
Title An examination on the modularity of grammars in grammatical evolutionary design

Authors(s) Swafford, John Mark, O'Neill, Michael

Publication date 2010-07

Publication information Swafford, John Mark, and Michael O’Neill. “An Examination on the Modularity of Grammars in

Grammatical Evolutionary Design.” IEEE, 2010.

Conference details IEEE World Congress on Computational Intelligence,Barcelona, Spain, 18-23 July.

Publisher IEEE

Item record/more

information

http://hdl.handle.net/10197/2544

Publisher's version (DOI) 10.1109/CEC.2010.5586483

Downloaded 2023-10-06T13:54:56Z

The UCD community has made this article openly available. Please share how this access

benefits you. Your story matters! (@ucd_oa)

© Some rights reserved. For more information

https://twitter.com/intent/tweet?via=ucd_oa&text=DOI%3A978-1-4244-6909-3&url=http%3A%2F%2Fhdl.handle.net%2F10197%2F2544

An Examination on the Modularity of Grammars in Grammatical
Evolutionary Design

John Mark Swafford and Michael O’Neill

Abstract— This work furthers the understanding of mod-
ularity in grammar-based genetic programming approaches
by analyzing how different grammars may be capable of
producing the same phenotypes, but still display differences
in performance on the same problems. This is done by creating
four grammars with varying levels of modularity and using
them with grammatical evolution to evolve floor plan designs.
The results of this experimentation show how increases in
modularity, brought about by simple modifications in the
grammars, and increases in the quality of solutions go hand
in hand. It also demonstrates how more modular grammars
explore more individuals even while fitness remains the same
or changes in only minor increments.

I. INTRODUCTION

An evolutionary design system is any evolutionary algo-
rithm used to solve or help solve a design problem; examples
include, but are not exclusive to, aesthetic art, architecture,
commercial products, and sculptures. When working with
evolutionary design systems, having a representation that
is able to take advantage of modularity is vital. While it
has been shown that this characteristic may increase the
search space of an evolutionary algorithm [4], it also allows
for easier identication and exchange of useful information
between individuals throughout evolution. A widely known
fact among evolutionary algorithm researchers is that using
representations capable of taking advantage of modularity
greatly improve the scalability of their algorithm’s problem
solving capability.

The general idea behind modularity is that of being
able to “break apart” a solution to any given problem and
manipulate the pieces independently of each other. This could
mean swapping pieces of information with other solutions,
combining small pieces to create larger ones, or breaking
down large pieces to be manipulated separately. This can be
done in either a top-down or bottom-up manner. With the
first approach, a complete solution is examined and useful
modules are identied to be promoted in future generations
of evolution. The bottom-up method takes small modules
and attempts to combine them to create larger modules that
represent a complete solution.

This preliminary work further extends the understanding of
modularity in evolutionary design system in hopes of opening
the door to more in-depth studies on the modularity of
different representations for design in grammatical evolution

John Mark Swafford, Complex and Adaptive Systems Laboratory,
School of Computer Science and Informatics, University College Dublin,
Clonskeagh, Dublin 4, Ireland (email: john-mark.swafford@ucdconnect.ie).

Michael O’Neill, Complex and Adaptive Systems Laboratory, School of
Computer Science and Informatics, University College Dublin, Clonskeagh,
Dublin 4, Ireland (email: m.oneill@ucd.ie).

(GE) [13], [3]. Using the grammar-based genetic program-
ming algorithm, GE, as an approach to evolving designs, the
importance of incorporating modular features in the problem
representation can easily be seen. To illustrate how this
approach can be used in real world problems, an analysis
of this is given using GE to evolve floor plan designs. This
problem was picked because it is particularly modular in
nature and may be scaled up arbitrarily by increasing the
size and number of rooms in the floor plan. This facilitates
future studies on the scalability of approaches based on the
lessons learned from this work. More specically, an analysis
of how grammar shape/form impacts the modularity and
tness of individuals in evolutionary design problems using
GE is presented. More details on this are given in Section III.

The structure of this work is as follows: Section II gives
prior work and background information on GE, modularity in
genetic programming, and modularity in evolutionary design.
Sections III and IV detail the experiments carried out for
this work as well as the results and a discussion of their
signicance. In Section V conclusions are drawn and possible
avenues for future work is outlined.

