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Calculation of the Dynamic Allowance for Railway Bridges from 

Direct Measurement  

 

 L.C. Connolly, E.J. O’Brien, A.J. O’Connor,E.J. Bowe , C.Leahy , D. 

Hajialiazadeh,  

1Roughan O’Donovan Innovative Solutions, Consulting Engineers 

 

Abstract 

In a traditional deterministic assessment, a dynamic amplification factor (DAF) is 

applied to the static loading in order to account for dynamics. The codified DAF 

values are appropriately conservative in order to consider the wide range of 

structures and load effects to which they are applied. In the current analysis, a site 

specific assessment dynamic ratio (ADR) is calculated from direct measurement on 

an 80 year old steel truss Railway Bridge. The ADR is defined as the ratio of 

characteristic total stress to the characteristic static stress. The application of ADR is 

a relatively new concept which has rarely been considered for railway bridges. An 

assessment performed on the bridge in question showed a decrease in the dynamic 

allowance when considering the site specific ADR, corresponding to a 26% decrease 

in calculated stress. The measurements available were also used to derive a robust 

stochastic model for dynamic allowance which considered the correlation between 

DAF and stress level. The developed model was applied to a probabilistic 

assessment and resulted in a 9% increase in reliability. 

 

Keywords: dynamics, DAF, ADR, truss, bridge, probabilistic, assessment, 

reliability, monitoring, vibration, signal, filter. 

 

1  Introduction 

In order to account for dynamics in bridge design and assessment, a Dynamic 

Amplification Factor (DAF) is typically applied to static loading. This is defined as 

the total (static + dynamic) load effect, 𝐿𝐸𝑇𝑜𝑡𝑎𝑙, to the static load effect, 𝐿𝐸𝑆𝑡𝑎𝑡𝑖𝑐, for 

a particular event. 

 

𝐷𝐴𝐹 =  
𝐿𝐸𝑇𝑜𝑡𝑎𝑙

𝐿𝐸𝑆𝑡𝑎𝑡𝑖𝑐
                                                           (1) 

It has been shown that in many cases the factors employed have been over-

conservative [1]. This is considered to be acceptable for bridge design codes in order 

to consider the wide range of structures and load effects to which they are applied. 

However, for existing structures, this conservatism can result in costly and 

unnecessary repairs being put in place. Previous research has shown that the DAFs 

defined in most codes are appropriate for lower levels of loading, such as single 

event crossings with light trucks on road bridges [1]. However, for heavier loads, 

measured DAFs have been shown to be significantly lower [1]. One possible reason 

for this is the speed reduction associated with heavy vehicles, which reduces 
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dynamic amplification as noted by Frýba [2]. The formulation of DAF in Equation 1 

also fails to account for the probability of maximum static and total load effects 

occurring for separate events. The Danish roads directorate (DRD) document on 

reliability based classification of the load carrying capacity of existing road bridges 

[3], suggests the use of a stochastic increment for dynamic amplification for gross 

vehicle weight (GVW) modelled as a normally distributed variable with mean and 

standard deviation equal to 41.5/GVW, where the GVW is in kN. The result of this 

model is that dynamics reduce with increasing vehicle weight, as shown in Figure 1.  

 

 
Figure 1. Mean DAF versus vehicle weight from Danish Roads Directorate [3] 

 

In order to alleviate the drawbacks associated with traditional codified DAFs, 

various authors [1,4,5] have introduced the concept of an Assessment Dynamic 

Ratio (ADR), defined as the ratio of the characteristic total (static + dynamic) load 

effect, 𝐿𝐸̃𝑇𝑜𝑡𝑎𝑙, to the characteristic static load effect, 𝐿𝐸̃𝑆𝑡𝑎𝑡𝑖𝑐. 

 

𝐴𝐷𝑅 =  
𝐿𝐸̃𝑇𝑜𝑡𝑎𝑙

𝐿𝐸̃𝑆𝑡𝑎𝑡𝑖𝑐

                                                           (2) 

 

1.1 Calculation of ADR 

In order to evaluate the ADR for a specific bridge, the characteristic total and 

characteristic static load effects are required. OBrien et al [4] used the output from a 

Bridge Weigh-in-Motion (WIM) system to obtain the strain signals associated with 

total (static + dynamic) strain. Characteristic static strains were calculated by 

statistical extrapolation. The WIM system used also calculates a ‘measured’ static 

influence line for the structure. This was used in conjunction with the measured axle 

weights to infer the strains associated with the static response. The characteristic 

total and static strains were then used to calculate the ADR. A disadvantage in the 

procedure used by OBrien et al [4] is that the inaccuracies associated with 

calculation of axle weights using bridge WIM result in the introduction of a bias in 

the calculation of ADR. A similar procedure is used in SAMARIS [1]. In each case, 

an additional disadvantage is the requirement of cumbersome calibration of the 

Bridge WIM system, which is not required for the approach adopted in this paper. 

