.

Regulator Regulator Total Conserved Unconserved
Locus Tag Gene Name Interactions Interactions Interactions

MAB 0599 - 8 4 4
MAB 1678c zur 15 8 7
MAB 4086 - 8 1 7
MAB 4270c hspR 7 4 3
MAB 4449c - 16 7 9

rpsN2
rpmG1
rpmB2

MAB_0335
MAB_0575c
MAB_0577c

fadE31
fadD3
fadA6

MAB_0604c
MAB_0647

MAB_0739c
MAB_0753c
MAB_0809c
MAB_0957

MAB_1046c
MAB_1058

MAB_1084c
MAB_1233c
MAB_1525c

clpP2
MAB_1620
MAB_1680

qcrC
ctaE

eccE3
eccD3

MAB_2627c
MAB_2698c
MAB_2699c

alaS
MAB_2975c

mqo
fixB
fixA

fadE24
fadE23

sdhB
icd2

groES
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grpE
dnaK
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Figure 7: Abacus plot illustrating interaction candidates achieving θ50%r,t > 0.9 for the un-
informative parameterisation; larger points are suggestive of less uncertainty; circles corre-
spond to validated regulatory interactions in M. tuberculosis ; shading corresponds to the
posterior θ50%r,t estimate. Regulators and targets are arranged by genomic position.

an average posterior mean for τMEr of 1.43 (sd: 0.9982) (Figure 8). The parameter τPEr has a
similar interpretation for the auxiliary data PE. Across all regulators, under the uninformative
parameterisation, we observed an average posterior mean for τPEr of 1.95 (sd: 1.8981) (Figure 8).
These results suggest that, on average, both ME and PE are positively correlated with the primary
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data in the likelihood. Given the phenomenon of genomic conservation, this is as we would expect
and lends credence to the BINDER approach. Furthermore, although the mean posterior means
for τMEr and τPEr are quite similar, the latter has larger variation suggesting higher volatility in
the influence of PE than in the influence of ME.

τME τPE ζ
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Figure 8: Central 95% of mass of the posterior distributions for τMEr , τPEr and ζr under
the uninformative parameterisation with posterior means indicated by dots for each of the
R = 34 regulators.

In terms of scale parameters, under the uninformative parameterisation, ϕ tended to have
the lowest posterior mean values (average posterior mean of 1.12 with standard deviation 1.0067)
(Figure 9). Both ψCMr and ψCPr yielded larger posterior mean estimates. In particular, under the
uninformative parameterisation, ψCMr yielded an average posterior mean of 4.23 (sd: 1.7713) and
ψCPr yielded an average posterior mean of 3.63 (sd: 1.4499), suggesting that the primary CM data
tend to lie further from logit(θr,t) than CP (Figure 9). Also, the larger average posterior mean
associated with ψCMr compared with that of ψCPr is intuitive, given the extra uncertainty associ-
ated with motif inference (comprised within CM) compared with validated orthologous interactions
comprised within CP.

2.4.3 Interpretation of results: composition of the zur regulon

As an example of a putative discovery facilitated by BINDER, we examine the inferred regulon
corresponding to the transcriptional regulator zur (MAB 1678c). The zur regulator present in
M. tuberculosis and M. abscessus is a zinc-responsive transcription factor. Zinc is an essential
element for life in many organisms (44). In addition to its role as a structural scaffold for many
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Figure 9: Central 95% of mass of posterior distributions for ϕr, ψCMr and ψCPr under the
uninformative parameterisation with posterior mean values denoted by dots for each of the
R = 34 regulators.

proteins, it fulfils a critical function as a frequent enzyme and DNA-binding protein cofactor
(45). However, zinc can be toxic at high concentrations (46). For prokaryotes, efficient zinc
acquisition, concentration and tolerance are critical processes for survival and pathogenicity (47).
Zinc homeostasis in prokaryotes is achieved via cellular import and export, zinc binding, and zinc-
sensing (47). Cellular zinc levels are maintained by importer and exporter proteins which are then
regulated at the transcriptional level by several zinc-responsive transcription factors (48), including
the zur regulator.

As per ChIP-seq results, the original regulon pertaining to zur inM. tuberculosis (Rv2359/furB)
comprised 26 target genes (12 directly regulated targets); under the uninformative parameterisa-
tion, of these targets, 14 (53.8%) contained orthologs in M. abscessus. Using the cutoff criterion
θ50%zur,t > 0.9, BINDER suggested 15 target candidate genes in M. abscessus be considered valid
targets of zur, 8 of which correspond to evidenced interactions in M. tuberculosis. Gene ontolog-
ical analysis carried out on the putative targets provided intuitive insight, revealing up-regulated
biological processes (p ≤ 0.05) corresponding to metal ion transport.

BINDER also identified a number of interesting non-conserved putative targets for zur. For
example, MAB 1046c, is annotated as a cobalamin synthesis protein. This is interesting as
MAB 0335, one of the identified conserved targets, is also annotated as a cobalamin synthesis
protein. This is perhaps owing to the role of cobalamin as a cofactor for cobalamin dependent
methionine synthase in prokaryotes. Cobalamin dependent methionine synthase is involved in zinc
ion binding (49). Further, MAB 2698c and its immediately adjacent neighbour MAB 2699c also
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yield high θ50%zur,t posterior estimates; gene ontology suggests that MAB 2699c, another unconserved
putative target, is involved in pseudouridine synthesis/pseudouridine synthase activity; pseudouri-
dine synthases catalyse the isomerisation of uridine to pseudouridine in RNA molecules and are
thought to act as RNA chaperones. Intriguingly, pseudouridine synthase I (TruA) (50), one of
the four distinct families of pseudouridine synthases, contains one atom of zinc essential for its
native conformation and tRNA recognition (51). Another unconserved target is the PPE-like gene
MAB 0809c; PPE genes are widely considered to play a key role in pathogenesis. Interestingly,
phagosomes containing PPE genes found to disrupt lysosome-phagosome fusion have been shown
to display differences in zinc levels relative to corresponding phagosomes containing PPE-knockout
mutants (52). Another highly-probable unconserved interaction, MAB 1680, is annotated as a pu-
tative transmembrane protein. Given its association with zur, MAB 1680 is perhaps involved with
zinc uptake in M. abscessus.