II. BACKGROUND WORK

The idea of exploiting modularity in evolutionary algo-
rithms has been examined in many ways. However, GE has
yet to achieve the popularity of genetic algorithms (GAs) [6]
and genetic programming (GP) [8], and the modular nature
of GE has not been analyzed to the same extent. This
section gives background information on GE (Section II-
A), modularity in genetic programming (Section II-B), and
modularity in evolutionary design (Section II-C).

A. Grammatical Evolution

Grammatical evolution (GE) [13] is a grammar-based
approach to GP. GE sets itself apart from typical GP by
representing individuals as linear genotypes (in the imple-
mentation used here, these are integer arrays), instead of
the usual GP trees. Elements in the genotype are referred
to as “codons.” A user-defined, context-free grammar is
used to map these genotypes into phenotypes that are able
to be interpreted by the algorithm’s fitness function (this
implementation uses context-free grammars in BNF form).
GE allows these phenotypes to be strings, pieces of programs,
or even complete programs. Following is an example of this
mapping process. Given the integer array:

5 11 29 31 78 46 55

and a simplified version of the first grammar (Figure 1) used
in the experiments in Section III:

978-1-4244-8126-2/10/$26.00 ©2010 IEEE

UCD Library
Text Box
©2010 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotionalpurposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this workin other works must be obtained from the IEEE.

<floor> ::= <rooms>
<rooms> ::= <room>;<rooms> | <room>
<room> ::= <type>:<x>,<y>:<x>,<y>
<type> ::= bed | bath | live | dine
<x> ::= -3 | -2 | -1 | 0 | 1 | 2 | 3
<y> ::= -3 | -2 | -1 | 0 | 1 | 2 | 3

an example of the genotype to phenotype mapping can be
performed. GE’s mapping process always begins with the
grammar’s start symbol and the left-most element in the
integer array. For this example, the start symbol is <floor>

and the starting element in the integer array is 5. Because the
<floor> non-terminal has only one production, it is picked
and replaces the previous non-terminal. Since there was only
one choice for the next production rule, the current codon,
5, was not used. So, <floor> is replaced by <rooms> . The
<rooms> non-terminal has two productions so the modulo
operator is used to determine which production is picked.
The equation for this is simple:

codon % # of productions = production picked.

For this example the equation would be: 5%2 = 1, so the first
production will replace the current left-most non-terminal.
This means <rooms> will be replaced by <room> . The <room>

non-terminal also has only one production, so it is replaced
by <type>:<x>,<y>:<x>,<y> and no codons are used. The
left-most non-terminal in the current string is <type> , which
has four possible productions, the current codon value is 11,
and 11%4 = 3, so <type> is replaced with dine . This leaves
the phenotype string as dine:<x>,<y>:<x>,<y> . The map-
ping process continues until there are no more non-terminals
or the end of the integer array has been reached. For this
specific example, the final phenotype is: dine:-2,0:-2,1 .
In the event that there are non-terminals left in the phenotype
string, the individual that produced it will be designated as
invalid and receives the worst possible fitness value. In hopes
of repairing invalid individuals, wrapping may be used. With
this feature, when there are no more unused codons in the
integer array, mapping will resume with the first codon in
the array and the entire array may be used again. Wrapping
may only be allowed a limited amount of times in case an
individual is infinitely recursive.

B. Modularity In Genetic Programming

SinceGAs [6] became popular as a problem solving
method, the more detailed characteristics of these evolution-
ary algorithms have been intensely studied. One such aspect
is modularity. Shortly after the rise of genetic programming
GP [8] as an alternative to GAs, researchers began studying
the modularity of different GP approaches and representa-
tions. It did not take long to realize that GP was especially
well suited to solving problems with a modular nature and
that representations should be capable of taking advantage
of this modularity to navigate through the search space more
efficiently and to increase the scalability of the algorithm.

Due to the wide variety of problems that have been tackled
by GP and GP-based approaches and the large differences in
the representations used, most, if not all, studies involving

modularity use a different definition of this characteristic.
Woodward [16], in his analysis of modularity in GP, defines
modularity as: “a function that is defined in terms of a
primitive set or previously defined modules.” This is quite
a general definition because it states that modules can be
independent of each other or can be defined in terms of other
modules.

