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CLUSTERING SOUTH AFRICAN HOUSEHOLDS BASED
ON THEIR ASSET STATUS USING LATENT VARIABLE

MODELS.

By Damien McParland∥,∗, Isobel Claire Gormley∥,∗, Tyler H.
McCormick††,†, Samuel J. Clark∗∗,†,‡,§,¶, Chodziwadziwa

Whiteson Kabudula‡ and Mark A. Collinson‡,¶

University College Dublin∗, University of Washington†, Rural Public
Health and Health Transitions Research Unit (Agincourt), School of Public
Health, University of the Witwatersrand‡, Institute of Behavioral Science
(IBS), University of Colorado at Boulder§ and INDEPTH Network¶.

The Agincourt Health and Demographic Surveillance System has
since 2001 conducted a biannual household asset survey in order to
quantify household socio-economic status (SES) in a rural population
living in northeast South Africa. The survey contains binary, ordinal
and nominal items. In the absence of income or expenditure data,
the SES landscape in the study population is explored and described
by clustering the households into homogeneous groups based on their
asset status.

A model-based approach to clustering the Agincourt households,
based on latent variable models, is proposed. In the case of modeling
binary or ordinal items, item response theory models are employed.
For nominal survey items, a factor analysis model, similar in nature
to a multinomial probit model, is used. Both model types have an un-
derlying latent variable structure – this similarity is exploited and the
models are combined to produce a hybrid model capable of handling
mixed data types. Further, a mixture of the hybrid models is con-
sidered to provide clustering capabilities within the context of mixed
binary, ordinal and nominal response data. The proposed model is
termed a mixture of factor analyzers for mixed data (MFA-MD).

The MFA-MD model is applied to the survey data to cluster the
Agincourt households into homogeneous groups. The model is esti-
mated within the Bayesian paradigm, using a Markov chain Monte
Carlo algorithm. Intuitive groupings result, providing insight to the
different socio-economic strata within the Agincourt region.

∥Funded by Science Foundation Ireland, grant number 09/RFP/MTH2367.
∗∗Supported by NIH grants K01 HD057246, R01 HD054511, R24 AG032112.
††Supported by NIH grant R01 HD054511 and a Google Faculty Research Award.
Keywords and phrases: clustering, mixed data, item response theory, Metropolis-

within-Gibbs.

1
imsart-aoas ver. 2012/04/10 file: McParlandEtAl.tex date: January 22, 2014

http://www.imstat.org/aoas/


2 MCPARLAND ET AL.

1. Introduction. The Agincourt Health and Demographic Surveillance
System (HDSS) (Kahn et al., 2007) continuously monitors the population of
21 villages located in the Bushbuckridge subdistrict of Mpumalanga Province
in northeast South Africa. This is a rural population living in what was, dur-
ing Apartheid, a black ‘homeland’. The Agincourt HDSS was established in
the early 1990s with the purpose of guiding the reorganization of South
Africa’s health system. Since then the goals of the HDSS have evolved and
now it contributes to evaluation of national policy at population, household
and individual levels. Here, the aim is to study the socio-economic status of
the households in the Agincourt region.

Asset-based wealth indices are a common way of quantifying wealth in
populations for which alternative methods are not feasible (Vyas and Ku-
maranayake, 2006), such as when income or expenditure data are unavail-
able. Households in the study area have been surveyed biannually since 2001
to elicit an accounting of assets similar to that used by the Demographic
and Health Surveys (Rutstein and Johnson, 2004) to construct a wealth in-
dex. The SES landscape is explored by analyzing the most recent survey of
assets for each household. The resulting dataset contains binary, ordinal and
nominal items.

The existence of SES strata or clusters is a well established concept within
the sociology literature. Weeden and Grusky (2012), Erikson and Goldthorpe
(1992) and Svalfors (2006), for example, expound the idea of SES clusters.
Alkema et al. (2008) consider a latent class analysis approach to exploring
SES clusters within two of Nairobi’s slum settlements; they posit the exis-
tence of 3 and 4 poverty clusters in the two slums respectively. In a similar
vein, here the aim is to examine the SES clustering structure within the set
of Agincourt households, based on the asset status survey data. Interest lies
in exploring the substantive differences between the SES clusters. Thus, the
scientific question of interest can be framed as: what are the (dis)similar
features of the SES clusters in the set of Agincourt households? This pa-
per aims to answer this question by appropriately clustering the Agincourt
households based on asset survey data. The resulting socio-economic group
membership information will be used for targeted health care projects and
for further surveys of the different socio-economic groups. The SES strata
could also serve as valuable inputs to other analyses such as mortality mod-
els, and will serve as a key tool in studying poverty dynamics.