3 Discussion

In this work we have inferred the GRN in M. abscessus using the BINDER approach, the primary
purpose of which is to infer the probability of pairwise interactions in a collection of regulator-
target pairs. BINDER exploits experimental coexpression data in tandem with the property of
genomic conservation to probabilistically infer a GRN in M. abscessus. To infer a GRN, BINDER
proceeds by binding information from data in primary and auxiliary strata.

BINDER facilitates information sharing horizontally (by sharing parameters in the same layer of
the model hierarchy) and vertically (by sharing of parameters in distinct strata of the hierarchy).
The likelihood function assumes independence of the assumed logit-normal distributed primary
data variables, conditional on the shared parameter of interest θr,t, representing the probability of
an interaction in the (r, t)th regulator-target pair. Further, the mean of this interaction probability’s
logit-normal distribution is informed by a linear function of the auxiliary data, serving as a proxy
for genomic conservation information. Thus inference is strengthened through the borrowing of
information across variables and strata.

With the exception of PE, the construction of all variables considered (i.e. ME, CM and
CP) involves the choice of thresholds and/or decisions. For example, from the outset we have
formed a TFBS-based module binary membership structure and an orthologous target binary
membership structure, recorded in the auxiliary binary variables ME and PE respectively, on
which the primary variables CM and CP rely. However, in order to circumvent potential loss of
information associated with such hard membership, a “soft” approach using scale free topology or
clustering coefficients may be worth exploring. Under these scenarios, the idea of membership has
a continuous representation (15). Further, the auxiliary variable ME is derived from thresholding
a p-value and as such is sensitive to the cutoff point ϵ selected. The BINDER approach also
implements a further two threshold points δCM and δCP; clearly it is of paramount importance to
choose these thresholds in an informed and careful manner. We have employed a hypergeometric
framework for CM and CP, but any mapping to [0, 1] is possible. Again, topological overlap
mapping or clustering coefficent mapping (15) are alternative approaches. With a view to foregoing
the need to choose a threshold at all, simply mapping a regulator-target pair to the mean of its
coexpression with members of the ME and PE modules is possible because the mean of a group of
unsigned coexpressions will also lie in [0, 1]; validation studies suggests that this approach, although
convenient, does not perform quite as well as the hypergeometric framework.

It should be noted that, for our purposes, we had a relatively small-scale expression com-
pendium with which to form our coexpression networks. Both the volume and diversity of RNA-seq
conditions used to construct the coexpression networks may not be fully sufficient to computation-
ally infer the entire GRN in M. abscessus. Small coexpression data sets are more likely to comprise
noisy correlation results and similar experimental conditions have the effect of duplicating expres-
sion information leading to low numbers in terms of effective sample sizes. Similarly, for some
regulators, we observed a lack of specificity in binding sites (owing to very long binding regions
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and small numbers of binding interactions); this has the effect of negatively impacting motif infer-
ence (i.e. false discovery of erroneous motifs). Naturally, more reliable data are preferable, however
where data are less reliable, it is possible to account for this uncertainty through specification of
the hyperparameters in the priors on the variable-specific parameters. Regardless, as the signal
deteriorates (e.g. erroneous consensus motifs, inaccurate binding interactions), inference will suffer
and thus it is important to ensure that all data sources are as accurate as possible. For the above
reasons, it may be worthwhile to examine the more conservative BINDER parameterisations (i.e.
the precise parameterisations) detailed above. This parameterisation implements a less diffuse
prior distribution such that candidates lacking auxiliary support are less likely to achieve high θr,t
estimates.

Through the course of this analysis, with a view to focusing on inferred highly probable
regulator-target interactions, we have examined pairs for which the posterior median θ50%r,t > 0.9.
However, the intention behind this model is not to define interaction probability on the basis of a
single point estimate, but rather to provide a posterior distribution of θr,t. This allows for a more
nuanced analysis on interaction probability estimates than is typically provided by a simple binary
classifier. Instead, we recommend that estimates are received in the context of the scientific ques-
tion posed; varying the the number and severity of thresholds and tolerances will allow for differing
results. Similarly, as noted in the fur regulon inference for E. coli explored in the benchmarking
results, under certain scenarios BINDER estimates low values for all interaction candidates (both
positive and negative cases); this is either due to influential hyperparameter settings and/or poor
agreement between the auxiliary and primary data. However, even under these scenarios, BINDER
can still estimate higher estimates for positive interaction cases. In such cases, as is good statis-
tical practise, prior sensitivity analyses should be conducted or it may be worthwhile to consider
regulator results individually.

One obvious limitation of any model that exploits conservation phenomena to perform inference
in scarcely annotated organisms is that such a model can only make inference based on existing
conservation data; indeed BINDER cannot infer interaction that may exist in M. abscessus on
regulators not considered here. There are modelling approaches for “de novo” network inference
that are based exclusively on coexpression analysis or other non-conservation based predictors, but
such approaches can contain many false positives (53). Instead BINDER aims to overcome such
issues by allowing coexpression-based data have partial influence on model inference. Moreover,
while BINDER requires a consensus sequence motif and a collection of orthologous regulator-target
interactions to perform inference, it is possible to run BINDER with a consensus sequence motif
or a collection of orthologous interactions only. In this case, BINDER comprises one variable in
the auxiliary stratum and one variable in the primary stratum.

One mechanism used by cells to refine and maintain transcription factor levels is autoregu-
lation. It has been argued that the occurrence of autoregulation positively correlates with the
developmental or physiological importance of the transcription factor (54). Given that any gene
will have a perfect coexpression with itself, most expression-based approaches (such as GENIE3
and iRafNet) to GRN inference are unable to detect transcription factor autoregulation. For a
given regulator, BINDER uses the coexpression profiles of a target gene with genes under the con-
trol of the regulator to inform the probability of a regulator-target interaction. BINDER does not
examine the coexpression of the target candidate with regulator directly. As a result, BINDER is
able to detect autoregulation.