Angeline and Pollack [1] explain their method for picking
out modules of useful information and passing them through
the evolutionary generations. They use a compress operation
to randomly “lock” a piece of an individual so it will
be passed on to the offspring of that individual without
any modification. They also define an expand operation
that “unlocks” all or part of a compressed piece of an
individual. The compress operation was also extended such
that compressed pieces of individuals could be compressed
again with more information from an individual, creating a
hierarchy of compressed modules that can be reused as a
whole. They called this process atomization. Their results
show how beneficial capturing these modules were during the
course of an evolutionary run. This work shows the first step
in basic module encapsulation and how advantageous this
can be. Here, evolution was allowed to freely discover and
use modules, but these results raise the question if there is a
more “intelligent” way of identifying useful modules before
“locking” them and passing them through future generations.

The work carried out by Krawiec and Weiloch [10]
define a new way to exploit modularity, called functional
modularity, that could be used to address some of future
work mentioned by Angeline and Pollack [1]. This approach
attempts to discover modules without using the context of
the problem as a whole. They give the example of a battery
and a bulb in a flashlight. If the battery is a module, there
may be a way to analyze how good of a battery it is without
using it in the flashlight. This is done by using the semantics
(what the module means instead of the symbols that produced
it) of the module. The results of their experimentation show
that functional modularity can be valuable in determining a
problem’s composition and difficulty. They also discuss how
their approach exploits these characteristics in a problem and
also how this is a difficult task and requires further studies
to fully understand.

When undertaking any study on modularity, it is important
to acknowledge Koza’s [9] Automatically Defined Functions
(ADFs) and the benefits they bring in terms of taking
advantage of the modularity of a representation. However,
ADFs are beyond the scope of this work as it is more focused
on the modularity that can be found in simple grammars,
independent of that found in representations using ADFs.
See Section V for more detail as to how ADFs are planned
for future, related work.

C. Modularity In Evolutionary Design

As modularity has been shown to be important in standard
GP implementations, it has been found to be crucial in
evolutionary design problems. Lipson et al. [11] discuss the

importance of modularity in evolutionary design. They men-
tion how scaling is always a large challenge for evolutionary
systems, but modularity helps to alleviate this problem. They
define modularity as “the separability of a design into units
that perform independently.” They also claim that modularity
and regularity are independent because modules that are
completely non-regular may exist. They hypothesize that
modularity may be promoted by changing the environment
or fitness criteria over time, forcing useful modules to be
discovered and passed on. Their approach to modularity
may also operate in a top-down fashion where working
designs may be decomposed to determine which modules
are beneficial.

Hornby [7], who defines modularity to be, “an encapsu-
lated group of genotypic elements that can be manipulated
as a group,” shows how evolutionary design systems greatly
benefit from having representations that are modular in na-
ture. His example is the design of a table where modules may
form the a leg of the table and then be reused to complete
the other three legs. The target table designs are symmetrical,
making the problem especially modular in nature as there are
many pieces of the table that can be formed and reused to
complete the design. He also shows how beneficial hierarchy
and regularity are in the representation, both of which are
enabled by modularity.

Modularity in evolutionary design does not necessarily
have to be in regards to a product or design’s composi-
tion. Gershenson [5] not only discusses the importance of
modularity in the typical sense of design’s composition or
form, but also the life-cycle of a product. The elements of
a life-cycle of a design may include manufacture, assembly,
service, and recycling. While the modularity of a product’s
life-cycle is outside the scope of this work; Gershenson’s
work [5] enforces that modularity may play a more crucial
role in the real-world applications as opposed to benchmark
problems used solely for research purposes.

III. EXPERIMENTAL SETUP

The first goal of this work is to show how different
context-free grammars, all of which are capable of producing
the same phenotypes, have varying levels of facilitating
modularity. The second goal of this study is to show how
the varying levels of modularity enabled by the grammars
affect the performance of GE on design problems of varying
difficulty. To accomplish these goals the following definition
of modularity is used: A module is any sub-derivation tree
or group of sub-derivation trees in an individual.