To uncover the clustering structure in the Agincourt region, a model is
presented here which facilitates clustering of observations in the context
of mixed categorical survey data. Latent variable modeling ideas are used
as the observed response is viewed as a categorical manifestation of a la-
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CLUSTERING SOUTH AFRICAN HOUSEHOLDS 3

tent continuous variable(s). Several models for clustering mixed data have
been detailed in the literature. Early work on modeling such data employed
the location model (Hunt and Jorgensen, 1999; Lawrence and Krzanowski,
1996; Willse and Boik, 1999), in which the joint distribution of mixed data
is decomposed as the product of the marginal distribution of the categor-
ical variables and the conditional distribution of the continuous variables,
given the categorical variables. More recently, Hunt and Jorgensen (2003)
re-examined these location models in the presence of missing data. Latent
factor models in particular have generated interest for modeling mixed data;
Quinn (2004) uses such models in a political science context. Gruhl, Ero-
sheva and Crane (2013) and Murray et al. (2013) use factor analytic models
based on a Gaussian copula as a model for mixed data, but not in a clus-
tering context. Everitt (1988); Everitt and Merette (1988) and Muthén and
Shedden (1999) provide an early view of clustering mixed data, including
the use of latent variable models. Cai et al. (2011), Browne and McNicholas
(2012) and Gollini and Murphy (2013) propose clustering models for cate-
gorical data based on a latent variable. However, none of the existing suite
of clustering methods for mixed categorical data have the capability of mod-
eling the exact nature of the binary, ordinal and nominal variables in the
Agincourt survey data, or the desirable feature of modeling all the survey
items in a unified framework. The clustering model proposed here presents a
unifying latent variable framework by elegantly combining ideas from item
response theory (IRT) and from factor analysis models for nominal data.

Item response modeling is an established method for analyzing binary or
ordinal response data. First introduced by Thurstone (1925), IRT has its
roots in educational testing. Many authors have contributed to the expan-
sion of this theory since then including Lord (1952); Rasch (1960), Lord
and Novick (1968) and Vermunt (2001). Extensions include the graded re-
sponse model (Samejima, 1969) and the partial credit model (Masters, 1982).
Bayesian approaches to fitting such models are detailed in Johnson and Al-
bert (1999) and Fox (2010). IRT models assume that each observed ordinal
response is a manifestation of a latent continuous variable. The observed
response will be level k, say, if the latent continuous variable lies within
a specific interval. Further, IRT models assume that the latent continuous
variable is a function of both a respondent specific latent trait variable and
item specific parameters.

Modeling nominal response data is typically more complex than modeling
binary or ordinal data as the set of possible responses is unordered. A pop-
ular model for nominal choice data is the multinomial probit (MNP) model
(Geweke, Keane and Runkle, 1994). Bayesian approaches to fitting the MNP
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4 MCPARLAND ET AL.

model have been proposed by Albert and Chib (1993); McCulloch and Rossi
(1994); Nobile (1998) and Chib, Greenberg and Chen (1998). The model
has also been extended to include multivariate nominal responses by Zhang,
Boscardin and Belin (2008). The MNP model treats nominal response data
as a manifestation of an underlying multidimensional continuous latent vari-
able, which depends on a respondent’s covariate information and some item
specific parameters. Here a factor analysis model for nominal data, similar
in nature to the MNP model, is proposed where the observed nominal re-
sponse is a manifestation of the multidimensional latent variable which is
itself modeled as a function of both a respondent’s latent trait variable and
some item specific parameters.

The structural similarities between IRT models and the MNP model sug-
gest a hybrid model would be advantageous. Both models have a latent vari-
able structure underlying the observed data, which exhibits dependence on
item specific parameters. Further, the latent variable in both models has an
underlying factor analytic structure, through the dependency on the latent
trait. This similarity is exploited and the models are combined to produce a
hybrid model capable of modeling mixed categorical data types. This hybrid
model can be thought of as a factor analysis model for mixed data.

As stated, the motivation here is the need to substantively explore clus-
ters of Agincourt households based on mixed categorical survey data. A
model-based approach to clustering is proposed, in that a mixture mod-
eling framework provides the clustering machinery. Specifically, a mixture
of the factor analytic models for mixed data is considered to provide clus-
tering capabilities within the context of mixed binary, ordinal and nominal
response data. The resulting model is termed the mixture of factor analyzers
for mixed data (MFA-MD).

The paper proceeds as follows. Background information about the Ag-
incourt region of South Africa as well as the socio-economic status (SES)
survey and resulting data set are introduced in Section 2. IRT models, a
model for nominal response data and the amalgamation and extension of
these models to a MFA-MD model are considered in Section 3. Section 4 is
concerned with Bayesian model estimation and inference. The results from
fitting the model to the Agincourt data are presented in Section 5. Finally,
discussion of the results and future research areas takes place in Section 6.

