
Title Towards pervasive intelligence : reflections on the evolution of the Agent Factory framework

Authors(s) Muldoon, Conor, O'Hare, G. M. P. (Greg M. P.), Collier, Rem, O'Grady, Michael J.

Publication date 2009

Publication information Muldoon, Conor, G. M. P. (Greg M. P.) O’Hare, Rem Collier, and Michael J. O’Grady. “Towards

Pervasive Intelligence : Reflections on the Evolution of the Agent Factory Framework.”

Springer-Verlag, 2009.

Publisher Springer-Verlag

Item record/more

information

http://hdl.handle.net/10197/1334

Publisher's version (DOI) 10.1007/978-0-387-89299-3_6

Downloaded 2023-10-06T13:54:56Z

The UCD community has made this article openly available. Please share how this access

benefits you. Your story matters! (@ucd_oa)

© Some rights reserved. For more information

https://twitter.com/intent/tweet?via=ucd_oa&text=DOI%3A978-0-387-89298-6+%28Print%29&url=http%3A%2F%2Fhdl.handle.net%2F10197%2F1334

Towards Pervasive Intelligence:
Reflections on the Evolution of the Agent
Factory Framework

C. Muldoon, G. M. P. O’Hare†, R. W. Collier, M. J. O’Grady

Abstract Agent Factory is a cohesive framework for the development and
deployment of multi-agent systems. Since its inception in the mid 1990s,
Agent Factory has gone through a metamorphosis process, whereby several
new extensions, revisions, and enhancements have been made. This chapter
provides a discussion of the incremental developments in Agent Factory and
provides motivations as to why such changes were necessary. Agent Factory
distinguishes itself from other intentional agent platforms in several ways. It
provides a practical and efficient approach to the development of intentional
agent-oriented applications. This is combined with a methodology, integrated
development environment support, and a suite of tools that aid the agent
fabrication process. A detailed comparison to related work is provided. We
include a tutorial on how to use the framework.

1 Introduction

A curtsey examination of the research literature will quickly indicate the
interest that Multi-Agent Systems (MAS) attract from the Distributed Ar-
tificial Intelligence (DAI) community. A number of frameworks, some well-
known, others less so, have been documented since the mid 1990s. Agent
Factory is an exemplar framework in that it was conceived of and devel-
oped at this time, but it has been significantly enhanced over the years in
response to ongoing software developments. For example, Wireless Sensor
Networks (WSNs) offer a promising solution for many categories of prob-

†Corresponding Author

C. Muldoon, G. M. P. O’ Hare, R. W. Collier, and M. J. O’Grady
CLARITY: The Centre for Sensor Web Technologies, School of Computer Science &
Informatics, University College Dublin, Belfield, Dublin 4, Ireland, e-mail: {conor.
muldoon,gregory.ohare,rem.collier,michael.j.ogrady}@ucd.ie

1

2

lems, such as real-time environmental monitoring, however, such networks
are characterised by limited computational resources. An optimised Agent
Factory runtime environment has recently been developed that factors these
issues into its design. Thus an Agent Factory MAS can be deployed on a
wide range of hardware, extending and increasing the application domains
that can harness the MAS paradigm. Today, Agent Factory represents the
culmination of over a decades effort by a number of researchers and has been
successfully demonstrated in a wide range of application domains.

This chapter will discuss various facets of Agent Factory and its constituent
components. In Section 2, a motivation of Agent Factory is presented. This
section discusses the chronological enhancements/alterations made to the sys-
tem over the course of its development. Section 3 discusses the Agent Factory
Agent Programming Language (AFAPL), AFAPL is an agent-oriented pro-
gramming language that is based on a logical formalism of belief and com-
mitment. The agent platform is discussed in Section 4. At present, Agent
Factory is divided, as with many other frameworks, into two editions, one for
standard Java, the other for Java Micro Edition (JME) CLDC. We describe
some applications of the framework in Section 5. Finally, a brief but succinct
comparison of Agent Factory with other frameworks is presented in Section
6.

2 Motivation

In order to motivate the Agent Factory platform and language, the Agent
Factory Agent Programming Language (AFAPL), we must put the current
system into context; as such, in this section, we provide the history of the
system and discuss its evolution into its current form. This provides several
motivations as to why certain design decisions were made and reflects the
general changing trends in both agent technology and software development
in general over the past decade. For instance, when the initial version of
the system was developed, the now pervasive Java programming language
was only being released and was still a very new and unproven platform.
We discuss Agent Factory’s development in a chronological narrative that
begins in the mid 1990s and progressively introduces the main features of the
language and framework, ending with a overview of the system in its current
state.

2.1 History

Agent Factory was first proposed by O Hare in 1996 [39] and was conceived
of as an environment for the prototyping and testing of multi-agent systems.

3

It supported the rapid creation of central agent components and the aggrega-
tion of such components into communities, whose model of social interaction
would subsequently be described. It differed from other similar frameworks
available at the time in its use of an algebraic specification technique (the
UMIST Paradox System) that could be directly executed. The system was
underpinned by the theory associated with heterogeneous algebras that was
developed by Birkhoff and Lispson [5]. The environment drew heavily from
Communicating Sequential Processes [23] (CSP) and viewed multi-agent sys-
tems as a specific class of complex distributed systems, namely Communi-
cating Intentional Processes (CIP). It built upon and extended pre-existing
work to model CIPs effectively [40].

Early work on Agent Factory extended the framework to include an agent
classification hierarchy to aid the rapid prototyping of agent designs and
a communication infrastructure, based on TCP/IP and Speech Act theory,
that enabled the agent communities to be distributed over a network [9]. Due
to the difficulties of using the original algebraic approach, this version of the
system was implemented using a combination of VDM and Smalltalk-80. The
main reason for using Smalltalk-80 was that it was a flexible object-oriented
language and thus provided distinct advantages, in terms of rapid prototyp-
ing, maintainability, and ease of development, over attempting to directly
execute the specifications. At the time, Java was only being released, and
was quite a new and unproven platform. C++ was widely used at this time,
but it was (and still is) viewed as a bastardised language rather than truly
object-oriented. Additionally, Smalltalk contained features, such as reflection,
not supported in C++.

Further work redesigned Agent Factory to reflect newer trends in agent
development [11]. A generalized agent communication language framework
was introduced along with a commitment management system module that
could be configured for different commitment models and/or strategies. A
mobility feature was subsequently introduced [13]. Up to this point, much
work had been done in the field on mobility, but it primarily focused on the
actual mechanism for agent transfer; the intelligent component and decision
making process in migration was largely ignored. Agent Factory merged the
notion of intentional decision making with mobility.

At the start of the millennium, work began to focus on the possibility of
using Agent Factory for the creation of mobile context sensitive applications,
such as Guilliver’s Gennie [38]. A new Java version of the system was devel-
oped. The reason for this development was that, at the time, there were no
Smalltalk-80 interpreters or byte code compilers/translators for the Microsoft
Pocket PC operating system. There was, however, a (rather slow) Esermertec
Jeode Java interpreter that was based on PersonalJava, the forerunner to
what is now known as the JME CDC Java configuration augmented with
Personal Profile. At this time, there were two versions of Agent Factory in
operation. The Smalltalk-80 version was intended for desktop environments,
whereas the Java version was intended for mobile devices. This motivated the

4

development of the Agent Factory Agent Programming Language (AFAPL),
which drew heavily from Shoham’s AGENT0 [44] language and Agent Ori-
ented Programming. AFAPL was an abstract declarative language that en-
abled agents to be created that were based upon a theory of rational agency.
It enabled the creation of agent designs that were independent of the under-
lying imperative environment in which they were to operate. The idea was
that different interpreters, written in different languages, could be developed
for AFAPL, but the specification of the agent design would remain consistent
regardless of the environment in which it would subsequently be executed.
Additionally, AFAPL supported the notion of agent design inheritance. This
enabled the creation of generic agent designs that could be reused and aug-
mented with application specific functionality. This version of the Agent Fac-
tory laid the foundation for Collier’s thesis [10], which provided a cohesive
framework for mobile distributed multi-agent application development, and
was based upon a logical formalism of belief and commitment. The thesis
introduced an agent development methodology that drew from early work by
O Hare and Wooldridge [41] on Agent-Oriented Software Engineering.