To measure how well grammars with varying levels of
promoting modularity impact evolutionary search, five target
floor plans were given for evolution to match (Figure 6) and
four grammars, each with different capabilities for represent-
ing modules and creating different derivation tree structures
(see Figures 1 - 4 for the grammars used). Each of these
grammars produce strings of the form roomType:x-position,y-
position:width,height;roomType:... that are translated into
floor plan images. It it crucial to note that although each

grammar is capable of producing the same phenotype strings,
but the derivation trees may look very different.

<floor> ::= <rooms>
<rooms> ::= <room>;<rooms> | <room>
<room> ::= <type>:<x>,<y>:<x>,<y>
<type> ::= bed | bath | live | close

| dine | kitch
<x> ::= -10 | -9 | -8 | ... | 8 | 9 | 10
<y> ::= -10 | -9 | -8 | ... | 8 | 9 | 10

Fig. 1. Grammar 1

<floor> ::= <rooms>
<rooms> ::= <room>;<rooms> | <room>
<room> ::= <type>:<pos>:<size>
<pos> ::= <x>,<y>
<size> ::= <x>,<y>
<type> ::= bed | bath | live | close

| dine | kitch
<x> ::= -10 | -9 | -8 | ... | 8 | 9 | 10
<y> ::= -10 | -9 | -8 | ... | 8 | 9 | 10

Fig. 2. Grammar 2

<floor> ::= <rooms>
<rooms> ::= <combiRooms> <rooms>

| <combiRooms> <room> | <room>
<combiRooms> ::= <one> | <two> | <three> | <four>

| <five> | <six>
<one> ::= <room>;
<two> ::= <room>;<room>;
<three> ::= <room>;<room>;<room>;
<four> ::= <room>;<room>;<room>;<room>;
<five> ::= <room>;<room>;<room>;<room>;<room>;
<six> ::= <room>;<room>;<room>;<room>;<room>;<room>;
<room> ::= <type>:<x>,<y>:<x>,<y>
<type> ::= bed | bath | live | close

| dine | kitch
<x> ::= -10 | -9 | -8 | ... | 8 | 9 | 10
<y> ::= -10 | -9 | -8 | ... | 8 | 9 | 10

Fig. 3. Grammar 3

Each target image represents a floor plan where the
different colored blocks are different rooms. Each of the
targets has a different number of rooms, some with smaller
rooms inside the larger ones. There are also different types
of rooms e.g. bedrooms, closets, dining rooms, etc. As the
number of rooms increase, some of the additional rooms are
identical to existing rooms, but in different positions. This
was purposely done to examine how each grammar performs
in terms of capturing useful modules and reusing them
in future generations. Using targets of increasing difficulty
(targets larger numbers of rooms and more rooms of different
types) also allows for the examination of how the different
grammar scale to harder problems (targets with more rooms).

The problem was constructed in this manner because in
order for an evolutionary algorithm to take advantage of the
modularity in a representation, it must exist in the prob-
lem [2]. While this is not as prevalent in the easier problems,
as there are fewer rooms in these problems, the targets
may be broken down into individual rooms. Rooms can be
further decomposed in the room type, location, and size. This
allows for useful pieces of the problem to be discovered

<floor> ::= <rooms>
<rooms> ::= <combiRooms> <rooms>

| <combiRooms> <room> | <room>
<combiRooms> ::= <one> | <two> | <three> | <four>

| <five> | <six>
<one> ::= <room>;
<two> ::= <room>;<room>;
<three> ::= <room>;<room>;<room>;
<four> ::= <room>;<room>;<room>;<room>;
<five> ::= <room>;<room>;<room>;<room>;<room>;
<six> ::= <room>;<room>;<room>;<room>;<room>;<room>;
<room> ::= <type>:<pos>:<size>
<pos> ::= <x>,<y>
<size> ::= <x>,<y>
<type> ::= bed | bath | live | close | dine

| kitch
<x> ::= -10 | -9 | -8 | ... | 8 | 9 | 10
<y> ::= -10 | -9 | -8 | ... | 8 | 9 | 10

Fig. 4. Grammar 4

−2

<room>

<type>:<x>,<y>:<x>,<y>

bedroom 694

(a) Grammar 1

bedroom

4 9 6 −2

<x>,<y> <x>,<y>

<type>:<pos>:<size>

<room>

(b) Grammar 2

Fig. 5. Examples of possible sub-derivation trees from Grammars 1 and 2

as modules and reused elsewhere and/or preserved through
future generations. In a randomly constructed problem, this
may not be the case. When the problem itself has little-to-no
notion of modularity, attempts at decomposing the problem
into smaller and more manageable pieces would be fruitless.