2. The Agincourt HDSS Data Set. The Health and Demographic
Survey System (HDSS) covers an area of 420km2 consisting of 21 villages
with a total population of approximately 82, 000 people. The infrastructure
in the area is mixed. The roads in and surrounding the study area are in the
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process of rapidly being upgraded from dirt to tar. The cost of electricity is
prohibitively high for many households though it is available in all villages.
A dam has been constructed nearby but to date there is no piped water
to dwellings and sanitation is rudimentary. The soil in the area is generally
suited to game farming and there is virtually no commercial farming activ-
ity. Most households contain wage earners who purchase maize and other
foods which they then supplement with home-grown crops and collected wild
foodstuffs.

To explore the SES landscape in Agincourt, data describing assets of
households in the Agincourt study area are analyzed. The data consist of
the responses of N = 17, 617 households to each of J = 28 categorical survey
items. There are 22 binary items, 3 ordinal items and 3 nominal items. The
binary items are asset ownership indicators for the most part. These items
record whether or not a household owns a particular asset (e.g. whether or
not they own a working car). An example of an ordinal item is the type of
toilet the household uses. This follows an ordinal scale from no toilet at all
to a modern flush toilet. Finally, the power used for cooking is an example
of a nominal item. The household may use electricity, bottled gas or wood,
among others. This is an unordered set. A full list of survey items is given
in Appendix A. For more information on the Agincourt HDSS and on data
collection see www.agincourt.co.za.

Previous analyses of similar mixed categorical asset survey data derive
SES strata using principal components analysis. Typically households are
grouped into pre-determined categories based on the first principal scores,
reflecting different SES levels (Filmer and Pritchett, 2001; Gwatkin et al.,
2007; McKenzie, 2005; Vyas and Kumaranayake, 2006). Filmer and Pritch-
ett (2001), for example, examine the relationship between educational en-
rollment and wealth in India by constructing an SES asset index based on
principal component scores. Percentiles are then used to partition the obser-
vations into groups rather than the model based approach suggested here.
In a previous analysis of the Agincourt HDSS survey data, Collinson et al.
(2009) construct an asset index for each household. How migration impacts
upon this index is then analyzed, rather than the exploration of SES con-
sidered here. The routine approach of principal components analysis does
not explicitly recognize the data as categorical, and further, the use of such
a one dimensional index will often miss the natural groups that exist with
respect to the whole collection of assets and other possible SES variables.
The model proposed here aims to alleviate such issues.
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6 MCPARLAND ET AL.

3. A Mixture of Factor Analyzers Model for Mixed Data. A
mixture of factor analyzers model for mixed data (MFA-MD) is proposed
to explore SES clusters of Agincourt households. Each component of the
MFA-MD model is a hybrid of an IRT model and a factor analytic model
for nominal data. In this section IRT models for ordinal data and a latent
variable model for nominal data are introduced, before they are combined
and extended to the MFA-MD model.

3.1. Item Response Theory Models for Ordinal Data. Suppose item j
(for j = 1, . . . , J) is ordinal and the set of possible responses is denoted
{1, 2, . . . ,Kj} where Kj denotes the number of response levels to item j.
IRT models assume that, for respondent i, a latent Gaussian variable zij
corresponds to each categorical response yij . A Gaussian link function is
assumed, though other link functions, such as the logit, are detailed in the
IRT literature (Fox, 2010; Lord and Novick, 1968).

For each ordinal item j there exists a vector of threshold parameters
γ
j
=

(
γj,0, γj,1, . . . , γj,Kj

)
, the elements of which are constrained such that

−∞ = γj,0 ≤ γj,1 ≤ . . . ≤ γj,Kj = ∞.

For identifiability reasons (Albert and Chib, 1993; Quinn, 2004) γj,1 = 0.
The observed ordinal response, yij , for respondent i is a manifestation of the
latent variable zij i.e.

if γj,k−1 ≤ zij ≤ γj,k then yij = k.(1)

That is, if the underlying latent continuous variable lies within an interval
bounded by the threshold parameters γj,k−1 and γj,k, then the observed
ordinal response is level k.

In a standard IRT model, a factor analytic model is then used to model the
underlying latent variable zij . It is assumed that the mean of the conditional
distribution of zij depends on a q dimensional, respondent specific, latent
variable θi and on some item specific parameters. The latent variable θi is
sometimes referred to as the latent trait or a respondent’s ability parameter
in IRT. Specifically, the underlying latent variable zij for respondent i and
item j is assumed to be distributed as

zij |θi ∼ N(µj + λT
j θi, 1).