For each regulator considered here, we applied the BINDER approach to all 4,920 annotated
protein-coding genes in M. abscessus. However, in theory, BINDER could be applied to any desired
subset of genes. With a view to accurately describing whole-population behaviour we recommend
including all available data, albeit acknowledging the associated additional computational cost.

Pearson’s correlation was employed here as a measure of coexpression. Although there are other
options, with a view to remaining conservative and reducing false positives, Pearson’s correlation
gives high values when expression values are strongly linearly related. Common alternatives include
the more flexible Spearman’s method, but often with increased flexibility comes an increase in less
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biologically significant relationships. Although use of Pearson’s correlation can come at the cost
of increased false negatives, studies have suggested that many coexpression relationships are linear
and monotonic so this issue may be overstated (55).

Recent studies have suggested that implementing an ensemble approach to motif identification
can improve detection results (56). BINDER could be extended to augment the number of motif
search tools used in the analysis. Similarly, another suggestion might be to augment the number
of proxy organisms from a single proxy organism to k proxy organisms, similar in vein to (24). A
spike-and-slab prior distribution (57) for the associated model parameters would provide insight
on the information contained in the individual proxy organisms. Furthermore, it is possible to
extend the dimensionality of the primary stratum. In general, data that are binary or lie in [0, 1]
can be appended to the primary stratum: for example, the direct coexpression between a given
regulator-target pair could be used to form a trivariate primary stratum. Although we have used
exclusively binary variables in the auxiliary stratum, there is no restriction on the form of auxiliary
data that can be modelled by BINDER.

It may be worthwhile to investigate the effect of incorporating more sophisticated levels of
dependency in the BINDER model. Such dependencies could be based on operon comembership,
on regulator family membership (e.g. the whiB-like family (58)), on target reoccurrence or on gene
function using GO (59) or COG (60), for example. Here, we only consider the gene immediately
downstream of a confirmed or putative TFBS to be under the regulation of the associated regula-
tor. Recent studies suggest that operon organisation is dynamic and, hence, operon structures are
capable of changing across conditions (61). However, given that BINDER considers not only the
existence of a precedent interaction and/or motif match for a given candidate, but also the coex-
pression of that candidate with other candidates that do comprise a precedent interaction and/or
motif match, BINDER is capable of detecting adjacent gene coregulation. Members of operon
structures that are cotranscribed across all conditions considered will exhibit greater coexpres-
sion than those that are only cotranscribed under a fraction of conditions considered; as a result,
BINDER is able to reflect that behaviour through the θr,t posteriors. Furthermore, it is possible to
construct prior distribution parameterisations such that BINDER will tend to estimate higher θr,t
median values for genes in cotranscribed structures if they comprise a precedent interaction and/or
motif match; this may facilitate the determination of gene importance in cotranscribed structures.
Owing to the lack of assumptions made by BINDER with respect to transcription start sites and
operon co-membership, we expect that the results generated by BINDER will sufficiently aid in
the generation of dynamic regulatory networks, as well as the understanding of transcriptional unit
plasticity.

4 Conclusions

We have sought to determine the evidence for gene regulation in M. abscessus using a range of
expression data from M. abscessus and experimentally validated regulatory network data from
M. tuberculosis. We have demonstrated the extent to which there is a correlation between gene
regulation in M. tuberculosis and transcriptome coexpression in M. abscessus. Our results imply
not only strong genic conservation between M. abscessus and M. tuberculosis but also evidence of
conservation with respect to the modes of transcriptomic control between these two organisms.

We have implemented a Bayesian modelling approach to quantifying the probability of an
interaction across a collection of 167,280 regulatory-target pairs. Of these, 54 regulator-target
pairs across 5 transcription factors, were inferred to have a posterior 50th percentile for θr,t > 0.9
in M. abscessus.

The interactions identified in this study will form a valuable resource for further studies of
transcriptional control in M. abscessus and in the family of Mycobacteriaceae more generally.
Further, the BINDER framework is applicable across a wider range of organisms for which similar
data are available.
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5 Methods

5.1 Data

Given the paucity of data available from the primary organism M. abscessus (MAB), BINDER
integrates data from a proxy organismM. tuberculosis (MTB) into the inferential procedure. Specif-
ically, we leverage data from across orthologous ChIP-seq validated interactions in M. tuberculosis
as proxy data and extract the primary data from 32 RNA-seq libraries across 16 distinct ex-
perimental conditions in M. abscessus. Thus we consider the set of all possible regulator-target
interaction candidate pairs, arising from the set R = 34 orthologous regulators in M. tuberculosis,
and T = 4920 target genes in the M. abscessus genome yielding N = 167, 280 regulator-target
pairs of interest.

5.1.1 Auxiliary data: motif evidence (ME) and precedent evidence (PE)

Motif Evidence: With respect to a given regulator r, the TFBS status of a target t is encoded
through a binary variable termed motif evidence (ME). Specifically, for a regulator-target pair,
ME takes the value 1 if the corresponding target contains a putative TFBS for the regulator’s
motif in its upstream region and a value of 0 otherwise. Here, the binding motif is assumed to be
identical to the binding motif in the proxy organism.

With a view to determining regulator motifs, we extracted binding sequences using the NCBI
M. tuberculosis (Accession: AL123456) complete chromosome sequence and annotation, SMTB.
The evidenced binding region coordinates were provided by ChIP-seq data sets ranging across
several induced transcription factor experiments in M. tuberculosis. We subsequently categorised
these binding sequences by regulator with a view to discovering binding sequence consensus motifs.
The MEME motif discovery tool (62) was used to infer a single consensus binding motifMr for each
regulator r ∈ R: in particular, using a DNA alphabet, we searched on both strands seeking zero
or one occurrence per binding sequence of a single consensus motif between 10 and 30 nucleotides
long.