Due to the differences in the languages and the need to duplicate new
features of the system, it was decided to drop the Smalltalk-80 version of the
system. It had to be the Smalltalk version of the system that was dropped
because, as noted earlier, there was no Smalltalk-80 interpreter for Pocket
PC. PersonalJava was, more or less, a full Java platform for embedded de-
vices, almost identical to standard Java less the Swing graphical interfacing
capabilities. It was therefore possible to have a single Agent Factory platform
for mobile and desktop applications. The Smalltalk-80 version of the system
didn’t add enough to justify its continued maintenance.

At this time, the primary general purpose programmable mobile devices
being used were Personal Digital Assistants (PDAs). This market, however,
never really took off in the mainstream. Much of the functionality of the
PDA was beginning to be incorporated in to mobile phones. In contrast to
the PDA market, the mobile phone market was in the billions. The problem,
however, was that the standard Java environment for phones was the J2ME
Constrained Limited Device Configuration (CLDC) augmented with the Mo-
bile Information Device Profile (MIDP). Agent Factory was developed for
use with the CDC Java environment augmented with Personal Profile. This
environment, although classified as J2ME, is closer to standard Java than it
is to CLDC, which is highly constrained and limited. Therefore, it was not
possible to use Agent Factory, in its current form, for the development of
mobile phone applications.

In 2005, Muldoon developed a minimised footprint version of Agent Fac-
tory that facilitated the development and deployment of intentional agents
for highly constrained mobile and ubiquitous devices [35, 34, 33]. This version
of Agent Factory was referred to as Agent Factory Micro Edition (AFME).
Initially, AFME targeted cellular digital mobile phones. It soon became clear,
however, that AFME could be deployed on a much broader array of devices,

5

since it was based on CLDC, which is the de factor standard Java environ-
ment for constrained environments. In 2007, Sun launched the SunSPOT
mote in Europe, which was based on CLDC. AFME was subsequently de-
ployed on the SunSPOT , making it the first intentional agent platform to be
used to control the leaf nodes of a Wireless Sensor Network (WSN). AFAPL
was developed to provide a common high-level language that would be con-
sistent between Smalltalk-80 and Java. Although Smalltalk-80 was no longer
supported, this approach proved useful again, but in a different context, to
ensure that an agent could be represented consistently among different Java
environments.

In parallel to the development of AFME, a new concept of a role was intro-
duced to AFAPL [8]. This version of AFAPL became known as AFAPL2. The
notion of a role improved the efficiency of the platform. The idea was that, at
various stages throughout execution, triggers would cause commitment rules
to be added to the rule set of the agent. That is, an agent would adopt var-
ious behaviours, referred to collectively as a role, if some trigger condition
was true. The trigger condition was evaluated by checking the agent’s beliefs.
If an agent had a particular belief and that belief matched the trigger con-
dition, the role would be adopted. If the role was no longer relevant or the
objectives associated with the role were achieved, the role would be retracted
by an actuator. In this way, the overhead for evaluating the role would only
be incurred at times when the role was active. The trigger did not represent
a maintenance condition for the role. The execution of the retraction actu-
ator would be evaluated in the usual manner i.e. either directly though the
evaluation of the commitment rules or through the execution of a plan. The
version of Agent Factory represents its current form.

3 Language

Agent Factory is an open framework for building agent-based systems (see
Section 4), and as such, does not enforce a single flavour of agent upon the
developer. Instead, the developer is free to either use a pre-existing agent
interpreter / architecture, or develop a custom solution that is more suited
to their specific needs.

That said, as was highlighted in Section 2, Agent Factory has a long tra-
dition of promoting the use of intentional agents to construct multi-agent
applications. Support for this style of agent has been realized through the
Agent Factory Agent Programming Language (AFAPL), which is now in its
second incarnation, and is known as AFAPL2. AFAPL2 is an agent program-
ming language that supports the development of agents that use a mental
state architecture to reason about how best to act. The remainder of this
section will provide a brief summary of AFAPL.

6

The AFAPL2 language supports the fabrication of agents whose mental
state is comprised of beliefs, goals, and commitments. Beliefs describe - pos-
sibly incorrectly - the state of the environment in which the agent is situated,
goals describe future states of the environment that the agent would like to
bring about, and commitments describe the activity that the agent is com-
mitted to realising. The behaviour of the agent is realised primarily through
a purpose-built execution algorithm that is centred about the notion of com-
mitment management.

Commitments are viewed as the mental equivalent of a contract; they de-
fine a course of action/activity that the agent has agreed to, when it must
realise that activity, to whom the commitment was made, and fnally, what
conditions, if any, would lead to it not having to fulfil the commitment.
Commitment management is then a meta-level process that AFAPL2 agents
employ to manipulate their commitments based upon some underlying strat-
egy known as a commitment management strategy. This strategy specifies a
set of sub-strategies that:

• define how an agent adopts new commitments; maintains its existing com-
mitments.

• refines commitments to plans into additional commitments.
• realises commitments to primitive actions; and handles failed commit-

ments.

The principal sub-strategy that underpins the behaviour of AFAPL2
agents is commitment adoption. Commitments are adopted either as a re-
sult of a decision to realise some activity, or through the refinement of an
existing activity. The former type of commitment is known as a primary
commitment and the latter as a secondary commitment. The adoption of a
primary commitment occurs as a result of one of two processes: (1) in re-
sponse to a decision to attempt to achieve a goal using a plan of action, or
(2) as a result of the triggering of a commitment rule. Commitment rules de-
fine situations (a conjunction of positive and negative belief atoms) in which
the agent should adopt a primary commitment.

3.1 Specifications and Syntactical Aspects

The first step in understanding how to program AFAPL2 agents is to un-
derstand how beliefs are used to construct models of the current state of the
environment. Without this model, the agents will not be aware of what is
happening in the environment, and consequently, will not be able to act in a
meaningful way.

The key step underpinning the generation of an agents’ belief model is
perception. This is the process by which an agent converts raw environment
data (sensor readings, ACL messages, address books, etc.) into various beliefs

7

that provide a higher-level representation of this data (and consequently, the
state of the environment). Perception is an integral part of the belief update
phase of the AFAPL2 interpreter cycle.

The principle building block of the perception process is the perceptor
unit. This is a Java class that collates any relevant raw data and generates
a corresponding set of beliefs. Perceptors are associated with agents via the
PERCEPTOR construct. This construct generates a mapping between spe-
cific perceptor units and a given AFAPL2 agent program. For example, when
developing a robot soccer agent, a ball perceptor unit may be created that
uses visual information to decide whether or not the robot has the ball. In
the AFAPL2 program, this perceptor would be declared through the following
statement:

PERCEPTOR BallWatcher CLASS perceptor.BallPerceptor;

Where perceptor.BallPerceptor is the Java class that implements the per-
ceptor unit. This unit would then be responsible for generating a corre-
sponding belief about the presence of the ball (e.g. BELIEF(hasBall) or
BELIEF(noBall)).

AFAPL2 has been designed to support the fabrication of agents that exist
within highly dynamic environments. As such, agents may adopt beliefs that
quickly become invalid. For example, consider a robot soccer agent that has
a perceptor which generates a belief about whether the agent can see the ball
or not. If the ball passes quickly in front of the agent, then it may see the
ball only for one or two iterations of the interpreter cycle.

Rather than implement a complex belief revision algorithm that tries
to understand when a belief has become invalid, the approach adopted in
AFAPL2 is to assume that, by default, all beliefs become invalid at the end
of a given iteration of the AFAPL2 interpreter cycle. In this way, perception
becomes the process by which the agent generates a snapshot of the current
state of the environment. This snapshot is then thrown away immediately
before the next snapshot is generated.

While this approach helps to simplify the maintenance of an agents be-
liefs, it is not always appropriate (sometimes we need beliefs that persist
for longer). To handle this requirement, AFAPL2 also provides a number of
temporal operators, which can be used to define beliefs that persist for more
than one iteration.

This first example illustrates how to create an Agent Factory perceptor.
To implement a perceptor, we create a Java class that is a subclass of the
com.agentfactory.logic.agent.Perceptor class, and implement the perceive()
method:

import com.agentfactory.logic.agent.Perceptor;

8

public class AlivePerceptor extends Perceptor {
public void perceive() {

adoptBelief("BELIEF(alive)");
}

}

The above perceptor generates a single belief that represents the fact that the
agent is “alive”. This belief is added to the agent’s belief set at the start of
each iteration of the interpreter cycle. The name of the Java class is specified
within the agent design file.