The parameters λj and µj are usually termed the item discrimination param-
eters and the negative item difficulty parameter respectively. As in Albert
and Chib (1993), a probit link function is used so the variance of zij is 1.
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CLUSTERING SOUTH AFRICAN HOUSEHOLDS 7

Under this model, the conditional probability that a response takes a
certain ordinal value can be expressed as the difference between two standard
Gaussian cumulative distribution functions i.e. P (yij = k|λj , µj , γj , θi) is

Φ[γj,k − (µj + λT
j θi)]− Φ[γj,k−1 − (µj + λT

j θi)].(2)

Since a binary item can be viewed as an ordinal item with two levels (0
and 1, say) the IRT model can also be used to model binary response data.
The threshold parameter for a binary item j is γ

j
= (−∞, 0,∞) and hence

P (yij = 1|λj , µj , γj , θi) = Φ
(
µj + λT

j θi
)
.

3.2. A Factor Analytic Model for Nominal Data. Modeling nominal re-
sponse data is typically more complicated than modeling ordinal data since
the set of possible responses is no longer ordered. The set of nominal re-
sponses for item j is denoted {1, 2, . . . ,Kj} such that 1 corresponds to the
first response choice while Kj corresponds to the last response choice, but
where no inherent ordering among the choices is assumed.

As detailed in Section 3.1, the IRT model for ordinal data posits a one
dimensional latent variable for each observed ordinal response. In the factor
analytic model for nominal data proposed here, a Kj − 1 dimensional latent
variable is required for each observed nominal response. That is, the latent
variable for observation i corresponding to nominal item j is denoted

zij = (z1ij , . . . , z
Kj−1
ij ).

The observed nominal response is then assumed to be a manifestation of the
values of the elements of zij relative to each other and to a cut-off point,
assumed to be 0. That is,

yij =


1 if max

k
{zkij} < 0;

k if zk−1
ij = max

k
{zkij} and zk−1

ij > 0 for k = 2, . . . ,Kj .

Similar to the IRT model, the latent vector zij is modeled via a factor
analytic model. The mean of the conditional distribution of zij depends
on a respondent specific, q-dimensional, latent trait, θi, and item specific
parameters i.e. zij |θi ∼ MVNKj−1(µj

+Λjθi, I) where I denotes the identity
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8 MCPARLAND ET AL.

matrix. The loadings matrix Λj is a (Kj − 1) × q matrix, analogous to the
item discrimination parameter in the IRT model of Section 3.1; likewise, the
mean µ

j
is analogous to the item difficulty parameter in the IRT model.

It should be noted that binary data could be regarded as either ordinal
or nominal. The model proposed here is equivalent to the model proposed
in Section 3.1 when Kj = 2.

3.3. A Factor Analysis Model for Mixed Data. It is clear that the IRT
model for ordinal data (Section 3.1) and the factor analytic model for nomi-
nal data (Section 3.2) are similar in structure. Both model the observed data
as a manifestation of an underlying latent variable, which is itself modeled
using a factor analytic structure. This similarity is exploited to obtain a
hybrid factor analysis model for mixed binary, ordinal and nominal data.

Suppose Y , an N × J matrix of mixed data, denotes the data from N
respondents to J survey items. Let O denote the number of binary items
plus the number of ordinal items, leaving J−O nominal items. Without loss
of generality, suppose that the binary and ordinal items are in the first O
columns of Y while the nominal items are in the remaining columns.

The binary and ordinal items are modeled using an IRT model and the
nominal items using the factor analytic model for nominal data. Therefore,
for each respondent i there are O latent continuous variables corresponding
to the ordinal items and J − O latent continuous vectors corresponding to
the nominal items. The latent variables and latent vectors for respondent
i are collected together in a single D dimensional vector zi where D =
O +

∑J
j=O+1(Kj − 1). That is, underlying respondent i’s set of J binary,

ordinal and nominal responses lies the latent vector

zi = (zi1, . . . , ziO, . . . , z
1
iJ , . . . , z

KJ−1
iJ ).

This latent vector is then modeled using a factor analytic structure:

zi|θi ∼ MVND(µ+ Λθi, I).(3)

The D× q dimensional matrix Λ is termed the loadings matrix and µ is the
D dimensional mean vector. Combining the IRT and factor analytic models
in this way facilitates the modeling of binary, ordinal and nominal response
data in an elegant and unifying latent variable framework.

The model in (3) provides a parsimonious factor analysis model for the
high-dimensional latent vector zi which underlies the observed mixed data.
As in any model which relies on a factor analytic structure, the loadings
matrix details the relationship between the low dimensional latent trait θi
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and the high-dimensional latent vector zi. Marginally the latent vector is
distributed as

zi ∼ MVND(µ,ΛΛ
T + I)

resulting in a parsimonious covariance structure for zi.