To find putative TFBSs for the derived motifs in the M. abscessus genome, we defined a
sequence region Ut corresponding to the region -300nt to +50nt of the start of each target of
interest t ∈ T . This interval size was chosen in light of the distribution of intergenic region
lengths in the M. abscessus genome. In order to find putative TFBSs for each Mr, we searched
in each Ut using the complete chromosome sequence and annotation SMAB provided by NCBI for
M. abscessus (Accession: NC010397). In the scenario that the most upstream coordinate of an
immediately adjacent upstream gene was annotated to occur within 300nt of an upstream region
of interest, the upstream region of interest was truncated to the most upstream coordinate of
the upstream gene. To perform this search, we used the FIMO tool (63) to find the high-scoring
upstream sequences with a q-value ≤ ϵ = 0.1. We provided a background file encoding 0-order
nucleobase probabilities based on all upstream sequences of interest.

In summary, for each regulator-target pair (r, t) for r = 1, . . . , R and t = 1, . . . , T the motif
evidence MEr,t is computed where:

MEr,t =

{
1 if for Mr the FIMO q-value for Ut ≤ ϵ
0 otherwise.

For a given regulator r, we refer to the set of all genes where MEr,t = 1 as the ‘MEr module’.
Precedent Evidence: The presence of an annotated orthologous regulator-target interaction in the
proxy organism is encoded in the binary variable termed precedent evidence (PE). For a regulator-
target pair, PE takes the value of 1 if such an orthologous interaction exists and takes the value
of 0 otherwise.

Specifically, given both the proxy genome GMTB and the primary genome of interest GMAB,
Ortholuge (64) derived one-to-one orthologs were used to map orthologous regulator-target in-
teractions from GMTB to GMAB. ChIP-seq data sets drawn from 34 induced transcription factor
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experiments in GMTB were scanned for orthologous regulator-target interactions with respect to
GMAB; orthologous regulator-target pairs were subsequently grouped by regulator to derive a rudi-
mentary orthology of regulons in GMAB.

Thus, given the rudimentary orthology, for a given regulator r and target t:

PEr,t =

{
1 if orthologous evidence of r regulating t in GMTB

0 otherwise.

As in the ME case, for a given regulator r, we refer to the set of all genes where PEr,t = 1 as the
‘PEr module’.

5.1.2 Primary data: coexpression of motif and precedent evidence

Coexpression of Motif Evidence: Exploiting the property that genes sharing a common regulator
exhibit strong coexpression (14), we computed a measure termed coexpression of motif evidence
(CM). For a given regulator, using the motif derived from the proxy organism, CM quantifies the
extent to which a target gene coexpresses with genes that have strong affinity for the putative
regulator motif in the primary organism.

Specifically, for a regulator binding sequence motif Mr inferred from GMTB, we define CMr,t

for a given gene regulator-target pair (r, t) in GMAB. We define the reduced primary genome
GMAB,−Ot = GMAB \ Ot, where Ot is a t-inclusive set of genes in GMAB that should not be used
in the calculation of CMr,t. This set will naturally include t, but can contain any other genes that
are not desired for calculation of CMr,t. The variable CMr,t lies in [0, 1], where values closer to
1 represent stronger correlation between expression levels of the target t with genes in GMAB,−Ot

producing strong matches to the inferred sequence motif Mr. Specifically, for a regulator-target
pair

CMr,t =

{
hypergeometric(a|b, c, d) for a, b, d ≥ 1
0 otherwise

where hypergeometric(a|b, c, d) represents the cumulative distribution function of a hypergeometric
random variable a with parameters b, c and d where, for some threshold δCM,

• a is the number of genes in GMAB,−Ot that belong to the MEr module and have an absolute
expression correlation with gene t > δCM

• b is the number of genes in GMAB,−Ot exhibiting an absolute expression correlation with gene
t > δCM

• c is the number of genes in GMAB,−Ot exhibiting an absolute expression correlation with gene
t ≤ δCM

• d is the number of genes in GMAB,−Ot that belong to the MEr module.

A Benjamini and Hochberg adjustment (65) is applied to these probabilities to relax the observed
polarisation of probabilities around 0 and 1; for a given regulator r, the adjustment is relative to all
targets t ∈ T . We expect genes under the control of regulator r to coexpress strongly with members
of the MEr module. For our purposes, we vary the threshold such that each δCM is specific to each
target. For a given target t, assuming CXi,j represents the coexpression between genes i and j, we
choose δCM to be equal to the 95th percentile of all values in the set {CXt,g for g ∈ GMAB,−Ot}.
Coexpression of Precedent Evidence: Analogous to CM, we develop a score of coexpression of prece-
dent evidence, CP. For a given regulator, CP quantifies the extent to which a target gene coex-
presses with orthologs of genes comprising regulator-target interactions in the proxy organism.

Specifically, for regulator r, we define the regulon Pr as the collection of orthologous interactions
annotated in GMTB. For a given gene regulator-target pair (r, t) in GMAB the variable CPr,t is

20



defined on the interval [0, 1], where values closer to 1 represent stronger expression correlation of
gene t with orthologs of genes from Pr in GMAB,−Ot . That is,

CPr,t =

{
hypergeometric(a|b, c, d) for a, b, d ≥ 1
0 otherwise

where, for a threshold δCP

• a is the number of genes in GMAB,−Ot that belong to the PEr module and have an absolute
expression correlation with gene t > δCP

• b is the number of genes in GMAB,−Ot containing an ortholog in GMTB and exhibit an absolute
expression correlation with gene t > δCP

• c is the number of genes in GMAB,−Ot containing an ortholog in GMTB and exhibit an absolute
expression correlation with gene t ≤ δCP

• d is the number of genes in GMAB,−Ot that belong to the PEr module.

Again, the probabilities are subject to Benjamini and Hochberg adjustment relative to all target
candidates t ∈ T . We expect genes under the control of regulator r to coexpress strongly with
members of the PEr module. Thus again we choose δCP to be equal to the 95th percentile of all
values in the set {CXt,g for g ∈ GMAB,−Ot}.