The next example illustrates how to specify an action (and the correspond-
ing actuator) in AFAPL2. Actions are used to enable agents to affect their
environment. To implement an action, we must do two things: first, we need
to create an actuator that contains the implementation of the action. After
this, we need to specify our action in an AFAPL2 file, using the ACTION
construct.

Actuators are Java classes that subclass the com.agentfactory.logic.agent.
Actuator class and implement the act(..) method. Upon creation, the agent
creates on instance of each specified actuator. Thus, the same instance is
used even when the action is being performed concurrently. Consequently,
actuators must be implemented as thread-safe classes.

To illustrate how to create an actuator, we will develop a “helloWorld”
action that prints the string “Hello World” to the console.

import com.agentfactory.logic.agent.Actuator;
import com.agentfactory.logic.lang.FOS;

public class HelloWorldActuator extends Actuator {
public boolean act(FOS action) {
System.out.println("Hello World");
return true;

}
}

What the above actuator implementation does is fairly obvious. The only
“issue” is the return value of an actuator. This is used to define whether the
commitment to the corresponding action failed or succeeded. This is useful
in situations where it is possible for the actuator to complete unsuccessfully,
for example, updating a table in a database. In such cases, the actuator can
indicate its failure by returning false instead of true.

For an actuator to be used by an agent, an action definition for the actuator
must be specified in the agent design. The action definition below specifies an
action called “helloWorld” and links the action to the HelloWorldActuator.
In addition, this definition requires that any pre and post conditions that
apply to the action be specified.

9

Pre-conditions are used to ensure that the action is only performed when it
is possible. For example, a robot soccer agent program may include a “kick”
action. The pre-condition for this action would be that the agent has the
ball (i.e. BELIEF(hasBall)). Conversely, post-conditions are used to identify
which actions can be used to achieve the goals of the agent. For this example,
we will declare both the pre- and post- condition of our action to be true (this
is a default that means “no precondition or postcondition”).

ACTION helloWorld PRECONDITION BELIEF(true); POSTCON-
DITION BELIEF(true);

CLASS helloworld.HelloWorldActuator;

Many scenarios require that an agent act in response to some change in its
environment (for example the receipt of a message from another agent, the
triggering of a sensor, the location of additional resources for processing, and
so on). In such cases, we require a mechanism that allows the developer to
define situations in which the agent must commit to some activity (i.e. some
action or plan). Agent Factory supports this through the use of commitment
rules. Commitment rules specify situations (defined as a belief sentence) in
which the agent should adopt a commitment.

The following example illustrates the situation in which we want to pro-
gram our robot soccer agent to move towards the ball whenever it sees it.
This is achieved through a rule of the following form:

BELIEF(seesBall) => COMMIT(?self, ?now, BELIEF(seesBall),
moveTo(ball));

This rule states that, if the robot soccer agent sees the ball, then it should
commit to the action of moving to that ball. Two key points to take from the
above example are:

• The introduction of two pre-defined variables, ?self and ?now, which are
bound to constants representing the agents name and the current time
respectively.

• The use of a maintenance condition to constrain the persistence of the
commitment when adopted. The agent maintains the commitment to move
to the ball until either the moveTo(ball) action completes or the agent no
longer believes that it sees the ball.

Should the robot soccer agent ever come to believe that it sees the ball
(i.e. it has the belief BELIEF(seesBall)), then the commitment rule would be
fired. This would cause the agent to adopt the corresponding commitment.
So, if the agent was called striker, and it saw the ball at 11:46am, then it
would adopt a commitment of the form:

10

COMMIT(striker, 11:46, BELIEF(seesBall), moveTo(ball))

The above commitment rule specifies a behaviour that is realised through
the adoption of a single commitment. Commitment rules can also be used
to drive the adoption of multiple commitments simultaneously. This can be
achieved by introducing variables into the situation definition.

For example, consider an agent-based security system that includes a mon-
itoring agent that is responsible for monitoring what Radio Frequency IDenti-
fication (RFID) tags that enter or leave a specified region (which is monitored
by one or more RFID antenna). This agent may be designed to handle beliefs
of the form BELIEF(newTag(?tagID)) where ?tagID is a unique code that is
assigned to every RFID tag, and the belief itself is used to represent the fact
that an new RFID tag has entered the monitored region.

The expected behaviour of this agent is that it will perform a security
check whenever a tag enters the monitored region. The agent uses the result
of the security check to determine whether or not it should raise an alarm.

To implement this behaviour within AFAPL2, a commitment rule of the
form is added:

BELIEF(newTag(?tagID)) => COMMIT(?self, ?now, BELIEF(true),
checkTag(?tagID));

Informally, this rule states that, if the agent detects that a new RFID
tag has entered the monitored region, then it should perform a check to see
whether that tag is allowed to be in the monitored region. What the agent
does when the tag has been checked can be specified through the introduction
of additional commitment rules. For example:

BELIEF(illegalTagMovement(?tagID)) & BE-
LIEF(tagAuthority(?agentName, ?agentAddress)) => COMMIT(?self,
?now, BELIEF(true), inform(agentID(?agentName, ?agentAddress),
illegalTagMovement(?tagID));

This second rule states that if the agent believes that a tag is not allowed
to be in the monitored region (this is the first of the beliefs on the left
hand side of the belief rule) and it knows a tag authority agent (this is the
second of the beliefs on the left hand side of the belief rule), then it informs
the tag authority agent that it has detected an illegal tag movement (this
happens through the adoption of the commitment on the right hand side of
the commitment rule).

Agent Factory uses resolution-based reasoning to evaluate the truth of
the belief sentence part of a commitment rule. To illustrate this point, let

11

us consider the RFID scenario in more detail. The agent is responsible for
monitoring the movement of objects in a physical space of a building using
RFID tags. In such systems, the actual monitoring of the space is carried out
by an one or more RFID antenna. The corresponding agent is then linked to
that antenna (or set of antenna) via some form of interface that generates
events when RFID tags enter or leave the monitored space. To make the agent
aware of these events, we introduce an event perceptor that generates beliefs
based on the events that are produced by the interface. For events where
an object that has an RFID tag enters the monitored space, the perceptor
generates beliefs of the form BELIEF(newTag(?tagID)), which corresponds
to the belief on the left hand side of the second commitment rule.

As an example, consider the case where a single tagged object (with a
unique identifier of 101 - for simplicity) enters the region that is monitored
by an agent with identifier “lobby”. The entry of this tag is detected by the
antenna and passed to the agent’s perceptor via the interface. This causes
the perceptor to generate the belief BELIEF(newTag(101)). The adoption of
this belief causes the second commitment rule to be triggered. That is, the
belief sentence on the left hand side of this commitment rule is evaluated to
true when the variable binding ?tagID / 101 is applied. This results in the
adoption of a single commitment of the form:

COMMIT(lobby, 9:28, BELIEF(true), checkTag(101))

If, at the same time, a second tag, with identifier 320, also entered the
monitored region, then the agent would have a second belief of the form
BELIEF(newTag(320)). This would cause the query process to generate two
variable bindings for the second commitment rule: tagID / 101 and ?tagID
/ 320 . Based on these bindings, two commitments would now be adopted by
the agent: the commitment above, and a second commitment of the form:

COMMIT(lobby, 9:28, BELIEF(true), checkTag(320))

So, what this example highlights is that the interpreter generates every
possible variable binding for the belief sentence component of each commit-
ment rule. These bindings are then applied to the commitment component
of each commitment rule and the resultant commitments are adopted.

To summarise some of the main features of the language:

• The language is deliberative and is based on a logical formalism of beliefs
and commitments. Reactive behaviour within the framework is encoded
imperatively within Java (more recently, some work has been done to put
structure around the reactive behaviour within the SoSAA architecture
[18]).

12

• The language provides high level speech act primitives for communication.
It facilitates the broadcast of messages through the use of wild card pattern
matching.

• The language is relatively easy to understand for developers that have ex-
perience of declarative or logic-based programming. For developers without
such experience, the learning curve is steeper.