3.4. A Mixture of Factor Analyzers Model for Mixed Data. To facilitate
clustering when the observed data are mixed categorical variables, a mixture
modeling framework can be imposed on the hybrid model defined in Section
3.3. The resulting model is termed the mixture of factor analyzers model for
mixed data. In the MFA-MD model, the clustering is deemed to occur at
the latent variable level i.e. under the MFA-MD model the distribution of
the latent data zi is modeled as a mixture of G Gaussian densities

f(zi) =

G∑
g=1

πgMVND

(
µ
g
, ΛgΛ

T
g + ID

)
.(4)

The probability of belonging to cluster g is denoted by πg where
∑G

g=1 πg = 1
and πg > 0 ∀ g. The mean and loading parameters are cluster specific.

As is standard in a model-based approach to clustering (Celeux, Hurn
and Robert, 2000; Fraley and Raftery, 1998), a latent indicator variable,
ℓi = (ℓi1, . . . , ℓiG) is introduced for each respondent i. This binary vector
indicates the cluster to which individual i belongs i.e. lig = 1 if i belongs to
cluster g; all other entries in the vector are 0. Under the model in (4), the
augmented likelihood function for the N respondents is then given by

L(π, Λ̃,Γ, Z,Θ, L|Y ) =

N∏
i=1

G∏
g=1

πg

 O∏
j=1

Kj∏
k=1

N(zij |λ̃
T
gj θ̃i, 1)

I{γj,k−1<zij<γj,k|yij}


×

 J∏
j=O+1

Kj∏
k=2

3∏
s=1

N(zk−1
ij |λ̃k−1T

gj θ̃i, 1)
I(case s|yij)


ℓig

(5)

where θ̃i = (1, θi1, . . . , θiq)
T and Λ̃g is the matrix resulting from the combi-

nation of µ
g
and Λg so that the first column of Λ̃g is µ

g
. Thus the dth row

of Λ̃g is λ̃gd = (µgd, λgd1, . . . , λgdq).
The likelihood function in (5) depends on the observed responses Y through

the indicator functions. In the ordinal part of the model, the observed yij re-
stricts the interval in which zij lies, as detailed in (1). In the nominal part of
the model, zk−1

ij is restricted in one of three ways, depending on the observed
yij . The three cases I(case s|yij) for s = 1, 2, 3 are defined as follows:
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10 MCPARLAND ET AL.

• I(case 1|yij) = 1 if yij = 1 i.e. max
k

{zkij} < 0.

• I(case 2|yij) = 1 if yij = k i.e. zk−1
ij = max

k
{zkij} and zk−1

ij > 0.

• I(case 3|yij) = 1 if yij ̸= 1 ∧ yij ̸= k i.e. zk−1
ij < max

k
{zkij}.

An example of how this latent variable formulation gives rise to particular
nominal responses is given in Appendix B.

The MFA-MD model proposed here is related to the mixture of factor
analyzers model (Ghahramani and Hinton, 1997) which is appropriate when
the observed data are continuous in nature. Fokoue and Titterington (2003)
detail a Bayesian treatment of such a model; McNicholas and Murphy (2008)
detail a suite of parsimonious mixture of factor analyzer models.

The MFA-MD model developed here provides a novel approach to clus-
tering the mixed data in the Agincourt survey in a unified framework. In
particular, the MFA-MD model has two novel features: (i) it has the capa-
bility to appropriately model the exact nature of the data in the Agincourt
survey, in particular the nominal data and (ii) it has the capability of mod-
eling all the survey items in a unified manner.

4. Bayesian Model Estimation. A Bayesian approach using Markov
chain Monte Carlo (MCMC) is utilized for fitting the MFA-MD model to
the Agincourt survey data. Interest lies in the cluster membership vectors L
and the mixing proportions π, and in the underlying latent variables Z, the
latent traits Θ, the item parameters Λ̃g(∀g = 1, . . . , G) and the threshold
parameters Γ.

4.1. Prior and Posterior Distributions. To fit the MFA-MD model in
a Bayesian framework prior distributions are required for all unknown pa-
rameters. As in Albert and Chib (1993), a uniform prior is specified for
the threshold parameters. Conjugate prior distributions are specified for the
other model parameters:

p(λ̃gd) = MVN(q+1)(µλ
,Σλ) p(π) = Dirichlet(α)

In terms of latent variables, it is assumed the latent traits θi follow a stan-
dard multivariate Gaussian distribution while the latent indicator variables,
ℓi, follow a Multinomial(1, π) distribution. Further, conditional on member-
ship of cluster g, the latent variable zi|lig = 1 ∼ MVND(µg

,ΛgΛ
T
g + I).

Combining these latent variable distributions and prior distributions with
the likelihood function specified in (5) results in the joint posterior distribu-
tion, from which samples of the model parameters and latent variables are
drawn using a MCMC sampling scheme.
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CLUSTERING SOUTH AFRICAN HOUSEHOLDS 11

4.2. Estimation via a Markov Chain Monte Carlo Sampling Scheme. As
the marginal distributions of the model parameters cannot be obtained an-
alytically a MCMC sampling scheme is employed. All parameters and la-
tent variables are sampled using Gibbs sampling, with the exception of the
threshold parameters Γ, which are sampled using a Metropolis-Hastings step.