Simulation can also be used to calculate characteristic load effects for both static 

and dynamic response. The research performed as part of SAMARIS [1] 
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demonstrated this. Once again, the conclusion was drawn that the dynamic 

amplification reduces as the magnitude of the load effect increases. Despite the 

advantages associated with site-specific ADR calculation, the theory has rarely been 

applied to railway bridges. One possible reason for this is the lack of variation in the 

distribution of trains that pass over a specific bridge, making it difficult to perform 

meaningful statistical extrapolations. The procedure was first introduced by Cantero 

[5], where it was concluded that a smaller recommended allowance for dynamics 

can be safely accommodated for various bridge configurations. Cantero [5] 

calculated characteristic load effects by performing Monte Carlo simulation on a 

train-track-bridge interaction model, accounting for track irregularities. The bridge 

model considered was a 2-dimensional Euler-Bernoulli beam. Considering the 

number of inputs and the large amount of computing power required for this type of 

simulation, it may be difficult to perform the analysis on a more complex 3-

dimensional bridge model. Therefore, a different approach is proposed in this paper. 

A case study bridge (see Section 3.1) is used to calculate a site-specific ADR, 

incorporating a structural health monitoring (SHM) system. Strain signals from the 

bridge, encompassing total (static + dynamic) strain, are filtered using band-pass 

filtering algorithms to remove dynamics. Maximum daily strains are then used to 

extrapolate characteristic total and static strains. The site specific ADR is then 

calculated for a critical member. The implications of the calculation are then 

demonstrated in terms of both a deterministic and probabilistic assessment. 

 

2  Demonstration of concept – filtering of dynamics 

In order to demonstrate and validate the methodology employed to filter the 

dynamic response, consider a simply supported beam of length ‘L’, subjected to a 

moving point load ‘P’, moving at a speed ‘c’ shown in Figure 2. 

 

 
Figure 2. Simply supported beam subjected to a moving point load 

 

The dynamic displacement response of the beam was formulated by Frýba [2]: 

 

𝑣(𝑥, 𝑡) =  𝑣𝑜 ∑
1

𝑗2[𝑗2(𝑗2 − 𝛼2)2 + 4𝛼2𝛽2]
[𝑗2(𝑗2 − 𝛼2) sin 𝑗𝜔𝑡

∞

𝑗=1

−
𝑗𝛼[𝑗2(𝑗2 − 𝛼2) − 2𝛽2]

(𝑗4 − 𝛽4)1/2
𝑒𝜔𝑏𝑡 sin 𝜔(𝐽)

′ 𝑡

− 2𝑗𝛼𝛽(cos 𝑗𝜔𝑡 − 𝑒−𝜔𝑏𝑡 cos 𝜔(𝐽)
′ 𝑡)] sin

𝑗𝜋𝑥

𝐿
  

 

 

 

 

 

 

(3) 
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where 

 

𝛼 =  
𝑐𝑙

𝜋
(

𝜇

𝐸𝐽
)

1/2

                                                        (4) 

 

𝛽 =  
𝜔𝑏𝑙2

𝜋2
(

𝜇

𝐸𝐽
)

1/2

                                                   (5) 

 

and, 

 

x = length coordinate with origin at the left hand end of the beam, 

t = time since the force arrived on the beam, 

v (x,t) = vertical displacement at point x and time t, 

j = mode of vibration, 

ω = circular frequency of damping of the beam, 

E = Young’s modulus of the beam, 

J = constant moment of inertia of the beam cross section, 

μ = constant mass per unit length of the beam 

 

The result is calculated for a 20 m span concrete beam with a breadth of 1 m and 

a depth of 0.8 m. A 200 kN point load is considered with a velocity of 20 m/s. By 

computing the first derivative of Equation 3 with respect to x, the dynamic strain 

response can be derived for the beam due to the moving load. Figure 3 illustrates the 

total (dynamic + static) strain in comparison to the static response. For this example, 

the dynamic increment may be considered as the ratio between the maximum total 

(dynamic + static) and maximum static strain, which corresponds to a value of 1.14. 