3.2 Semantics and Verification

The language has a clear and precise semantics. The original version of
AFAPL was formalised in Collier’s Thesis [10]. Work is underway to pro-
vide a formal operational semantics of the language in its current form for a
future paper. The a language is suitable for the creation of a wide variety of
agent-oriented applications (see Section 5).

3.3 Software Engineering Issues

The Agent Factory system, in general, has been designed with Software En-
gineering concerns at its core. Developing a system and methodology that
had a sound software engineering basis was one of the contributions of Col-
lier’s thesis [10]. The Agent Factory system is modular and can be extended
with functionality for a number of different agent architectures. The design
of AFME has been strongly influenced by good objected oriented precepts,
such as the ‘Law of Demeter’ (LoD) [30]. The LoD, which was popularised
by Grady Booch and James Rumbaugh [6, 43] in the 1990s, greatly improves
the maintainability of the software. As with many researchers in the Soft-
ware Engineering and Object-Oriented community, we view the overuse of
inheritance as a bad thing and tend to favour composition.

The language is integrated with Java. At present, no support is provided
for integrating the language with other classical (imperative) languages, but
there is no reason why such support could not be provided in the future.

3.4 Other features of the language

The platform supports the construction and deployment of mobile agents.
Truly strong migration is not possible in Java because much of the system
state is controlled by the JVM and cannot be directly accessed (see Section
4). Within Agent Factory support is provided for the migration of both code
(application classes) and the agents’ mental state. Within AFME, support

13

is only provided for the transferral of state. The language does not facilitate
the definition of new language components from basic constructs.

4 Platform

As with many other agent frameworks (see Section 6), Agent Factory has been
divided into two editions, one for standard Java, the other for JME CLDC.
In this section, we initially discuss the standard platform, then AFME.

Agent Factory is an open source framework that has been developed to
support the deployment of multi-agent systems [12]. It is broadly compliant
with the current FIPA standards and is implemented in the Java program-
ming language. In its latest incarnation, the framework has been restructured
to facilitate the deployment of applications that consist of multiple agents
that employ a diverse range of agent architectures. As such, the framework
has become an enabling middleware layer that can easily be extended and
adapted for different application domains.

The Agent Factory framework can be broken down into three parts:

• a distributed Run-Time Environment (RTE) that consists of a FIPA-
compliant agent platform together with a number of prefabricated agent
system architectures that have been built to provide infrastructure services
for applications;

• a set of Development Kits (DK) that contain agent interpreter / architec-
ture implementations together with relevant tool support; and

• a Deployment Process that provides a structured approach to the deploy-
ment of multi-agent systems using the framework.

The critical components used in the deployment of a multi-agent system are
the agent platforms and the development kits. Agent platforms deliver the
machinery necessary to create and support agents that are developed using
one or more of the development kits. These development kits include:

• an agent container that holds the agents currently resident on the agent
platform;

• a platform service manager that supports the deployment of a set of plat-
form services that implement shared resources that are available to some
or all of the resident agents;

• a security module that controls what platform services each agent has
access to;

• an architecture factory module that manages the instantiation of the vari-
ous agent interpreters / architectures that can be deployed on the platform;
and

• a module that creates and deploys any run-time tools that are required
to provide necessary support for the visualization, management, profiling,
and debugging of the resident agents.

14

Conversely, each development kit provides some form of template agent
interpreter / architecture that can be used to create application agents. The
most common support tools that a development kit provides are: a customized
agent inspector that allows the visualization of the internal state of that
architecture; and code templates for an appropriate IDE. However, other
support tools may be added if deemed appropriate. Currently, Agent Factory
provides two basic development kits: the AFAPL2 Development Kit, which
supports the creation of intentional agents; and the Reactive Message Agent
(RMA) development kit, which provides a simple reactive agent architecture
that combines message handlers, event handlers, and an internal memory.

The configuration of the agent platform and the specification of the initial
agent community are supported via two deployment files: the platform con-
figuration file is used to specify a configuration for each agent platform and
the agent platform script is used to specify the initial community of agents
that are to be deployed on that platform.

The platform configuration file aids developers in defining what platform
services, agent architectures, and run-time tools should be deployed on each
agent platform. It is also used to assign a default name to each agent plat-
form. Perhaps the most common use of this configuration file is to specify
what message transport services will be made available to agents residing on
the platform. They are deployed as platform services, and currently, imple-
mentations exist for local message passing, HTTP, UDP and XMPP.

Conversely, the agent platform script is used to declare the initial agent
community that will be deployed on an agent platform at start-up. This
file allows developers to define what agents will be created, to initialize the
state of those agents, and when to start their execution. The script allows
the creation of two kinds of agents: system agents and application agents.
System agents are those agents that make up the system architecture, while
application agents are those agents that contain the application logic. The
main practical differences between system agents and application agents are
that system agents are created first and have the chance to carry out initial
configuration before the application agents are created, and system agents
start executing by default, while application agents do not.

In summary, Agent Factory provides a modular and extensible framework
for constructing and deploying multi-agent systems. It offers a set of APIs
that can be used to implement and integrate agents that employ different ar-
chitectures and can support multiple interpreters that realise high-level AOP
languages via the creation of development kits. One such language, which
is described in the next section, is the Agent Factory Agent Programming
Language (AFAPL).

15

4.1 Agent Factory Micro Edition

Agent Factory Micro Edition (AFME) is a minimized footprint version of the
Agent Factory platform designed specifically for use with resource constrained
devices. AFME was originally used for the development of applications for
cellular digital mobile phones, but has since been ported to the leaf nodes
of a WSN and specifically Sun SPOT motes. In deploying agents on sensor
nodes, developers are faced with a number of problems; perhaps the most
obvious is the limited spatiotemporal computational and power resources
available. It is for this reason that initial agent frameworks developed for
WSNs were based on a weak notion of agency, whereby agents did not possess
reasoning capabilities, the canonical example being Agilla. Other more recent
approaches focus on particular algorithms for agent interaction [46], but the
agents would not be considered strong in the traditional sense of the word.

This chapter advocates the use of AFME agents, which are loosely based
on the BDI notion of agency. The BDI model is an appropriate paradigm for
devices such as WSN motes in that it acknowledges that agents are resource
constrained and will be unable to achieve all of their desires even if their
desires are consistent. An agent must fix upon a subset of desires within its
intention selection process and commit resources to achieving them.

Traditionally, the BDI model of agency would be considered too compu-
tationally intensive for small devices, such as WSN motes. In this paper, we
agree with this argument, in so far as that we are not proposing to deploy
BDI agents on extremely low specification nesC type devices, such as the
Berkeley or Tyndall motes. Nonetheless, there are now several devices on
the market, such as the Sun SPOT or Imote2, that have considerably more
resources available than early motes. On such devices, it is quite feasible
to deploy minimized footprint BDI agents. For this to be practical, how-
ever, it is still essential to ensure that resources are not squandered and are
used in an intelligent and prudent manner. BDI languages are, for the most
part, declarative although in practice most of them are used in conjunction
with imperative components. In general, the declarative components specify
a theory of the problem to be solved, whereas as the imperative components
specify the low level coding procedures. The imperative components are usu-
ally written in object languages, such as Java or C++. The agent languages
represent a logical abstraction. Various interpreters can be built for them so
that they can be used in different environments. There are no failsafe devel-
opment methodologies that ensure a good agent design. The design decisions
made are of significant importance in the WSN domain where resources are
extremely scarce.

There is an inherent cost in controlling a system and in performing com-
putations. The complexity of algorithms puts certain constraints on the time
in which we may obtain the results of the computation; therefore there is a
limit to the amount of knowledge or information we can attain at a particular
time point. Either we accept errors due to the lack of information and allow

16

the system to be responsive or we allow the system to carry on operating
in a suboptimal manner as we are performing computations or obtaining in-
formation so as to make better decisions. That is, the fact that performing
a computation has a spatiotemporal and energy usage overhead prevents us
from controlling a large system perfectly [3]. In developing software systems
in practice, this ultimately comes down to a granularity problem.

In AFME, we provide the developer with functionality to encode the de-
liberative behaviour of agents yet they may also encode functionality at an
imperative level directly within Java. The decision as to whether a particular
task should be declarative or imperative is not clear cut and ultimately comes
down to the experience and knowledge of the developer. It often depends on
whether the developer believes something should be a task or a goal. Tasks
are less expensive in that they use fewer resources and the result may be
obtained faster, but they are also less flexible and reduce the possibilities for
recovery from failure.