The full conditional distributions for the latent variables and model pa-
rameters are detailed below; full derivations are given in McParland et al.
(2014b).

• Allocation vectors. For i = 1, . . . , N :
ℓi| . . . ∼ Multinomial(p), where p is defined in McParland et al. (2014b).

• Latent traits. For i = 1, . . . , N :

θi| . . . ∼ MVNq

{[
ΛT
g Λg + I

]−1
[
ΛT
g

(
zi − µ

g

)]
,
[
ΛT
g Λg + I

]−1
}
.

• Mixing proportions:
π| . . . ∼ Dirichlet(n1 + α1, . . . , ng + αG) where ng =

∑N
i=1 ℓig.

• Item parameters. For g = 1, . . . , G and d = 1, . . . , D:

λ̃gd| . . . ∼ MVN(q+1)

{[
Σ−1
λ + Θ̃T

g Θ̃g

]−1 [
Θ̃T

g zgd +Σ−1
λ µ

λ

]
,
[
Σ−1
λ + Θ̃T

g Θ̃g

]−1
}
,

where zgd = {zid} for all respondents i in cluster g and Θ̃g is a matrix,

the rows of which are θ̃i for members of cluster g.

The full conditional distribution for the underlying latent data Z follows a
truncated Gaussian distribution. The point(s) of truncation depends on the
nature of the corresponding item, the observed response, and the values of
Z from the previous iteration of the MCMC chain. The distributions are
truncated to satisfy the conditions detailed in Section 3. Thus, the latent
data Z are updated as follows:

• If item j is ordinal and yij = k then,

zij | . . . ∼ NT
(
λ̃
T
gj θ̃i, 1

)
where the distribution is truncated on the interval (γj,k−1, γj,k).

• If item j is nominal then:

zkij | . . . ∼ NT

(
λ̃
kT

gj θ̃i, 1

)
where λ̃

k
gj is the row of Λ̃g corresponding to zkij and the truncation

intervals are defined as follows:

– if yij = 1 then zkij ∈ (−∞, 0) for k = 1, . . . ,Kj − 1.

– if yij = k > 1 then:
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12 MCPARLAND ET AL.

1. zk−1
ij ∈ (τ,∞) where τ = max

(
0, max

l ̸=k−1
{zlij}

)
.

2. for l = 1, . . . , k − 2, k, . . . ,Kj − 1 then zlij ∈
(
−∞, zk−1

ij

)
.

Note that, in the case of yij = k > 1 above, the values zlij considered in the
evaluation of τ in step 1 are those from the previous point in the MCMC
chain. The value of zk−1

ij in step 2 is that sampled in step 1.
As a uniform prior is specified for the threshold parameters, the posterior

full conditional distribution of γ
j
is also uniform, facilitating the use of

a Gibbs sampler. However, if there are large numbers of observations in
adjacent response categories very slow mixing may be observed. Thus, as in
Cowles (1996); Fox (2010); Johnson and Albert (1999) a Metropolis-Hastings
step is used to sample the threshold parameters; the overall sampling scheme
employed is therefore a Metropolis-within-Gibbs sampler.

Briefly, the Metropolis-Hastings step involves proposing candidate val-
ues vj,k (for k = 2, . . . ,Kj − 1) for γj,k from the Gaussian distribution

NT (γ
(t−1)
j,k , σ2

MH) truncated to the interval (vj,k−1, γ
(t−1)
j,k+1) where γ

(t−1)
j,k+1 is the

value of γj,k+1 sampled at iteration (t − 1). The threshold vector γ
j
is set

equal to the proposed vector, vj , with probability β = min(1, R) where R is
defined in McParland et al. (2014b). The tuning parameter σ2

MH is selected
to achieve appropriate acceptance rates.

This Metropolis-within-Gibbs sampling scheme is iterated until conver-
gence, after which the samples drawn are from the joint posterior distri-
bution of all the model parameters and latent variables of the MFA-MD
model.