With a view to quantifying coexpression in GMAB, the expression profiles (using RPKM (66)) of
all genes constituting the NCBI GenBank annotation for the GMAB genome were computed across
32 RNA-seq libraries (comprising 16 distinct experimental conditions) elicited from a range of
astringent response and control experiments. In order to compute the corresponding coexpression
profiles, we generated the unsigned Pearson correlation coefficient of all possible pairwise annotated
gene-pair combinations. All read files were aligned using Bowtie (version 1.2.2) (67) and totalled
using Samtools (version 1.7) (68). RNA-seq libraries can be found on NCBI’s Gene Expression
Omnibus (Accession: GSE78787).

5.2 The BINDER model for inferring a GRN

Borrowing strength across the primary and auxiliary data sets, we computationally infer the
GRN for M. abscessus through a novel statistical modelling approach: BayesIan gene regula-
tory Networks inferreD via gene coExpression and compaRative genomics (BINDER). BINDER is
a Bayesian hierarchical model that appositely models the type and structure of both the primary
and auxiliary data to infer the probability of a regulatory interaction between a regulator-target
pair candidate. Each of N = |R| × |T | observations is a regulator and target candidate pair (r, t)
from the set of regulators R and the set of target candidates T in the M. abscessus genome. Interest
lies in the probability θr,t of there being an interaction between regulator r and target t. Thus,
inferring θr,t facilitates inference of the M. abscessus GRN.

As stated, BINDER integrates primary data from M. abscessus with data from the proxy
organism M. tuberculosis. Specifically, the variables CM and CP (Section 5.1.2) constitute the
primary data stratum whilst ME and PE (Section 5.1.1) constitute the auxiliary stratum. As
BINDER is a Bayesian hierarchical model, the auxiliary data inform the prior distribution for each
θr,t; the posterior distribution for each θr,t is then updated by accounting for the primary data.

To define the likelihood function of the BINDER model we appositely model the primary data
type and assume logit-normal distributions for CM and CP. As such, in the case where CMr,t or
CPr,t were 0 or 1, they were increased or decreased respectively by a small factor (10−4). Further we
assume, given θr,t, the regulator-target pairs and primary variables are conditionally independent:

L(θ, ψCM, ψCP|CM,CP) =
∏
r∈R
t∈T

Nl{CMr,t|logit(θr,t), ψCMr}Nl{CPr,t|logit(θr,t), ψCPr}
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Here Nl(x|a, b) denotes the logit-normal distribution of x with location and standard deviation
parameters a and b respectively. The location parameter is common across the distributions
for CM and CP. This shared parameter enables the borrowing of information across variables,
in addition to facilitating tractability through the conditional independence assumption. The
conditional independence assumption is widely employed in other settings, such as latent class
analysis (69; 70).

As with any Bayesian hierarchical model, prior distributions are specified on the BINDER
model parameters. For each θr,t we posit a logistic normal prior such that logit(θr,t) ∼ N (γr,t, ϕ)
where ϕ is the standard deviation parameter controlling the level of dispersion around the mean.
The mean γr,t is informed by the auxiliary data ME and PE on the regulator-target pair (r, t)
through a linear model. Specifically:

γr,t = ζr + τMErMEr,t + τPErPEr,t (1)

Independent priors are then posited on the parameters in (1) such that the intercept ζr ∼ N (µζ , σζ)
and a truncated normal prior is assumed on the slope parameters: τkr ∼ N(0,∞)(µτk , στk) for k ∈
{ME,PE}. This truncated normal prior with mass on the positive real line reflects the assumption
that the presence of regulation in regulator-target pair (r, t) in the proxy organism is suggestive of
the presence of such regulation in M. abscessus. To complete the model setup, prior distributions
are placed on the scale parameters such that ψlr ∼ N(0,∞)(µψl

, σψl
) for l ∈ {CP,CM}. The

hyperparameters of all the specified prior distributions must be set by the practitioner and their
values are potentially influential; sensitivity of inference to their choice is explored in Section 2.4.1.

In order to infer the GRN for M. abscessus, the set of parameters {θr,t : r ∈ R, t ∈ T} are of
primary interest. Thus the required posterior distribution is

p(θ|CM,CP,ME,PE,µ,σ) =

∫
τ
. . .

∫
ψ
p(θ,ψ,ϕ, τ , ζ|CM,CP,ME,PE,µ,σ)dψdϕdζdτ

This posterior distribution is explored using Stan (71), a state-of-the-art platform for statistical
modelling and computation for large data sets that employs Hamiltonian Monte Carlo methods
(72) to draw samples from the posterior distribution of interest. An illustration of the BINDER
model is provided in Figure 10.
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Figure 10: Graphical representation of the hierarchical BINDER model; squares correspond
to observed data, large discs correspond to random parameters and small discs correspond
to fixed hyperparameters; the surrounding boxes denote observation-specific parameters and
data.

Declarations

Availability of data and materials

An implementation of the BINDER approach is available as an R package at
github.com/ptrcksn/BINDER. The datasets generated and analysed in the current study are avail-
able at github.com/ptrcksn/BINDER paper analysis.

Funding

This research is supported by The Wellcome Trust (grant no. 099817/Z/12/Z) and by Science
Foundation Ireland (grant no. 12/RC/2289 P2).