In developing BDI agents for sensor networks, the developer could be
tempted to develop everything as a task, but this would be little better than
using the weak approach to agency. At the other extreme if the agent does
too much reasoning, resources will be wasted and the system will be unre-
sponsive. The development framework discussed in this article supports both
approaches. It is our belief that it is no longer the case that the BDI model
of agency is too computationally intensive for resource constrained devices.
With developments in computing technology, improvements in the efficiency
of algorithms, and the dissemination of good design practices and the knowl-
edge of algorithms to developers, the traditional arguments no longer hold. It
is for this reason that a number of agent-based ambient systems have begun
to emerge. To the best of our knowledge, AFME was the first BDI framework
to be deployed on the leaf nodes of a wireless sensor network.

Each agent in AFME consists of a set of roles, which are adopted at var-
ious points throughout execution. Each role consists of a trigger condition
and a set of commitment rules. Once an agent adopts a belief that matches
the trigger, the role is adopted and the set of commitment rules are added
to the agent’s mental state. Subsequently, on each iteration of the agent’s
control process, the commitment rules are evaluated until either the role is
retracted or the agent is terminated. The set of commitment rules adopted
when a role is triggered specify the conditions under which commitments are
adopted for the role. Originally, these conditions only included the agent’s
beliefs, but more recently, in AFME, support has been added for equalities,
inequalities, and rudimentary mathematic operations. This is useful because
it allows developers to specify, at a declarative level, relationships among be-
liefs. For instance, if an agent had beliefs about the cost of bread and butter,
the developer could encode conditions such as if bread costs more than butter
or if bread costs less than butter minus 10. With the original approach, this
is not possible without writing imperative code to compare the beliefs or be-
lief arguments. Once commitments have been adopted, the agent commences

17

the commitment management process. Various arguments are passed to the
commitment when it is adopted, such as the time at which it should com-
mence, to whom the commitment is made, and the maintenance condition of
the commitment. An identifier is specified which acts as a trigger for the plan
or primitive action to be performed. In subsequent iterations of the control
algorithm, the commitment is invoked subject to the arguments specified.

4.1.1 AFME Platform and Life Cycle

An AFME platform comprises a scheduler, several platform services, and a
collection of agents. The scheduler is responsible for the scheduling of agents
to execute at periodic intervals. Rather than each agent creating a new thread
when they begin operating, agents share a thread pool. Platform services are
a shared information space amongst agents. Platform services, such as the
local message transport service, are required in situations where agents must
gain access to a shared object instance so as to act upon the object or perceive
its state.

Fig. 1 The AFME Control Process

AFME delivers support for the creation of agents that follow a sense-
deliberate-act cycle. The control algorithm performs four functions (see Fig-
ure 1). First, preceptors are fired and beliefs are updated. Second, the agent’s
desired states are identified. A subset of desires (new intentions) is chosen,
and added to the agent’s commitment set. It should be noted that if the agent
has older commitments, which are of lower importance, they will be dropped
if there is not enough resources available to execute all commitments. This is
handled through the knapsack procedure. Fourth, depending on the nature
of the agent’s commitments, various actuators are fired.

18

4.2 Available tools and documentation

Both Agent Factory and AFME are well documented and provide tool based
support for the development and debugging of applications:

• The platform has extensive documentation available from the Agent Fac-
tory website (http://www.agentfactory.com). This includes tutorials on
how to use the framework and technical documentation, such as Javadoc.

• An agent logger and visual debugging tool, which enables the developer
to examine the agent’s mental state, is available.

• On-line help is available from the website along with information on how
to download and install the system.

• Tools for the administration, management, and configuration of the plat-
form are integrated into the Netbeans IDE.

4.3 Agent Factory/AFME Integration

Agent Factory and AFME are integrated through the message transport and
migration services. Both platforms are FIPA compliant therefore and mes-
sage transfer and communication is consistent. In terms of migration, it is
necessary for agents to change their form when migrating from a standard
desktop environment to a constrained device and vice versa. The remainder
of this section will discuss how the message transport and migration services
of AFME have been developed to integrate with Agent Factory.

4.3.1 Message Transport Service

The Message Transport Service of AFME had to be changed considerably
from the original design. This was because the local GPRS and 3G service
providers have a firewall operating to prevent incoming socket connections
and also because MIDP and J2SE support different APIs for networking.
Rather than having a server operating on the mobile device, the message
transport service periodically polls a mailbox server operating outside the
firewall domain. Incoming messages are stored in the mailbox until a connec-
tion is made from the client devices, at which point all stored messages are
transferred. This increases the latency of message passing but is necessary to
pierce the firewall.

The message transport service has two modes of operation, namely syn-
chronous and asynchronous. These modes are related to how outgoing mes-
sages are processed. Incoming messages are handled generically. When op-
erating in synchronous mode, all outgoing messages are buffered within the
service. When a connection is made to the mailbox server and all incoming

19

messages have been received, the same socket connection is kept open and
used to transfer outgoing messages. When the mailbox server receives the
outgoing messages, they are forwarded on to their destination. When operat-
ing in asynchronous mode, outgoing messages are sent directly within their
own individual sockets. This is possible because the firewall only blocks in-
coming sockets not outgoing. The choice made of which mode to use when
developing an application depends on whether the developer wishes to mini-
mize latency or maximize performance. When operating within synchronous
mode, there will be less socket connections made, whereas in asynchronous
mode the latency of outgoing messages will be lower.

When the mailbox server receives an outgoing connection from an embed-
ded device, it is in the form of a direct binary connection over TCP. The use
of a direct binary connection improves the performance of message transfer.
This binary information is converted to an XML format and subsequently
forwarded over HTTP in compliance with the FIPA specifications. When re-
ceiving incoming messages for an embedded device from other platforms, this
process is reversed, thus the HTTP is converted into a binary format. In this
respect, the AFME message transport service supports transparent commu-
nication between agents operating on embedded devices and those operating
on the standard version of the system or other FIPA compliant platforms.
Agents are unaware of whether the cohort they are communicating with is
behind a firewall or not. They correspond with the mailbox server in the same
manner as if they were communicating with a platform directly.

4.3.2 Migration

Agent migration is often classified as either strong or weak. This classifica-
tion is related to the amount of information transferred when an agent moves
from one platform to another. Truly strong migration is not possible in Java.
Within AFME support is only provided for the transfer of the agent’s men-
tal state (see Figure 2). Any classes required by the agent must already be
present at the destination. This is because CLDC does not contain an API
for introspection and is thus prevented from dynamically loading foreign ob-
jects. The reason CLDC applications do not contain security managers or
class loaders that would enable the dynamic execution of foreign code is that
the JVM specification does not contain a class verifier. The verifier forms
one of the most important security aspects of the original J2SE JVM archi-
tecture. It ensures the integrity of a sequence of byte codes by performing a
data-flow analysis on them at runtime. Conversely, within CLDC the code
must be pre-verified in order to execute. This improves the performance of
the system in that the code does not have to be continuously checked while
executing. It prevents the system however from dynamically downloading and
executing foreign objects because the system cannot verify that the objects’
code is safe to use. Malicious developers could simply alter the structure of

20

a class, for example by changing the operand of a jump opcode such as goto,
to crash the JVM and potentially the operating system of the mobile device.
Thus no support for introspection is provided.

Fig. 2 AFME Migration

To facilitate the migration process within AFME a similar approach is
taken to that of the message transport service. This is because agents must
also be capable of penetrating the service provider firewall. Thus, agents first
migrate to a migration server where they wait for a connection from their
destination platform. When a connection is received they are transferred
accordingly. When migrating back the agents also go through the migration
server.

As agents move to and from embedded devices the BDI commitment rules
that govern the agents’ behaviour are altered to enable the agents to adapt
to their environments. The agents’ designs are decoupled into the core be-
haviours that operate on all platforms and platform specific behaviours that
contain dependencies on a particular framework. The core behaviours repre-
sent the lowest common denominator or the essence of an agent’s functionality
that will execute on all devices. The platform specific behaviour represents
the commitment rules that need to be altered when an agent moves from
one type of environment to another. The essence of the agent is always con-
tained within the agent design, whereas agents maintain beliefs about where
the platform specific commitment rules may be obtained. These beliefs are
in the form of URLs and represent the location at which the rules may be
downloaded. These URLs are used within the mailbox server in the creation
of agent designs that combine the essence of the agents with their platform
specific functionality.