A total of 50 modes of vibration are considered in Figure 3, although the result is 

approximately the same for around 10 modes, indicating that the majority of 

vibration is associated with the first few modes. By computing the second derivative 

of Equation 3 with respect to time, the acceleration response of the beam can be 

obtained. A Fourier transform can then be applied to the acceleration signal to obtain 

the natural frequencies of the beam. These can be compared to the theoretic natural 

frequencies of a simply supported beam (Figure 4).  The jth natural frequency of this 

beam, as formulated by Frýba [2], is calculated as: 

 

𝛼 =  
𝑗2𝜋

2𝐿2
(

𝐸𝐽

𝜇
)

1/2

                                                        (6) 

 

Figure 4 illustrates the first 5 natural frequencies of the beam, computed by a Fast 

Fourier Transform (FFT) compared to the theoretical frequencies. It is clear that for 

the system in question, the beam does not vibrate at its second or fourth frequency. 
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Figure 3. Total (static + dynamic) and static strain response of theoretical concrete 

beam 

 

 

Figure 4. Theoretical and FFT computed natural frequencies of concrete beam 

 In practice, the dynamic strain is measured by the sensor on the bridge. As stated 

above, in order to calculate the ADR, both the static and dynamic response is 

required. The static response is obtained by applying a filter to the total (dynamic + 

static) response. Digital filters are often employed to remove specific frequency 

domains from an input signal [6]. This is achieved by passing an input signal 

through a transfer function, or filter signal. A low-pass filter is one which attenuates 

the parts of the input signal which relate to frequencies above a certain value, 
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referred to as the “cut-off” of the filter [6]. In this section, it will be shown that the 

concept is well suited to the removal of dynamics from measured strain signals. This 

is because the portion of the total (dynamic + static) strain signal which relate to 

dynamic vibration can be removed by applying a low pass filter. The remaining 

portion of the signal, which relates to static strain, will not be affected. A low-pass 

Butterworth signal filter was designed for this purpose. The Butterworth filter was 

chosen as it has low ripple in the pass band and stop band, meaning that the static 

response is not altered. Of course, a critical input to the filter is the first natural 

frequency, as this defines the cut-off. Vibration associated with higher frequencies 

will also be filtered out of the total (dynamic + static) response, although their affect 

on the dynamic response is expected to be low. 

As Butterworth signal filters have a slower roll-off than, for example, Chebyshev 

signal filters [6,7], the cut-off was set at a value 10% below the first natural 

frequency of the beam, to ensure that all vibration associated with the first natural 

frequency was removed. Figure 5 shows the result of passing the total strain signal 

from Figure 3 through a 7th order low-pass Butterworth filter. It is clear from Figure 

5 that the majority of the dynamic oscillation was removed from the total strain 

signal, (i.e. the ratio of the maximum static strain to the maximum filtered total 

strain is 1.00). In the following section, the theory will be applied to a case-study 

bridge to calculate a site-specific dynamic allowance. 

 

 
Figure 5. Filtering of total (static + dynamic) strain response for theoretical beam 

3  Calculation of site-specific ADR for the Boyne Viaduct 

3.1 Assessment 

The Boyne Viaduct (Figure 6) in Drogheda, Co. Louth, Ireland, is around 80 years 

old and consists of three steel spans of 40, 80 and 40 metres. Only the central span 

was considered for this study. The riveted steel truss structure has an arched profile 

consisting of 10 bays with cross beams spanning between the node points of the 
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truss. The ballasted track is supported on a steel deck plate over the rail bearers, 

which span between the cross beams.  

 

 
Figure 6: Central span of the Boyne Viaduct, Drogheda, Co. Louth, Ireland. 

  An FE model was developed and is illustrated in Figure 7. The model was used to 

perform a deterministic assessment of the structure in accordance with the design 

manual for roads and bridges (DMRB, [8,9]). A full description of the assessment 

can be found in Connolly et al. [10]. The assessment showed that the critical rail 

bearers of the structure were the only elements to fail the assessment. The load effect 

in question was ULS yielding and the overstress was 6%.  

 

 
Figure 7. finite element (FE) model of the Boyne Viaduct central span [11] 

After having failed the deterministic assessment, the rail bearers of the structure 

were assessed probabilistically under ULS yielding. The majority of the stochastic 

modelling was performed in accordance with the guidelines of the Danish Roads 

Directorate [3]. Full details of the probabilistic assessment can be found in [10]. 

FORM analysis [12] was used to compute the reliability index, β, for the rail bearer. 