The fitness function used in this work is a weighted
aggregate of four different values:

1) The difference in the number of rooms in the target
design and the generated design;

2) If the generated designs have the same number of each
type of room as the target design;

3) The distance from the starting point (top-left coordi-
nate) of each room in the generated individual to their
correct starting point in the target individual;

4) The distance from the ending point (bottom-right co-
ordinate) of each room in the generated individual to
their correct ending point in the target individual.

Each of these measures was scored on a per-room basis,
meaning that there was a best and worst score for every
design, depending on how many rooms existed in the target.
If there were too few or too many rooms in the generated
design, they would be penalized per room for this. Each
of the measures listed above was given an equal proportion
(25%) of the total fitness. Fitness values ranged from 0 to
100; 0 being the best and 100 being the worst. The rest of
the experiment parameters used can be seen in Table I.

By the definition of modularity given above, the mod-

(a) Easy Target (b) Mid-Easy Target

(c) Medium Target (d) Mid-Hard Target

(e) Hard Target

Fig. 6. Target floor plans (The black areas denote spaces where there are
no rooms)

ularity of the population is calculated and measured at
every generation. At each generation, the modularity of
the population was measured in terms of occurrences of
the following non-terminals in the derivation trees of the
individuals:<room>, <pos>, and <size> . These non-terminals
were picked because <pos> and <size> were deliberately
omitted from some grammars while they were included in
others and <room> was included in all grammars. This enables
a comparison of the different approaches to determine if the
changes manifested in the derivation trees by the alterations
in the grammars yield any significant differences on any
aspect of the population and its performance.

The reasoning behind the differences in the production
rules used in the grammars is simple. The grammars which
produce larger derivation trees, both in depth and width, will
be more modular because they are capable of producing more
and/or larger sub-derivation trees. For example, Grammar 1
(Figure 1) is the least modular of all the grammars because it
creates the most minimal derivation trees during the genotype
to phenotype mapping process. Grammar 2 (Figure 2) is
much more modular, because is has <pos> and <size> non-

TABLE I

EXPERIMENTAL PARAMETERS

Parameter Value
Number of Runs 50

Initialization Ramped Half And Half
Pop. Size 1000

Generations 500
Elites 2

Selection Tournament (Size 2)
Replacement Generational

Crossover Single Point (70%)
Mutation Integer Flip (02%)
Wrapping None

Max Derivation Tree Depth 10

terminals which encapsulate the position coordinates and
width and height respectively. The third grammar, Grammar
3 (Figure 3), is modular in a different fashion than the
previous two. It introduces a new type of modularity where
more than one room may be created at once using the
<combiRooms> non-terminal. The fourth and final grammar,
Grammar 4 (Figure 4), is the most modular combining the
position and size encapsulation from Grammar 2 with the
creation of multiple rooms at once with Grammar 3.

In Figure 5, an example of the differences in possible
sub-derivation trees generated from Grammars 1 and 2 may
be seen. Figure 5(a) demonstrates how the most simple
representation, Grammar 1, generates a sub-derivation tree
that yields the phenotype: bedroom:4,9,:6,-2. Similarly, the
sub-derivation tree generated by Grammar 2 in Figure 5(b)
creates an identical phenotype, but with a different sub-
derivation tree. Note how Figure 5(b) has the additional
<pos> and <size> non-terminals. These encapsulate the <x>

and <y> non-terminals allowing them to be modified or
captured independently or as a group. The same principal
applies to the addition of the <combiRooms> non-terminal
in Grammars 3 and 4. The next section shows how these
grammars with different levels of modularity perform in
comparison to each other on an evolutionary design problem
at five levels of difficulty.