21

4.4 Standards compliance, interoperability and
portability

Although the AFAPL is a general language, at the moment the interpreters
and all of the tools for both Agent Factory and AFME are based on Java.
Communication in the system is consistent with the FIPA specifications.

• At present, the platform requires Java to operate. The desktop version of
the system will work with either standard Java or the JME CDC platform;
it cannot work with CLDC. AFME has been specifically designed for the
JME CLDC Java platform, but it can also work with standard Java.

• The message transport service and architecture of the system is consistent
with the FIPA specifications. We discuss the message transport service in
greater detail in the previous subsection. Additionally, support for yellow
and white page services is provided.

• The System has been integrated with Java Servlets, JSP, and Struts. Fu-
ture work will investigate the incorporation of the system with OSGi [2]
for service management and deployment.

• Standard Java is required for the current framework and the Netbeans IDE
is required for some of the tools to operate. In theory, an interpreter for
AFAPL could be written in any imperative programming language. In the
past, a Smalltalk-80 AFAPL interpreter was maintained, but at present,
however, Java is necessary.

• The platform supports open multi-agent systems and heterogeneous
agents.

4.5 Other features of the platform

Agent Factory is a modular open source platform. It supports the develop-
ment and deployment of different types of agent architectures. Nevertheless,
the platform is generally used for the development of intentional agents. The
AFAPL interpreter is quite efficient when compared to other work in this
area, but it is acknowledged that AFAPL does not conform to the same se-
mantics as other systems. The footprint of the software has been reduced
with the development of AFME. We discuss this in greater detail in Section
6.

• Agent Factory is a modular system and has been specifically designed to
enable its core functionality to be extended with new features. It is open
source and is freely available from SourceForge.

• The overhead of Agent Factory depends on the type of agents that are
developed using the framework. AFAPL is quite practical and efficient
when considered in the context of intentional agent platforms.

• The platform is currently a stable open source distribution.

22

• The structure of the agent community developed using Agent Factory is
dependent on the design of the individual agents. As such, centralised,
distributed, or hierarchical control can be catered for, but it does not
provide libraries for interaction protocols or group templates.

• The platform enables the reuse of agent designs through the use of inher-
itance and dynamic role adoption.

5 Applications supported by the language and/or the
platform

Over the years, the Agent Factory Framework has been used for the devel-
opment of several research projects. The results and requirements of these
projects have influenced the design of the system and have motivated the
introduction of new features and functionality.

• At present, the majority of applications Agent Factory has been used for
have been research projects that reflect the requirements of real world
applications.

• Agent Factory does not target a specific domain and has been deployed in
an array of diverse application domains. These have included E-Commerce
[26], Ubiquitous Computing [36], Mobile Computing [38], Robotics [19],
Wireless Sensor Networks [37], and Mixed Reality [17].

6 Comparison to Related Work

Agent Factory distinguishes itself from other intelligent agent frameworks
[25, 32, 45, 1] in several ways. It is founded upon a logical formalism of belief
and commitment [10] and enables agents to be programmed directly in terms
of their commitments (see Section 3 for a discussion of the commitment man-
agement process). Additionally, it was one of the earliest frameworks to con-
sider software engineering issues at its core, drawing from, and building upon,
early work on Agent Oriented Software Engineering [41]. The framework com-
prises a four layer architecture that includes a development methodology, in-
tegrated development environment support, an agent-oriented programming
language, and a runtime environment.

There currently a trend in the development of programming languages
that use an XML syntax [7, 21, 48, 14, 47, 29, 16]. Although these systems
have made many significant and innovative contributions to the field, the use
of XML has to be called to account. This approach has not been adopted
in Agent Factory/AFME. XML is useful as a mechanism for data exchange
between computer programs, but not as a language to be used by humans. It’s

23

a sophisticated data format nothing more (see Terence Parr’s soapbox [42] for
more details). The correct approach is to write a parser and lexical analyzer,
lest pay a heavy price in productivity due to the cumbersome nature of XML.
Even if XML were to be used, the data must still be interpreted. That is, even
though XML has an extensible syntax, the developer must still write code
to “make sense” of, or use, the information obtained from the parser when
additional functionality or requirements are added. The semantics must still
be encoded in the application or agent, regardless of the manner in which the
agent design is represented. James Davidson, the creator of the well known
Apache Ant, one of the most widely used XML-based tools, notes about the
XML syntax of Ant in [15]:

“If I knew then what I know now, I would have tried using a real scripting
language, such as JavaScript via the Rhino component or Python via JPython,
with bindings to Java objects that implemented the functionality expressed in
today’s tasks. Then, there would be a first-class way to express logic, and we
wouldn’t be stuck with XML as a format that is too bulky for the way that
people really want to use the tool.”

XML is overly verbose and is far from ideal as the syntax of a program-
ming language, specification language, or for configuration files to be used by
people. As noted by Parr [42]:

“Humans have an innate ability to apply structure to a stream of characters
(sentences), therefore, adding mark-up symbols can only make it harder for us
to read and more laborious to type. The problem is that most programmers
have very little experience designing and parsing computer languages. Rather
than spending the time to design and parse a human-friendly language, pro-
grammers are using the fastest path to providing a specification language and
implementation: “Oh, use XML. Done.” And that’s OK, but I want program-
mers to recognize that they are providing an inferior interface when they take
that easy route.”

Several agent frameworks have been developed for the fabrication of
agents for desktop environments. With the explosive growth of the mobile
phone market, there has been a drive to develop similar frameworks for
constrained environments and in particular JME CLDC. Typically, these
systems have two versions of the agent platform, one for the desktop en-
vironment and one for the CLDC environment. This is the case with Agent
Factory/AFME. Other examples include Jade/Jade LEAP [4], 3APL/3APL-
M [28], SAGE/SAGE-Lite [27], and Cougaar/CourgaarME [49]. Agent Fac-
tory/AFME distinguishes themselves from these other frameworks in a num-
ber of ways. JADE-LEAP, CougaarME, MicroFIPA-OS, and SAGE-Lite are
frameworks for the development of agent technology, but they are not reflec-
tive and do not use an abstract agent programming language that is based
on a theory of rational agency1. 3APL-M is similar to AFME/Agent Factory

1 Intelligent extensions built for JADE will not work with the CLDC version of
LEAP without making modifications to the code due to the different APIs supported
by standard Java and CLDC.

24

in that it does contain reasoning capabilities, but it does not contain a net-
working component. If the developer wishes an agent to communicate over
the network, they must write the code from scratch. Agent Factory/AFME
provides support for networking through the message transport service.

At present, most of these frameworks target mobile phones and PDAs.
Agilla [20] is an agent platform that has been developed for WSNs, but it
also does not contain reasoning capabilities and therefore does not conform
to the same definition of agency as Agent Factory/AFME.

The design of AFME has been strongly influenced by the ‘Law of Deme-
ter’ [30], which specifies the coding guideline “only talk to your immediate
friends”. The ‘Law of Demeter’, or Principle of Least Knowledge, leads to
the creation of loosely coupled classes that improve the maintainability of
the software [6, 43]. Using the Law as a general principle, tends to favour
composition over inheritance and avoids the use of accessor (get/set) meth-
ods2. Rather than a callee obtaining data from an object to perform some
operation through the use of an accessor method, the callee directs the object
to perform the operation on its behalf [24]. That is, objects are designed in
terms of their capabilities and their state is not exposed through the use of
accessors. This is often referred to as ‘delegation’ by object-oriented develop-
ers. It leads to a more declarative approach to object development and also
tends to reduce the footprint of the software by minimising code duplication.