The analysis converged to a value of β = 3.4. The target level of reliability may be 

specified by the client, but ISO 2394:1998 [13] recommends a value of 3.8 for a 

“moderate” cost of safety measures and a “great” consequence of failure. The 
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corresponding level recommended by the Joint Committee on Structural Safety is 

4.4 [14]. In either case, the element in question may be said to have failed the 

probabilistic assessment. 

Within the deterministic assessment, the dynamic allowance was calculated from 

the guidelines in the DMRB [8]. A value of 1.42 was calculated. As stated in Section 

1, this DAF may be inappropriately conservative for the structure in question. For 

the probabilistic assessment, the DAF was modelled in a manner similar to the DRD 

guidelines [3] as follows: 

 

𝐷𝐴𝐹 = 1 + 𝜀                                                       (7) 

 

The dynamic increment (ε) was modelled as a normally distributed variable with a 

Coefficient of Variation (CoV) of 1.0 as recommended in the DRD [3]. However, 

the mean value specified in the DRD guidelines [3] relate to road bridges. Therefore, 

the mean value was determined as that which resulted in a 98% fractile value equal 

to the deterministic increment (0.42), in line with work by O’Connor et al. [15]. This 

resulted in a normally distributed variable for the ε increment with mean and 

standard deviation equal to 0.14. It is clear that the stochastic modelling of dynamic 

allowance considered here was based on codified loading, and does not take account 

of the inverse relationship between vehicle weight and DAF, as noted in [1]. 

 The assessment performed was used to define an instrumentation strategy for the 

structure. Four rosette strain gauges were placed on the bottom flanges of the critical 

rail bearers and the most critical cross beam. In addition to the work performed in 

this paper, these gauges will be used for model validation and fatigue analysis. The 

bottom chord of the truss was instrumented with triaxial accelerometers. Figure 8 

shows the strain gauges and accelerometers installed on the structure.  

 

 (a)     (b)  

Figure 8. Accelerometer (a) and strain gauge (b) on the Boyne Viaduct 

 

3.2 Evaluation of natural frequencies 

In order to identify the optimum locations for the accelerometers on the Boyne 

viaduct, a modal analysis was carried out on the FE model. Elevations of the first 

two mode shapes of the structure are illustrated In Figure 10. Their respective 

frequencies of vibration were calculated as 3.9 and 9.2 Hz. Based on the mode 

shapes, accelerometers were placed at centre span and at one third span. 
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(a) 

 
(b) 

Figure 9. First (a) and second (b) vertical mode shapes of the Boyne Viaduct 

 

Vibration responses from the accelerometers at the central span and one third 

span are illustrated in Figure 10. 

 

 
Figure 10. Vertical acceleration at centre span (a) and one third span (b) of the 

Boyne Viaduct 

 

As stated in Section 2 above, a critical input to the low-pass filter is the natural 

frequency of vibration of the structure. FFTs were calculated for each of the 

acceleration responses at centre span and one third span and are illustrated in Figure 

11. It should be noted that the Fourier Transforms shown in Figure 11 are based on 

all signals (from all events) together. It is clear that for both FFTs, there is a peak 

around 10Hz. Most of the FFTs for each individual event also showed a peak at this 

frequency. Therefore, this was the cut-off defined for the low-pass filter. Each FFT 

also showed a sharp peak at approximately zero, but this was attributed to signal 

noise and was ignored. 
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Figure 11. FFT of vertical acceleration at centre span (a) and one third span (b) of 

the Boyne Viaduct 

 

3.3 Removal of dynamics 

In order to remove the dynamics from the total (static + dynamic) portion of the 

strain signals for the centre of the rail bearer, the low-pass filter discussed in Section 

2 was applied to the strain signals. It was found that various levels of dynamic 

amplification were noted for different events. Figure 12 shows an example with a 

maximum DAF (per train) of 1.07, while Figure 13 shows an example with a 

maximum DAF (per train) of 1.02. It should be noted that the strain signals shown 

are principal strains for the element in question, which are considered to be 

appropriate for the critical yield criterion in the assessment. The figures also show a 

magnified view of selected peaks. 