References

[1] Nessar R, Cambau E, Reyrat JM, Murray A, Gicquel B. Mycobacterium abscessus: a new
antibiotic nightmare. J. Antimicrob. Chemother. 2012; doi:10.1093/jac/dkr578. 2

23

https://github.com/ptrcksn/BINDER
https://github.com/ptrcksn/BINDER_paper_analysis


[2] Lee MR, Sheng WH, Hung CC, Yu CJ, Lee LN, Hsueh PR. Mycobacterium abscessus Complex
Infections in Humans. Emerging Infect. Dis. 2015; doi:10.3201/2109.141634. 2

[3] Baranyai Z, Krtk M, Vinov J, Szab N, Senoner Z, Horvti K, Stola?kov J, Dvid S, B?sze
S. Combating highly resistant emerging pathogen Mycobacterium abscessus and Mycobac-
terium tuberculosis with novel salicylanilide esters and carbamates. Eur J Med Chem. 2015;
doi:10.1016/j.ejmech.2015.07.001. 2, 3

[4] Miranda-CasoLuengo AA, Staunton PM, Dinan AM, Lohan AJ, Loftus BJ. Functional char-
acterization of the Mycobacterium abscessus genome coupled with condition precise tran-
scriptomics reveals conserved molecular strategies for host adaptation and persistence. BMC
Genomics. 2016; doi:10.1186/s12864-016-2868-y. 2

[5] Kili S, White ER, Sagitova DM, Cornish JP, Erill I. CollecTF: a database of experi-
mentally validated transcription factor-binding sites in Bacteria. Nucleic Acids Res. 2014;
doi:10.1093/nar/gkt1123 2, 7

[6] Santos-Zavaleta A, Salgado H, Gama-Castro S, Snchez-Prez M, Gmez-Romero L, Ledezma-
Tejeida D, Garca-Sotelo JS, Alquicira-Hernndez K, Muiz-Rascado LJ, Pea-Loredo P, Ishida-
Gutirrez C, Velzquez-Ramrez DA, Del Moral-Chvez V, Bonavides-Martnez C, Mndez-Cruz
CF, Galagan J, Collado-Vides J. RegulonDB v 10.5: tackling challenges to unify classic
and high throughput knowledge of gene regulation in E. coli K-12. Nucleic Acids Res. 2018;
doi:10.1093/nar/gky1077. 2, 7

[7] Darmostuk M, Rimpelova S, Gbelcova H, Ruml T. Current approaches in SELEX: An update
to aptamer selection technology. Biotechnol Adv. 2015; doi:10.1016/j.biotechadv.2015.02.008.
2

[8] Mundade R, Ozer HG, Wei H, Prabhu L, Lu T. Role of ChIP-seq in the discovery of tran-
scription factor binding sites, differential gene regulation mechanism, epigenetic marks and
beyond. Cell Cycle. 2014; doi:10.4161/15384101.2014.949201. 2

[9] Doniger SW, Huh J, Fay JC. Identification of functional transcription factor binding sites
using closely related Saccharomyces species. Genome Res. 2005;15(5):701-9. 2

[10] Koonin EV. Orthologs, paralogs, and evolutionary genomics. Annu. Rev. Genet. 2005;39:309-
38. 2

[11] Van de Velde J, Van Bel M, Vaneechoutte D, Vandepoele K. A Collection of Conserved
Noncoding Sequences to Study Gene Regulation in Flowering Plants. Plant Physiol. 2016;
doi:10.1104/pp.16.00821. 2

[12] Van de Velde J, Heyndrickx KS, Vandepoele K. Inference of transcriptional net-
works in Arabidopsis through conserved noncoding sequence analysis. Plant Cell. 2014;
doi:10.1105/tpc.114.127001. 2

[13] Huynh-Thu VA, Irrthum A, Wehenkel L, Geurts P. Inferring regulatory networks from ex-
pression data using tree-based methods. PLoS One. 2010; doi: 10.1371/journal.pone.0012776.
2

[14] Wang YX, Huang H. Review on statistical methods for gene network reconstruction using
expression data. J Theor Biol. 2014; doi:10.1016/j.jtbi.2014.03.040. 2, 20

[15] Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis.
BMC Bioinformatics. 2008; doi: 10.1186/1471-2105-9-559. 2, 16

24



[16] Li J, Overall CC, Johnson RC, Jones MB, McDermott JE, Heffron F, Adkins JN, Cambronne
ED. ChIP-Seq Analysis of the σE Regulon of Salmonella enterica Serovar Typhimurium Re-
veals New Genes Implicated in Heat Shock and Oxidative Stress Response. PLoS ONE. 2015;
doi:10.1371/journal.pone.0138466. 3

[17] Peano C, Wolf J, Demol J, Rossi E, Petiti L, De Bellis G, Geiselmann J, Egli T, La-
cour S, Landini P. Characterization of the Escherichia coli σ(S) core regulon by Chromatin
Immunoprecipitation-sequencing (ChIP-seq) analysis. Sci Rep. 2015; doi:10.1038/srep10469.
3

[18] Jaini S, Lyubetskaya A, Gomes A, Peterson M, Park ST, Raman S, Schoolnik G, Gala-
gan J. Transcription Factor Binding Site Mapping Using ChIP-Seq. Microbiol Spectr. 2014;
doi:10.1128/microbiolspec.MGM2-0035-2013. 3

[19] Landick R, Krek A, Glickman MS, Socci ND, Stallings CL. Genome-Wide Mapping of the
Distribution of CarD, RNAP σA, and RNAP β on the Mycobacterium smegmatis Chromosome
using Chromatin Immunoprecipitation Sequencing. Genom Data. 2014;2:110-113. 3

[20] Angelini C, Costa V. Understanding gene regulatory mechanisms by integrating ChIP-seq
and RNA-seq data: statistical solutions to biological problems. Front Cell Dev Biol. 2014;
doi:10.3389/fcell.2014.00051. 3

[21] Petralia F, Wang P, Yang J, Tu Z. Integrative random forest for gene regulatory network
inference. Bioinformatics. 2015; doi:10.1093/bioinformatics/btv268. 3, 7

[22] Banf M, Rhee SY. Enhancing gene regulatory network inference through data integration with
markov random fields. Sci Rep. 2017; doi: 10.1038/srep41174. 3

[23] Chouvardas P, Kollias G, Nikolaou C. Inferring active regulatory networks from gene expres-
sion data using a combination of prior knowledge and enrichment analysis. BMC Bioinfor-
matics. 2016; doi: 10.1186/s12859-016-1040-7. 3

[24] Waltman P, Kacmarczyk T, Bate AR, Kearns DB, Reiss DJ, Eichenberger P, Bonneau R.
Multi-species integrative biclustering. Genome Biol. 2010; doi:10.1186/gb-2010-11-9-r96. 3,
18