The footprint of AFME is quite low. For instance, the core infrastructure
has a Jar size of 77k, an NCSS value [22] of 2601, and a McCabe cyclomatic
complexity [31] (not to be confused with algorithmic complexity) of 2.91. If
just the core reasoning capabilities of the platform are considered and the
Jar file is obfuscated, the Jar size can be reduced to 17k. When considering
the footprint, we must also take into account the overhead and resource
requirements of the software necessary to run the platform. With AFME, the
JME CLDC Java platform is required. CLDC is considerably less resource
intensive than standard Java. As noted earlier, there have been a number of
platforms developed for CLDC. 3APL-M is the closest framework to AFME
in that it is based on a theory for rational agency and contains reasoning
capabilities. Through our experience and experimentation [33], it has been
found that AFME is considerably faster than 3APL-M in terms of execution
time. Nevertheless, it is acknowledged that 3APL-M contains features not
supported by AFME. To the best of our knowledge, AFME is the smallest
footprint reflective agent-oriented platform. Nevertheless, it is accepted that
AFME does not conform to the same semantics as other reflective platforms.
For instance, 3APL-M has been incorporated with a complete Prolog engine,
AFME has not.

2 It should be noted that the LoD does not only apply to accessors (see [30] for more
details).

25

7 Conclusion

Agent Factory is a flexible FIPA compliant open source Java-based platform
for the development, visualisation, and deployment of multi-agent systems. It
is an evolving project and over the years has gone through a metamorphosis
process, producing sibling frameworks such as AFME. Agent Factory has
been designed with Software Engineering principles at its core and represents
a modular framework that supports the development of a diverse variety of
agent-oriented applications. The footprint of the system has been further
reduced with the development of AFME. This chapter discussed the various
modifications and enhancements that were made to the framework together
with the motivations for such. As new technologies emerge, it is envisaged
that Agent Factory will be further augmented to reflect new threads and
developments. In the short term, we are investigating the potential to further
enhance and optimise performance for embedded and resource constrained
devices. In the longer term, as the number of heterogeneous devices and
platforms increases, we are looking at the potential of using technologies,
such as OSGi [2], for service management and deployment.

Acknowledgements The authors gratefully acknowledge the kind support of Sci-
ence Foundation Ireland (SFI) under grant no. 07/CE/I1147 and the Irish Research
Council for Science, Engineering, and Technology (IRCSET).

Appendix (Language Summary)

1(a) The language supports mental attitudes and specifically beliefs and
commitments. Reactive behaviour is encoded imperatively in Java.

1(b) The language supports speech act based primitives for communica-
tion. Wildcard pattern matching is used to broadcast messages to multiple
agents, for example a message sent to Ja* would be received by Jack and
Jay, but not Frank.

1(c) Support is provided for the construction of mobile agents. Truly strong
migration is not possible in Java. With Agent Factory, the agents’ mental
state and code are transferred. With AFME, only the mental state is
transferred.

1(d) The language is easy to understand for someone who has experience
of declarative/logic programming.

1(e) The language has clear and precise semantics. The original language
was formalised in Collier’s thesis [10]. Work is underway on formalising
more recent enhancements/alterations.

1(f) The language is intended for the construction of a variety of agent
programs.

26

1(g) The language enables the reuse of agent designs through roles, but
does not enable the definition of new language components.

1(h) At present a clear path to formal verification is not provided.
1(i) Software Engineering principles have been considered in the design of

the language.
1(j).i The language is integrated with Java and was previously integrated

with Smalltalk-80.
1(j).ii The language allows the invocation of methods written in classical

languages.
2(a).i Detailed instructions on how to install and use the framework (in-

cluding Javadoc) are available from http://www.agentfactory.com.
2(a).ii In its current form, the framework requires either Java Standard

Edition or Java Micro Edition to execute.
2(b) The general architecture of the framework is consistent with the FIPA

specifications. Agent Factory provides FIPA compliant communication
through a message transport service. With AFME, FIPA communication
is facilitated through a combination of a TCP (binary) message trans-
port service and a “translator message server” that operates on a desktop
machine. Support is also provided for yellow and white page services.

2(c) The platform can be extended with additional functionality through
open source collaboration.

2(d).i An agent mental state debugger is provided along with a logger.
2(d).ii Extensive documentation including Javadoc is available from agent-

factory.com.
2(d).iii A Netbeans IDE plugin is provided.
2(e) Existing applications have been integrated with JSP, Java Servlets,

and Struts.
2(f) An application running the platform would require Java.
2(g).i Agent Factory is quite an efficient and practical system and is ca-

pable of executing a large number of agents subject to the number of
commitment rules the agents have and the hardware on which they are
operating.

2(g).ii The platform is a stable open source distribution.
2(h).i The platform supports open multi-agent systems and heterogeneous

agents.
2(h).ii The structure of the agent community is dependent on the design

of the individual agents that form the community. As such, centralised,
hierarchical, or distributed control can be catered for.

2(h).iii The platform does not provide libraries of interaction protocols.
Agent templates are supported and reuse is facilitated through the use of
roles.

3(a) The platform has been used for the development of applications in sev-
eral disparate domains, including E-Commerce [26], Ubiquitous Comput-
ing [36], Mobile Computing [38], Robotics [19], Wireless Sensor Networks
[37], and Mixed Reality [17].

27

3(b) The platform does not target a specific domain.

References

1. Albuquerque, R., Hbner, F., de Paula, G., Sichman, J., Ramalho, G.: Ksaci: A
handheld device infrastructure for agents communicaiton. Pre-proceedings of the
Workshop on Agent Theories, Architectures, and Languages, (ATAL) (2001)

2. Alliance, O.: OSGi Service Platform, Release 3. IOS Press, Inc. (2003)
3. Bellman, R.E.: Some Vistas of Modern Mathematics. University of Kentucky

Press (1968)
4. Berger, M., Rusitschka, S., Toropov, D., Watzke, M., Schlichte, M.: The Develop-

ment of the Lightweight Extensible Agent Platform. EXP in Search of Innovation
3(3), 32–41 (2003)

5. Birkhoff, G., Lipson, J.: Heterogeneous algebras. Journal of Combinatorial The-
ory 8(1), 15–133 (1970)

6. Booch, G.: Object-oriented Analysis and Design, 2nd edition. Addison Wesley
(1994)

7. Braubach, L., Pokahr, A., Lamersdorf, W.: Jadex: A BDI agent system combining
middleware and reasoning. In: M.K. R. Unland M. Calisti (ed.) Software Agent-
Based Applications, Platforms and Development Kits, pp. 143–168. Birkhuser-
Verlag, Basel-Boston-Berlin (2005). Book chapter

8. Collier, R., Ross, R., O Hare, G.M.P.: A role-based approach to reuse in agent-
oriented programming. AAAI Fall Symposium on Roles, an interdisciplinary
perspective (Roles 2005) (2005)

9. Collier, R.W.: The realisation of Agent Factory: An environment for the rapid
prototyping of intelligent agents. M. Phil., Univ. of Manchester (1996)

10. Collier, R.W.: Agent Factory: A Framework for the Engineering of Agent-
Oriented Applications. Ph.D. Thesis (2001)

11. Collier, R.W., O Hare, G.M.P.: Agent Factory: A Revised Agent Prototyping
Environment. In: 10th Irish Conference on Artificial Intelligence & Cognitive
Science, pp. 1–3 (1999)

12. Collier, R.W., O Hare, G.M.P., Lowen, T., Rooney, C.: Beyond prototyping in the
factory of the agents. 3rd Central and Eastern European Conference on Multi-
Agent Systems (CEEMAS’03), Lecture Notes in Computer Science (LNCS) 2691
(2003)

13. Collier, R.W., Rooney, C.F.B., Donoghue, R.P.S., O’Hare, G.M.P.: Mobile BDI
agents. In Proceedings of the 11th Irish Conference on Artificial Intelligence and
Cognitive Science (2000). URL citeseer.ist.psu.edu/collier00mobile.
html

14. Cossentino, M., Burrafato, P., Lombardo, S., Sabatucci, L.: Introducing Pattern
Reuse in the Design of Multi-agent Systems. Lecture Notes in Computer Science
pp. 107–120 (2003)

15. Davidson, J.D.: The Creator of Ant Exorcizes One of His Demons. Pragmatic
Project Automation: How to Build, Deploy, and Monitor Java Apps by M. Clark.
The Pragmatic Programmers (2004)

16. De Meo, P., Garro, A., Terracina, G., Ursino, D.: X-Learn: An XML-Based,
Multi-agent System for Supporting “User-Device” Adaptive E-learning. Lecture
Notes in Computer Science pp. 739–756 (2003)