IV. RESULTS AND DISCUSSION

Fifty independent runs for each grammar/target combi-
nation were carried out using Grammatical Evolution in
Java (GEVA) [12]. Figure 7 shows the correlation between
modularity and fitness for each of the problems. It is easy
to see that for any of the problems and grammars used in
this work, as more modularity is found in the population,
fitness decreases (in GEVA fitness is minimized). It is also
interesting to note how in four out of five targets, the
grammars which facilitate more modular derivation trees
perform better than or as well as the less modular grammars.

Starting with the simplest problem, Figure 7(a) shows how
the most modular grammar, Grammar 4, out-performs all the
others. For the next problem in order of difficulty, Figure 7(b)
shows the more modular Grammars 2 and 4 slightly lagging
behind the less modular Grammar 3, but performing approx-
imately equally as well as the least modular Grammar 1.

The middle problem in difficulty, Figure 7(c), once again
demonstrates how the more modular grammars are able to
perform at least as well as or better than those producing less
modular solutions. The fourth problem, Figure 7(d) shows
some of the most encouraging results as the most modular
grammar outperforms all the others with high concentrations
of very modular solutions around the best fitness values
found for the run. For the hardest problem, Figure 7(e) shows
all the grammars performing similarly in terms of the best
fitness values found, but the more modular grammars start
with better fitness values and have wider dispersion around
the best fitness values they found. The only definite trend
that can be seen in regard to the relationship between each
grammar’s fitness and modularity value is the correlation that
as fitness improves (decreases) the modularity also increases.
Since this is universal across all difficulty of problems and
grammars, there is a definite relationship between increases
in modularity and increases in performance.

The plots in Figures 7(a) - 7(e) also give some information
about the diversity of the population in terms of fitness.
Each graph contains the same amount of data points for
each grammar. Starting with the easiest problem, Figure 7(a),
relatively few points can be seen for each grammar. This
suggests that the modularity/fitness values are clustered very
tightly together and that evolution is more or less neutral
for a large portion of the run. As the targets get harder to
match, a larger amount of points are visible on the graphs
showing how the fitness and modularity values are changing
over the course of evolution. By the second hardest problem,
Figure 7(d), the trails created by different grammars are
quite distinct and more filled out. This shows how evolution
explores even more of the search space at the different values
of fitness. Even the clusters of points where fitness stops
improving are more spread than the easier problems showing
how evolution may be neutral in terms of fitness, but not in
terms of modularity. This can be enforced by Figure 8 as it
shows how the improvements in fitness greatly slowed down
after a relatively short number of generations. Figure 7(e),
the plot of the most difficult problem, shows the distinct
trails of the evolutionary search as well as the more modular
solutions creating larger clusters of points where the change
in fitness has more or less halted, meaning there is more
exploration of solutions with very similar fitness values by
these grammars. This can also be enforced by looking at
Figure 9. It shows a similar trend to the previous problem
where fitness only slightly improves over time, but there is
still more exploration going on in terms of modularity. The
statistical significance of the best fitness and total modularity
plots can be found in Table II.

Further explanation of the shapes of the plots in Figure 7
can be attributed to the definition of modularity and the
fitness function used in this work. Firstly, the definition and
measure of modularity used here is quite simple. Recall
that the modularity value of an individual was calculated
by simply counting all the non-terminals of types <room> ,
<pos> , and <size> , and a module is defined as any sub-

(a) Easy Target (b) Easy-Medium Target

(c) Medium Target (d) Medium Hard Target

(e) Hard Target

Fig. 7. Scatter plots showing the correlation between modularity and best fitness