[25] Chen G, Jensen ST, Stoeckert CJ Jr.. Clustering of genes into regulons using integrated
modeling-COGRIM. Genome Biol. 2007; doi:10.1186/gb-2007-8-1-r4. 3

[26] Chen X, Gu J, Wang X, Jung JG, Wang TL, Hilakivi-Clarke L, Clarke R, Xuan
J. CRNET: an efficient sampling approach to infer functional regulatory networks by
integrating large-scale ChIP-seq and time-course RNA-seq data. Bioinformatics. 2018;
doi:10.1093/bioinformatics/btx827. 3

[27] Galagan JE, Minch K, Peterson M, Lyubetskaya A, Azizi E, Sweet L, Gomes A, Rustad
T, Dolganov G, Glotova I, Abeel T, Mahwinney C, Kennedy AD, Allard R, Brabant W,
Krueger A, Jaini S, Honda B, Yu WH, Hickey MJ, Zucker J, Garay C, Weiner B, Sisk P,
Stolte C, Winkler JK, Van de Peer Y, Iazzetti P, Camacho D, Dreyfuss J, Liu Y, Dorhoi A,
Mollenkopf HJ, Drogaris P, Lamontagne J, Zhou Y, Piquenot J, Park ST, Raman S, Kaufmann
SH, Mohney RP, Chelsky D, Moody DB, Sherman DR, Schoolnik GK. The Mycobacterium
tuberculosis regulatory network and hypoxia. Nature. 2013; doi:10.1038/nature12337. 3, 4

[28] Snel B, van Noort V, Huynen MA. Gene co-regulation is highly conserved in the evolution of
eukaryotes and prokaryotes. Nucleic Acids Res. 2004; 32(16):4725-31. 4

25



[29] Okuda S, Kawashima S, Goto S, Kanehisa M. Conservation of gene co-regulation between two
prokaryotes: Bacillus subtilis and Escherichia coli. Genome Inform. 2005; 16(1):116-24. 4

[30] Nyamundanda G, Gormley IC, Brennan L A dynamic probabilistic principal compo-
nents model for the analysis of longitudinal metabolomics data J. Royal Stat. Soc. 2014;
doi:10.1111/rssc.12060. 5

[31] Jang J, Hur HG, Sadowsky MJ, Byappanahalli MN, Yan T, Ishii S. Environmental Es-
cherichia coli: ecology and public health implications-a review. J Appl Microbiol. 2017;
doi:10.1111/jam.13468. 6

[32] Earl AM, Losick R, Kolter R. Ecology and genomics of Bacillus subtilis. Trends Microbiol.
2008; doi:10.1016/j.tim.2008.03.004. 6

[33] de Lorenzo V. Pseudomonas aeruginosa: the making of a pathogen. Environ Microbiol. 2015;
doi:10.1111/1462-2920.12620. 6

[34] Listeria monocytogenes, a food-borne pathogen. Farber JM, Peterkin PI. Microbiol Rev. 1991;
55(3): 476?511. 6

[35] Harrison A, Santana EA, Szelestey BR, Newsom DE, White P, Mason KM. Ferric Uptake
Regulator and Its Role in the Pathogenesis of Nontypeable Haemophilus influenzae Infect
Immun. 2013; doi:10.1128/IAI.01227-12. 7

[36] Fornelos N, Browning DF, Butala M. The Use and Abuse of lexA by Mobile Genetic Elements.
Trends Microbiol. 2016; doi:10.1016/j.tim.2016.02.009. 7

[37] Butala M, Zgur-Bertok D, Busby SJ. The bacterial lexA transcriptional repressor. Cell Mol
Life Sci. 2009; doi:10.1007/s00018-008-8378-6. 7

[38] Zhu B, Stlke J. SubtiWiki in 2018: from genes and proteins to functional network annotation
of the model organism Bacillus subtilis Nucleic Acids Res. 2017; doi:10.1093/nar/gkx908. 7

[39] Meysman P, Sonego P, Bianco L, Fu Q, Ledezma-Tejeida D, Gama-Castro S, Liebens
V, Michiels J, Laukens K, Marchal K, Collado-Vides J, Engelen K. COLOMBOS v2.0:
an ever expanding collection of bacterial expression compendia. Nucleic Acids Res. 2014;
doi:10.1093/nar/gkt1086. 7

[40] Condition-dependent transcriptome reveals high-level regulatory architecture in Bacillus sub-
tilis. Nicolas P, Mder U, Dervyn E, Rochat T, Leduc A, Pigeonneau N, Bidnenko E, Mar-
chadier E, Hoebeke M, Aymerich S, Becher D, Bisicchia P, Botella E, Delumeau O, Doherty
G, Denham EL, Fogg MJ, Fromion V, Goelzer A, Hansen A, Hrtig E, Harwood CR, Homuth
G, Jarmer H, Jules M, Klipp E, Le Chat L, Lecointe F, Lewis P, Liebermeister W, March
A, Mars RA, Nannapaneni P, Noone D, Pohl S, Rinn B, Rgheimer F, Sappa PK, Samson F,
Schaffer M, Schwikowski B, Steil L, Stlke J, Wiegert T, Devine KM, Wilkinson AJ, van Dijl
JM, Hecker M, Vlker U, Bessires P, Noirot P. Science. 2012; doi:10.1126/science.1206848. 7

[41] Hubert L, Arabie P. Comparing Partitions. Journal of the Classification. 1985; 2:193-218. 11

[42] Michalak P. Coexpression, coregulation, and cofunctionality of neighboring genes in eukaryotic
genomes. Genomics. 2008;91(3):243-8. 12

[43] Pannier L, Merino E, Marchal K, Collado-Vides J. Effect of genomic distance on coexpression
of coregulated genes in E. coli. PLoS One. 2017; doi:10.1371/journal.pone.0174887. 12

[44] Mikhaylina A, Ksibe AZ, Scanlan DJ, Blindauer CA. Bacterial zinc uptake regulator proteins
and their regulons. Biochem Soc Trans. 2018; doi:10.1042/BST20170228. 14