17. Dragone, M., Holz, T., Duffy, B.R., O Hare, G.M.P.: Ubiquitous Realities through
Situated Social Agents. In: Proc. of the 5th Intl. Working Conference of Computer
Animation and Social Agents (CASA05) (2005)

28

18. Dragone, M., Lillis, D., Collier, R.W., O Hare, G.M.P.: Sosaa: A framework for
integrating agents and components. In: 24th Annual Symposium on Applied
Computing (ACM SAC 2009), Special Track on Agent-Oriented Programming,
Systems, Languages, and Applications. Honolulu, Hawaii, USA (2009)

19. Duffy, B.R., Collier, R.W., O Hare, G.M.P., Rooney, C.F.B., O’Donoghue, R.P.S.:
Social Robotics: Reality and Virtuality in Agent-Based Robotics. In: Bar-Ilan
Symposium on the Foundations of Artificial Intelligence: Bridging Theory and
Practice (BISFAI) (1999)

20. Fok, C.L., Roman, G.C., Lu, C.: Rapid development and flexible deployment
of adaptive wireless sensor network applications. In: Proceedings of the 24th
International Conference on Distributed Computing Systems (ICDCS’05), pp.
653–662. IEEE (2005)

21. Garro, A., Palopoli, L.: An XML Multi-agent System for E-learning and Skill
Management. Lecture Notes in Computer Science pp. 283–294 (2003)

22. Grady, R.B.: Successfully applying software metrics. Computer 27(9), 18–25
(1994). DOI http://dx.doi.org/10.1109/2.312034

23. Hoare, C.A.R.: Communicating sequential processes. Communications of the
ACM 21(8), 666–677 (1978)

24. Holub, A.: Holub on Patterns: Learning Design Patterns by Looking at Code.
APress (2004)

25. Howden, N., Ronnquist, R., Hodgson, A., Lucas, A.: JACK Intelligent Agents-
Summary of an Agent Infrastructure. In: 5th International Conference on Au-
tonomous Agents (2001)

26. Keegan, S., O’Hare, G.M.P., O’Grady, M.J.: Easishop: Ambient intelligence as-
sists everyday shopping. Information Sciences 178(3), 588–611 (2008)

27. Khalique, S., Farooq, S., Ahmad, H.F., Suguri, H., Ali, A.: Sage-lite: An architec-
ture and implementation of light weight multiagent system. ISADS 0, 239–244
(2007). DOI http://doi.ieeecomputersociety.org/10.1109/ISADS.2007.68

28. Koch, F., Meyer, J.J., Dignum, F., Rahwan, I.: Programming Deliberative Agents
for Mobile Services: the 3APL-M Platform. AAMAS’05 Workshop on Program-
ming Multi-Agent Systems (ProMAS05) (2005)

29. Konnerth, T., Endert, H., Heler, A.: JIAC IV Programmers guide (2007)
30. Lieberherr, K., Holland, I., Riel, A.: Object-oriented programming: An objective

sense of style. in Object Oriented Programming Systems, Languages and Appli-
cations Conference, in special issue of SIGPLAN notices pp. 323–334 (1988)

31. McCabe, T.J.: A software complexity measure. IEEE Transactions on Software
Engineering 2(4), 308–320 (1976)

32. Morley, D., Myers, K.: The spark agent framework. In: AAMAS ’04: Proceedings
of the Third International Joint Conference on Autonomous Agents and Mul-
tiagent Systems, pp. 714–721. IEEE Computer Society, Washington, DC, USA
(2004). DOI http://dx.doi.org/10.1109/AAMAS.2004.267

33. Muldoon, C.: An Agent Framework for Ubiquitous Services. Ph.D. thesis, School
of Computer Science and Informatics, Dublin, Ireland (2007)

34. Muldoon, C., O Hare, G.M.P., Bradley, J.F.: Towards Reflective Mobile Agents
for Resource Constrained Mobile Devices. In: AAMAS 07: Proceedings of the
Sixth International Joint conference on Autonomous Agents and Multiagent Sys-
tems. ACM, Honolulu, Hawai’i (2007)

35. Muldoon, C., O Hare, G.M.P., Collier, R.W., O Grady, M.J.: Agent Factory
Micro Edition: A Framework for Ambient Applications. In: Intelligent Agents in
Computing Systems, Lecture Notes in Computer Science, vol. 3993, pp. 727–734.
Springer, Reading, UK (2006)

36. Muldoon, C., O Hare, G.M.P., Phelan, D., Strahan, R., Collier, R.W.: ACCESS:
An Agent Architecture for Ubiquitous Service Delivery. In: Proceedings Seventh
International Workshop on Cooperative Information Agents (CIA), Lecture Notes
in Computer Science, vol. 2782, pp. 1–15. Springer, Helsinki (2003)

Index 29

37. Muldoon, C., Tynan, R., O Grady, M.J., O Hare, G.M.P.: Realising an agent-
oriented middleware for heterogeneous sensor networks. In: ACM/IFIP/USENIX
9th International Middleware Conference, pp. 82–83. ACM Press (2008)

38. O Grady, M.J., O Hare, G.M.P.: Gulliver’s genie: agency, mobility, adaptivity.
Computers & Graphics 28(5), 677–689 (2004)

39. O Hare, G.M.P.: Agent Factory: An Environment for the Fabrication of Dis-
tributed Artificial Systems. O Hare, Gregory M. P. and Jennings, N. R.(Eds.),
Foundations of Distributed Artificial Intelligence, Sixth Generation Computer
Series, Wiley Interscience Pubs pp. 449–484 (1996)

40. O Hare, G.M.P., Abbas, S.: Agent Oriented Programming: Communicating In-
tentional Processes (1994)

41. O Hare, G.M.P., Wooldridge, M.J.: A software engineering perspective on multi-
agent system design: experience in the development of MADE. Kluwer Computer
And Information Science Series pp. 109–127 (1992)

42. Parr, T.: Soapbox: Humans should not have to grok XML. http://www.ibm.
com/developerworks/xml/library/x-sbxml.html (2001)

43. Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., Lorensen, W.: Object Ori-
ented Modeling and Design. Prentice Hall (1991)

44. Shoham, Y.: AGENT0: A simple agent language and its interpreter. In: Pro-
ceedings of the Ninth National Conference on Artificial Intelligence, vol. 2, pp.
704–709 (1991)

45. Sierhuis, M.: Brahms: A Multi-Agent Modeling and Simulation Language for
Work System Analysis and Design. Ph.D. thesis (2001)

46. Teacy, W., Farinelli, A., Grabham, N., Padhy, P., Rogers, A., Jennings, N.: Max-
sum decentralised coordination for sensor systems. In: Proceedings of the 7th
international joint conference on Autonomous agents and multiagent systems:
demo papers, pp. 1697–1698. International Foundation for Autonomous Agents
and Multiagent Systems Richland, SC (2008)

47. Tuguldur, E., Patzlaff, M.: Collecting Gold: MicroJIAC Agents in Multi-Agent
Programming Contest. Lecture Notes in Computer Science 4908, 251 (2008)

48. Weiliang, M., Sheng, H.: An XML-Based Language for Coordination Protocol
Description in Multi-agent System. In: Proceedings of the 14th International
conference on Industrial and engineering applications of artificial intelligence and
expert systems: engineering of intelligent systems, pp. 708–717. Springer-Verlag
London, UK (2001)

49. Wright, W., Moore, D.: Design considerations for multiagent systems on very
small platforms. In: AAMAS ’03: Proceedings of the second international joint
conference on Autonomous agents and multiagent systems, pp. 1160–1161. ACM
Press, New York, NY, USA (2003). DOI http://doi.acm.org/10.1145/860575.
860845

Index

Numbers written in italic refer to the page where the corresponding entry
is described; numbers underlined refer to the definition; numbers in roman
refer to the pages where the entry is used.

AFME, 15

Agent Factory, 13

Applications, 22

BDI, 15

CIPs, 3

CLDC, 5

Communication, 18

30 Index

Footprint, 24

Heterogeneous
Algebras, 3

Integration, 18
Intentionality, 5

J2ME, 4

Java, 3

Law of Demeter, 24
Life Cycle, 17

Migration, 19

Pocket PC, 3

Sensor Networks, 16

Smalltalk, 3
SunSPOT, 5

Tools, 18
Tutorial, 6

UMIST Paradox, 3

XML, 22