4.3. Model Identifiability. The MFA-MD model as described is not iden-
tifiable. One identifiability aspect of the model concerns the threshold pa-
rameters. If a constant is added to the threshold parameters for an ordinal
item j and the same constant is added to the corresponding mean parame-
ter(s), the likelihood remains unchanged. Therefore, as outlined in Section
3.1, the second element γj1 of the vector of threshold parameters, γ

j
, is fixed

at 0 for all ordinal items j.
The model is also rotationally invariant due to its factor analytic struc-

ture. Many approaches to this identifiability issue have been proposed in the
literature. A popular solution is that proposed by Geweke and Zhou (1996)
where the loadings matrix is constrained such that the first q rows have a
lower triangular form and the diagonal elements are positive. This approach
is adopted by Quinn (2004) and Fokoue and Titterington (2003) among oth-
ers. However, this approach enforces an ordering on the variables (Aguilar
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and West, 2000) which is not appropriate under the MFA-MD model.
Here, the approach to identifying the MFA-MD model is based on that

suggested by Hoff, Raftery and Handcock (2002) and Handcock, Raftery and
Tantrum (2007) in relation to latent space models for network data. Instead
of imposing a particular form on the loadings matrices the MCMC samples
are post processed using Procrustean methods. Each sampled Λg is rotated
and/or reflected to match as closely as possible to a reference loadings ma-
trix. The latent traits, θi, are then subjected to the same transformation.
The sample mean of these transformed values is then used to estimate the
mean of the posterior distribution.

Conditional on the cluster memberships on convergence of the MCMC
chain, a factor analysis model is fitted to the underlying latent data within
each cluster. The estimated loadings matrix obtained is used as the reference
matrix for each cluster. Only the saved MCMC samples need to be subjected
to this transformation which is done post hoc and is computationally cheap.

5. Results: fitting the MFA-MD model to the Agincourt data.
In order to describe and understand the SES landscape in the Agincourt
region, the MFA-MD model is fitted to the asset survey data. Varying the
number of clusters G and the dimension of the latent trait q allows consider-
ation of a wide range of MFA-MD models. Choosing the optimal MFA-MD
model is difficult as likelihood based criteria, such as the Bayesian Informa-
tion Criterion or marginal likelihood approaches, are not available since the
likelihood cannot be evaluated. However, within the sociological setting in
which the MFA-MD is applied here, the existence of SES clusters is well mo-
tivated (Alkema et al., 2008; Erikson and Goldthorpe, 1992; Svalfors, 2006;
Weeden and Grusky, 2012). Further, the literature suggests small numbers
(≈ 3) of such SES clusters typically exist. Hence, to examine the (dis)similar
features of the SES clusters in the Agincourt region, MFA-MD models with
G = 2, . . . , 6 and q = 1, 2 are fitted to the data. Models in which q > 2 were
not considered for reasons of parsimony.

Trace plots of the Markov chains were used to judge convergence and
examples are presented in Appendix C. To achieve satisfactory mixing in
the Metropolis-Hastings sampling of the threshold parameters, γ

j
, a small

proposal variance was required. Acceptance rates of 20-30% were observed.
The Jeffreys prior, Dirichlet(α = 1

21), was specified for the mixing weights
π. A multivariate normal prior with mean µ

λ
= 0 and covariance matrix

Σλ = 5I was specified for λ̃gd. In the absence of strong prior information
this relatively uninformative prior was chosen. It should be noted however
that flat priors can lead to improper posterior distributions in the context
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14 MCPARLAND ET AL.

of mixture models (Frühwirth-Schnatter, 2006). To assess prior sensitivity,
different values for the hyperparameters were trialled, namely µλ ∈ {0, 0.5}
and Σλ ∈ {I, 1.25I, 2.5I, 5I}. All hyperparameter values produced similar
substantive clustering results indicating that prior sensitivity does not ap-
pear to be an issue, however a more thorough exploration may prove infor-
mative. The label switching problem was addressed using methods detailed
in Stephens (2000).

5.1. Model Assessment. Given the question of interest (i.e. what are the
(dis)similar features of the SES clusters in the set of Agincourt households?),
and due to the unavailability of a formal model selection criterion for the
MFA-MD model, focus is placed on models which are substantively inter-
esting and fit well. Model fit is assessed in an exploratory manner using
three established statistical tools: posterior predictive checks, clustering un-
certainty and residual analysis.

5.1.1. Posterior predictive checks. A natural approach to assessing model
fit within the Bayesian paradigm is via posterior predictive model checking
(Gelman et al., 2003). Replicated data are simulated from the posterior
predictive distribution and compared to the observed data. Given the mul-
tivariate and discrete nature of the observed survey data a discrepancy mea-
sure which focuses on response patterns across the set of assets is employed
to compare observed and replicated data. Erosheva, Fienberg and Joutard
(2007) and Gollini and Murphy (2013) employ truncated sum of squared
Pearson residuals (tSSPR) to assess model fit in the context of clustering
categorical data. The standard SSPR examines deviations between observed
and expected counts of response patterns; the truncated SSPR evaluates the
SSPR only for the T most frequently observed response patterns.

In the MFA-MD setting however, computing expected counts is intractable
since this involves evaluating response pattern probabilities, which requires
integrating a multi-dimensional truncated Gaussian distribution, where trun-
cation limits differ and are dependent across the dimensions. Hence, here
posterior predictive data are used to obtain a pseudo tSSPR. Replicated
data sets Yr for r = 1, . . . , R are simulated from the posterior predictive
distribution and for each the tSSPR is computed where

tSSPRr =

T∑
t=1

(ot − pt)
2

pt
.