0 100 200 300 400 500

0
20

40
60

80
10

0
Hard−Medium Best Fitness

Generation

B
es

t F
itn

es
s

0 100 200 300 400 500

0
20

40
60

80
10

0
Hard−Medium Best Fitness

Generation

B
es

t F
itn

es
s

0 100 200 300 400 500

0
20

40
60

80
10

0
Hard−Medium Best Fitness

Generation

B
es

t F
itn

es
s

0 100 200 300 400 500

0
20

40
60

80
10

0
Hard−Medium Best Fitness

Generation

B
es

t F
itn

es
s

Grammar1
Grammar2

Grammar3
Grammar4

Fig. 8. Best fitness graph for the Hard-Medium problem

derivation tree or group of sub-derivation trees in an individ-
ual. Considering this, it is easy to see how modularity values
increase to a certain level and vary only slightly from that
point. Evolution finds a particular range of modularity values
which it seems to think are optimum and remains within that
range. The fitness function also contributes to the shape of
these plots by punishing and/or rewarding individuals based
on the number of modules they have, according to the above
definition of modularity. This promotes individuals with a
certain modularity value and discourages other individuals
that stray to far from this value. A possible remedy for this
could be to include some notion of usefulness of a module in
the definition of modularity. This would show a more linear
correlation between fitness and the modularity value being
measured because as more useful modules are discovered,
the best fitness would be increasing as well.

0 100 200 300 400 500

0
20

40
60

80
10

0

Hard Best Fitness

Generation

B
es

t F
itn

es
s

0 100 200 300 400 500

0
20

40
60

80
10

0

Hard Best Fitness

Generation

B
es

t F
itn

es
s

0 100 200 300 400 500

0
20

40
60

80
10

0

Hard Best Fitness

Generation

B
es

t F
itn

es
s

0 100 200 300 400 500

0
20

40
60

80
10

0

Hard Best Fitness

Generation

B
es

t F
itn

es
s

Grammar1
Grammar2

Grammar3
Grammar4

Fig. 9. Best fitness graph for the Hard problem

TABLE II

TOTAL MODULARITY VALUE T-TEST RESULTS

Gram. 1 Gram. 2 Gram. 3 Gram. 4
Easy Problem

Gram. 1 1.0 0.0 2.6×−07 0.0

Gram. 2 0.0 1.0 0.0 6.6 × 10−12

Gram. 3 2.6 × 10−7 0.0 1.0 0.0

Gram. 4 0.0 6.6 × 10−12 0.0 1.0
Easy-Medium Problem

Gram. 1 1.0 0.0 5.0×−44 0.0

Gram. 2 0.0 1.0 0.0 3.1 × 10−14

Gram. 3 5.0 × 10−44 0.0 1.0 0.0

Gram. 4 0.0 3.1 × 10−14 0.0 1.0
Medium Problem

Gram. 1 1.0 0.0 7.8×−03 0.0

Gram. 2 0.0 1.0 0.0 5.2 × 10−07

Gram. 3 7.8 × 10−03 0.0 1.0 0.0

Gram. 4 0.0 5.2 × 10−07 0.0 1.0
Hard-Medium Problem

Gram. 1 1.0 0.0 8.5×−06 0.0

Gram. 2 0.0 1.0 0.0 8.6 × 10−13

Gram. 3 8.5 × 10−06 0.0 1.0 0.0

Gram. 4 0.0 8.6 × 10−13 0.0 1.0
Hard Problem

Gram. 1 1.0 0.0 1.1×−07 0.0

Gram. 2 0.0 1.0 0.0 1.7 × 10−13

Gram. 3 1.1 × 10−07 0.0 1.0 0.0

Gram. 4 0.0 1.7 × 10−13 0.0 1.0

V. CONCLUSIONS

This work set out to examine how the capabilities of gram-
mars with varying levels of modularity perform differently
when solving design problems of varying difficulty. The
first conclusion that can be taken from the results of this
work is that there is a correlation between improvements in
fitness and increases in the modularity being expressed in
individuals. This is plain to see in Figures 7(a) - 7(e). The
second and equally important conclusion is that grammars
capable of generating more modular individuals do not suffer
the same stagnation of neutral evolution that occurs with less
modular grammars on sufficiently difficult problems. While
there may be little to no change in fitness over the course of
a number of generations, the more modular grammars were
still searching different solutions with different modularity
values. This held even more true as problem difficulty
increased, adding even more evidence to the widely known
fact that modularity is essential for problem scalability.