26



[45] Vallee BL, Falchuk KH. The biochemical basis of zinc physiology. Physiol Rev. 1993;
doi:10.1152/physrev.1993.73.1.79. 15

[46] Blencowe DK, Morby AP. Zn(II) metabolism in prokaryotes. FEMS Microbiol Rev. 2003;
doi:10.1016/S0168-6445(03)00041-X. 15

[47] Capdevila DA, Wang J, Giedroc DP. Bacterial Strategies to Maintain Zinc Metallostasis at
the Host-Pathogen Interface. J Biol Chem. 2016; doi:10.1074/jbc.R116.742023. 15

[48] Shin JH, Helmann JD. Molecular logic of the zur-regulated zinc deprivation response in Bacil-
lus subtilis. Nat Commun. 2016; doi:10.1038/ncomms12612. 15

[49] Pejchal R, Ludwig ML. Cobalamin-independent methionine synthase (MetE): a
face-to-face double barrel that evolved by gene duplication. PLoS Biol. 2005;
doi:10.1371/journal.pbio.0030031. 15

[50] Ramamurthy V, Swann SL, Spedaliere CJ, Mueller EG. Role of cysteine residues in pseu-
douridine synthases of different families. Biochemistry. 1999; 38(40):13106-11. 16

[51] Arluison V, Hountondji C, Robert B, Grosjean H. Transfer RNA-pseudouridine synthetase
Pus1 of Saccharomyces cerevisiae contains one atom of zinc essential for its native conforma-
tion and tRNA recognition. Biochemistry. 1998; 37(20):7268-76. 16

[52] Samradhni S Jha, Lia Danelishvili, Dirk Wagner, Jrg Maser, Yong-jun Li, Ivana Moric,
Steven Vogt, Yoshitaka Yamazaki, Barry Lai, Luiz E Bermudez. Virulence-related Mycobac-
terium avium subsp hominissuis MAV 2928 gene is associated with vacuole remodeling in
macrophages BMC Microbiol. 2010; doi:10.1186/1471-2180-10-100 16

[53] Song WM, Zhang B. Multiscale Embedded Gene Co-expression Network Analysis. PLoS Com-
put Biol. 2015; doi:10.1371/journal.pcbi.1004574. 17

[54] Crews ST, Pearson JC. Transcriptional autoregulation in development. Curr Biol. 2009;
doi:10.1016/j.cub.2009.01.015 17

[55] Song L, Langfelder P, Horvath S. Comparison of co-expression measures: mutual information,
correlation, and model based indices. BMC Bioinformatics. 2012; doi:10.1186/1471-2105-13-
328. 18

[56] Lihu A, Holban S. A review of ensemble methods for de novo motif discovery in ChIP-Seq
data. Brief Bioinform. 2015; doi:10.1093/bib/bbv022. 18

[57] Ishwaran H, Rao SJ. Spike and slab variable selection: Frequentist and Bayesian strategies.
Ann. Statist. 2005; doi:10.1214/009053604000001147. 18

[58] Alam MS, Garg SK, Agrawal P. Studies on structural and functional divergence among seven
WhiB proteins of Mycobacterium tuberculosis H37Rv. FEBS J. 2009; doi:10.1111/j.1742-
4658.2008.06755.x. 18

[59] Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K,
Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC,
Richardson JE, Ringwald M, Rubin GM, Sherlock G. Gene ontology: tool for the unification
of biology. The Gene Ontology Consortium. Nat Genet. 2000;25(1):25-9. 18

[60] Tatusov RL, Galperin MY, Natale DA, Koonin EV. The COG database: a tool for genome-
scale analysis of protein functions and evolution Nucleic Acids Res. 2000;28(1): 33-6. 18

27



[61] Fortino V, Tagliaferri R, Greco D. CONDOP: an R package for CONdition-Dependent Operon
Predictions. Bioinformatics. 2016;32(20):3199-3200. 18

[62] Bailey TL, Elkan C. Fitting a mixture model by expectation maximization to discover motifs
in biopolymers. Proc Int Conf Intell Syst Mol Biol. 1994;2:28-36. 19

[63] Grant CE, Bailey TL, Noble WS. FIMO: scanning for occurrences of a given motif. Bioinfor-
matics. 2011; doi:10.1093/bioinformatics/btr064. 19

[64] Whiteside MD, Winsor GL, Laird MR, Brinkman FS. OrtholugeDB: a bacterial and ar-
chaeal orthology resource for improved comparative genomic analysis. Nucleic Acids Res.
2013; doi:10.1093/nar/gks1241. 4, 19

[65] Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful
approach to multiple testing. J. Royal Stat Soc. Series B, 1995; 57:289?300. 20

[66] Li P, Piao Y, Shon HS, Ryu KH. Comparing the normalization methods for the dif-
ferential analysis of Illumina high-throughput RNA-Seq data. BMC Bioinformatics. 2015;
doi:10.1186/s12859-015-0778-7. 21

[67] Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of
short DNA sequences to the human genome. Genome Biol. 2009; doi:10.1186/gb-2009-10-3-
r25. 21

[68] Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin
R; 1000 Genome Project Data Processing Subgroup. The Sequence Alignment/Map format
and SAMtools. Bioinformatics. 2009; doi:10.1093/bioinformatics/btp352. 21

[69] Linzer, D. A., Lewis, J. B. poLCA: An R package for polytomous variable latent class analysis.
Journal of statistical software. 2011; 42(10):1–29 22

[70] White, A. and Murphy, T. B. BayesLCA: An R package for Bayesian latent class analysis.
Journal of Statiscal Software. 2014; 61(13):1–28. 22

[71] Carpenter B, Gelman A, Hoffman MD, Lee D, Goodrich B, Betancourt M, Brubaker M, Guo
J, Li P, and Riddell A. Stan: A probabilistic programming language. J. Stat. Softw. 2017;
doi:10.18637/jss.v076.i01. 22

[72] Duane S, Kennedy AD, Pendleton BJ, Roweth D. Hybrid Monte Carlo. Phys. Lett. 1987;
doi:10.1016/0370-2693(87)91197-X. 22

28