It is clear from Figures 12 and 13 that the DAF considered in the DMRB is 

conservative for the bridge in question as the maximum DAF detected in the 

monitoring period is 24% below the DAF calculated as recommended in the DMRB 

[8]. This is expected, considering that the age of the structure may indicate that it is 

over-designed. In addition, the ballasted track may tend to reduce dynamic 

amplification for the rail bearers, as noted in the Eurocode [16]. The authors also 

note that there is a speed restriction on the bridge of 50 km/hr, which will also result 

in low levels of dynamic amplification as noted by Frýba [2]. 
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Figure 12. Low-pass filter applied to strain data at centre of rail bearer – DAF = 1.07 

 

 
Figure 13. Low-pass filter applied to strain data at centre of rail bearer – DAF = 1.02 

 

 

3.4 Calculation of dynamic allowance. 

3.4.1   Assessment Dynamic Ratio (ADR) 

In order to evaluate the characteristic ADR from Equation 2, the characteristic total 

(static + dynamic) load effect, 𝐿𝐸̃𝑇𝑜𝑡𝑎𝑙, and the characteristic static load effect, 

𝐿𝐸̃𝑆𝑡𝑎𝑡𝑖𝑐, are required. In order to derive characteristic load effects, a Generalised 

Extreme Value (GEV) distribution is fitted to the maximum daily strains by 

maximum likelihood estimation. 20 days of measurement was available at the time 
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of submission, consisting of around 340 train passing events. The characteristic load 

effect is calculated at the appropriate return period. A return period of 1000 years is 

taken in the Eurocode for design [16]. A 75-year return period is considered here for 

an existing bridge. Figure 14 is plotted on probability paper. The 75 year return 

period for maximum daily values (250 weekdays in a year) is given as: 

 

− ln(− ln(1 − 1/[75 ∗ 250])) ≈ 9.84                                      (7) 

 

In Figure 14 the dashed line represents the GEV fit to the static strain, while the 

solid line represents the GEV fit to the total (static + dynamic) strain.  

 

 
Figure 14. Extrapolation of total and static strain for ADR 

 

The concave upward shape of the graph in Figure 14 indicates Weibull behaviour 

[12]. The ADR is calculated as 1.012. However, in order to allow a margin for error, 

an ADR of 1.05 is suggested for this member. This is considered for deterministic 

assessment in Section 4. 

3.4.2   DAF distribution 

For the probabilistic assessment, a distribution of DAF is required. For this purpose, 

a histogram of all DAFs (for individual events) is plotted in Figure 15. Normal and 

Lognormal distributions are fitted to the data. DAF is usually modelled as a 

normally distributed variable [3]. However, it is clear from the figure that the 

lognormal distribution is more appropriate for the data. This was confirmed with a 

goodness of fit test.  
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Figure 15. Fit of lognormal distribution to dynamic amplification 

 

It should be noted that the distributions were fitted to the dynamic increment, ε, and 

not the DAF. The lognormal parameters of the dynamic increment, ε, of μlog and σlog 

are -4.69 and 0.71, respectively. This corresponds to an associated normal mean and 

standard deviation of 0.012 and 0.01, respectively. Convolution is then used to 

obtain the maximum yearly distribution of DAF: 

 

𝐹(𝑥) = 𝑓(𝑥)𝑁                                                         (8) 

 

Where F(x) is the maximum yearly distribution, f(x) is the daily distribution, and: 

 

𝑁 = [𝑛𝑜. 𝑡𝑟𝑎𝑖𝑛𝑠 𝑝𝑒𝑟 𝑑𝑎𝑦] × [𝑛𝑜. 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 𝑑𝑎𝑦𝑠] = 16×250 = 4000       (9) 

 

Therefore, the yearly distribution for the dynamic increment, ε, considered 

appropriate for probabilistic assessment can be calculated and is given by a 

lognormal distribution with parameters μlog and σlog equal to -2.12 and 0.23. This 

corresponds to an associated normal mean and standard deviation of 0.12 and 0.03, 

respectively. It is clear that this is less conservative than the previous distribution 

employed for DAF. It may also be concluded here that the assumption of the DRD 

guidelines [3] that the coefficient of variation in DAF is equal to 1.0 may not be 

appropriate for railway structures.  

3.4.3   Stress varying DAF distribution6 

The distribution derived for DAF in Section 3.4.2 is calculated for the specific 

bridge element in question. However, consideration is not given to the trend of high 

DAFs corresponding to lower stresses [1]. For this reason, a stress varying 

lognormal distribution is fit to the DAFs of Figure 15. The principal stress is 

calculated from Equation 10. In Equation 10, E and v are the Young’s modulus and 
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Poisson’s ratio of steel, respectively. The ε values correspond to the strains on each 

of the three gauges of the stacked rectangular rosette used. 