This work opens the door to many possibilities for future
experimentation. One of the first that comes to mind is
the addition of ADFs (previously mentioned in Section II-
B). ADFs have been studied with a variety of evolutionary
computation algorithms [14] and are at least mentioned in
texts outlining the features of genetic programming (GP) ap-
proaches [15]. It is widely known that ADFs add much to the
power of GP and GP-based algorithms and that they enhance
the modularity of the representation. Extending this work
by the addition of ADFs would allow for more analysis of
the modularity of different representations in grammar-based
GP, and GE in particular. Another avenue for exploration
after this work is the introduction of “smarter” crossover and
mutation operators that operate on derivation trees created by
GE’s genotype to phenotype mapping process instead of the

genotypic integer arrays. Along these same lines, operators
or measures could be implemented to identify useful modules
and make them more likely to be preserved through the
generations of an evolutionary run.

ACKNOWLEDGMENTS

The authors would like to acknowledge the members of
the Natural Computing Research and Applications Group
for their discussions over the topics addressed in this work,
especially James McDermott and Erik Hemberg for their dis-
cussions, comments, suggestions, and encouragement. This
research is based upon works supported by the Science
Foundation Ireland under Grant No. 08/RFP/CMS1115.

REFERENCES

[1] P. J. Angeline and J. Pollack. Evolutionary module acquisition. In
D. Fogel and W. Atmar, editors, Proceedings of the Second Annual
Conference on Evolutionary Programming, pages 154–163, La Jolla,
CA, USA, 25-26 Feb. 1993.

[2] E. D. de Jong, D. Thierens, and R. A. Watson. Defining modularity,
hierarchy, and repetition. In R. Poli, S. Cagnoni, and et al., editors,
GECCO 2004 Workshop Proceedings, Seattle, Washington, USA, June
2004.

[3] I. Dempsey, M. O’Neill, and A. Brabazon. Foundations in Grammat-
ical Evolution for Dynamic Environments. Springer, 2009.

[4] O. O. Garibay. Analyzing the Effects of Modularity on Search Spaces.
PhD thesis, University of Central Florida, 2008.

[5] J. K. Gershenson, G. J. Prasad, and S. Allamneni. Modular product
design : A life-cycle view. J. Integr. Des. Process Sci., 3(4):13–26,
1999.

[6] J. H. Holland. Adaptation in natural and artificial systems. The
University of Michigan Press, Ann Arbor, 1975.

[7] G. S. Hornby. Measuring, enabling and comparing modularity, regular-
ity and hierarchy in evolutionary design. In H.-G. Beyer and U.-M. O.
et al., editors, GECCO 2005: Proceedings of the 2005 conference on
Genetic and evolutionary computation, volume 2, pages 1729–1736,
Washington DC, USA, 25-29 June 2005. ACM Press.

[8] J. R. Koza. Genetic Programming: on the Programming of Computers
by Means of Natural Selection. MIT Press, 1992.

[9] J. R. Koza. Genetic Programming II: Automatic Discovery of Reusable
Programs. MIT Press, Cambridge, MA, USA, 1994.

[10] K. Krawiec and B. Wieloch. Functional modularity for genetic
programming. In GECCO ’09: Proceedings of the 11th Annual
conference on Genetic and evolutionary computation, pages 995–1002,
New York, NY, USA, 2009. ACM.

[11] H. Lipson, J. B. Pollack, and N. P. Suh. Promoting modularity in
evolutionary design. In Proceedings of DETC’01: 2001 ASME Design
Engineering Technical Conferences, 2001.

[12] M. O’Neill, E. Hemberg, C. Gilligan, E. Bartley, J. McDermott,
and A. Brabazon. GEVA: grammatical evolution in Java. ACM
SIGEVOlution, 3(2):17–22, 2008.

[13] M. O’Neill and C. Ryan. Grammatical Evolution: Evolutionary
Automatic Programming in an Arbitrary Language. Kluwer Academic
Publishers, 2003.

[14] U.-M. O’Reilly. Investigating the generality of automatically defined
functions. In GECCO ’96: Proceedings of the First Annual Conference
on Genetic Programming, pages 351–356, Cambridge, MA, USA,
1996. MIT Press.

[15] R. Poli, N. McPhee, and W. Langdon. A Field Guide to Genetic Pro-
gramming. Published via http://lulu.com and freely available
at http://www.gp-field-guide.org.uk, 2008.

[16] J. Woodward. Modularity in genetic programming. In In Genetic
Programming, Proceedings of EuroGP 2003, pages 14–16. Springer-
Verlag, 2003.