 
𝐸

2
(

𝜀1 + 𝜀3

1 − 𝑣
±

1

1 + 𝑣
√(𝜀1 − 𝜀2)2 + (𝜀2 − 𝜀3)2)                            (10) 

 

Figure 16 illustrates a contour plot of the stress-varying lognormal fit to the 

distribution of the dynamic increment for each event. The parameters of the 

distribution (μlog and σlog) vary with stress according to linear trends. The stress-

varying distribution is fitted to the measured data using maximum likelihood 

estimation which determines the parameters of the linear trends. It can be seen that 

the approach is effective for modelling the reduction in DAF with increase in stress. 

The approach is similar to that used by OBrien et al. [17] who used a time-varying 

distribution of traffic loading to model growth in traffic loading over time. It is 

important to understand that this is not a three dimensional statistical distribution but 

rather a two dimensional distribution that changes with stress. 

 

 
Figure 16. Stress varying lognormal distribution for DAF  

 

It is clear in Figure 16 that the inverse relationship between stress and DAF is not as 

pronounced as was found in the literature [1]. This may be due to the low levels of 

dynamic vibration on the Structure and also due to the limited data available. 

Convolution was again used, as in Section 3.4.2, in order to derive the maximum 

yearly distribution. A 3D view of the yearly distribution is shown in Figure 17. It is 

clear that the standard deviation reduces as the stresses increase.  
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Figure 17. 3D view of maximum yearly stress varying lognormal distribution for 

DAF  

4  Implications for safety assessment 

The ADR calculated in Section 3.4.1 is considered applicable to the deterministic 

assessment. The value of 1.05 calculated is 26% below the value of 1.42 determined 

from the procedure outlined in the DMRB [8]. This results in the 6% overstress 

previously noted being reduced to a 20% under stress. It is clear that this could 

alleviate the need for further assessment. 

The probabilistic analysis has been reconsidered with application of the more 

appropriate lognormal distribution for DAF, as determined in Section 3.4.2. The use 

of this distribution has been shown to result in an increase in the β-value from 3.4 to 

3.5. As discussed in Section 3 above, this may still be considered to be insufficient 

for ULS failure under the guidelines of the JCSS [14]. Therefore, it is considered 

appropriate to consider the stress dependant distribution derived in Section 3.4.3. 

In the probabilistic assessment, all parameters which relate to the load and 

resistance Equation of the ULS were modelled stochastically. This means that the 

static analysis was run 100,000 times, varying each parameter by randomly 

sampling from a distribution with a mean value (μ), and standard deviation (σ). A 

Matlab random number generator was used to perform the sampling. The stress 

varying distribution derived in Section 3.4.3 allowed sampling from a separate 

distribution for DAF, depending on the stress level. This procedure resulted in a 

further increase in the β-value to 3.7. 
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5  Conclusions and recommendations 

A deterministic and subsequent probabilistic assessment was carried out on an 80 

year old riveted steel truss railway bridge. The bridge was shown to have an 

insufficient level of reliability under ULS yielding. Data from instrumentation on the 

bridge was used to derive a more appropriate dynamic allowance. The assessments 

were then re-formulated with consideration of the new representation of dynamic 

allowance. 

 The traditional DAF defined in the DMRB was replaced with the Assessment 

Dynamic Ratio (ADR). The application of ADR resulted in a reduction in the 

utilisation for the critical element and limit state from 6% over-stress to 20% under-

stress. Therefore, the procedure developed could have shown the bridge to have 

sufficient capacity prior to the undertaking of a probabilistic assessment. 

A stochastic distribution was derived for the maximum yearly dynamic increment 

from the distribution of DAFs for individual events. This was shown to result in a 

3% increase in reliability index, β, than that which was originally calculated. A 

stress varying distribution was also derived for DAF and this was also considered in 

the probabilistic assessment. This was shown to result in an increase in reliability of 

9% from the original calculation. 

The procedure developed herein is considered to have significant advantages over 

previous methods developed in the literature. For example, the expensive installation 

of WIM systems (and associated error) is alleviated. In addition, the development of 

complex and intensive dynamic interaction FE models is not required. Indeed, the 

procedures developed herein may be applied as an afterthought to any structure with 

a sufficient Structural Health Monitoring System installed. 

It is considered that subsequent data to the 20-day period used in this analysis 

would be beneficial to provide a better representation of the stochastic distribution. 

Therefore, it is recommended that the models developed be re-calculated after a 

longer monitoring period has elapsed. It would also be beneficial to apply the 

method to another structure with higher levels of dynamic amplification in order to 

consider a wider range for the stress varying DAF distribution. 
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