Here ot = observed count of response pattern t and pt = predicted count
of response pattern t in replicated dataset Yr. Response patterns observed
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30 times or more are considered here, which is equivalent to a truncation
level of T = 20. This measure is computed for R = 1500 replicated datasets
across MFA-MD models with G = 1, . . . , 6 and q = 1, 2. The G = 1 case
is included for completion. The median of the R tSSPR values for each
model considered is illustrated in Figure 1(a), along with the quantile based
interquartile range.

Based on the median tSSPR values the improvement in fit from q = 1
to q = 2 across G was felt to be insufficient to substantiate focusing on
the q = 2 models, given the reduction in parsimony. Examination of the
parameters of the q = 2 model for a fixed G also provided little substantive
insight over the q = 1 model. Models with G = 2, G = 3 and G = 4 (with
q = 1) all seem to fit equivalently well; this observation is also apparent
under other truncation levels T , as illustrated in McParland et al. (2014b).
Further, the median tSSPR values support the literature’s assertion that
SES clusters exist i.e. that G > 1.

5.1.2. Clustering uncertainty. Clustering uncertainty (Bensmail et al.,
1997; Gormley and Murphy, 2006) is an exploratory tool which helps assess
models in the context of clustering. The uncertainty with which household
i is assigned to its cluster may be estimated by

Ui = ming=1,...,G{1− P(cluster g | household i)}

If household i is strongly associated with cluster g then Ui will be small.
Box plots of the clustering uncertainty of each household under models

with G = 2, . . . , 6 (and q = 1) are shown in Figure 1(b). The uncertainty
values are low in general indicating that households are assigned to clusters
with a high degree of confidence. Low values are observed for the G = 2 and
G = 3 models, with a notable increase for higher numbers of clusters.

5.1.3. Bayesian latent residuals analysis. The posterior predictive checks
and the clustering uncertainties suggest that models with G = 2, G = 3 and
G = 4 (and q = 1) appear to fit well, and are relatively parsimonious. Focus
is given to these models, and Bayesian latent residuals (Fox, 2010; Johnson
and Albert, 1999) are employed to investigate their model fit. Bayesian la-

tent residuals residuals, defined by ϵij = zij − λ̃
T
gj θ̃, should follow a standard

normal distribution. The Bayesian latent residuals follow their theoretical
distribution reasonably well for the three models under focus; Figure 2 shows
kernel density estimate curves of the Bayesian latent residuals corresponding
to the cattle item for a random sample of 100 households. The curves are es-
timated based on the residuals at each MCMC iteration. Residuals which do
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(b) Box plots of clustering uncertainty across
models with between 2 and 6 clusters, and a
1 dimensional latent trait.

Fig 1: Assessing Model Fit.

not appear to follow a standard normal distribution correspond to responses
which were unusual given the household’s cluster membership. Further ex-
amples of such residual plots are given in McParland et al. (2014b).

The three approaches to assessing model fit suggest that focus should be
given to models with G = 2, G = 3 and G = 4, and q = 1. As the G = 3
and G = 4 models give deeper insight to the SES structure of the Agincourt
households than the G = 2 model, the G = 3 model is explored in detail in
Section 5.2; a substantive comparison with the G = 4 model is provided in
Section 5.3, in which the G = 2 model is also discussed.

5.2. Results: Three Component MFA-MD model. The clustering result-
ing from fitting a 3 component MFA-MD model, with a one dimensional
latent trait, divides the Agincourt households into 3 distinct homogeneous
subpopulations, with intuitive socio-economic characteristics.

The conditional probability that household i belongs to cluster g can be
estimated from the MCMC samples by dividing the number of times house-
hold i was allocated to group g by the number of samples. A ‘hard’ clustering
is then obtained by considering maxg P(cluster g | household i), ∀i, and as-
signing households to the cluster for which this maximum is achieved.

The modal responses to items for which the modal response differed across
groups are presented in Table 1. These statistics only tell part of the story
however, and the distribution of responses will be analyzed later.
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Fig 2: Bayesian latent residuals, corresponding to the cattle survey item,
for 100 randomly sampled households under the G = 3 model with a 1
dimensional latent trait. The dashed black line is the standard normal curve.

It can be seen from Table 1 that cluster 1 is a modern/wealthy group
of households. The modal responses indicate that households in this cluster
are most likely to possess modern conveniences such as a stove, a fridge and
also some luxury items such as a television.

In contrast, cluster 3 is a less wealthy group. Households in this group are
likely to have poor sanitary facilities – the modal response to the location
of toilet facilities and the type of toilet are “bush” and “none” respectively.
Households in cluster 3 are also less likely to own modern conveniences such
as a fridge or television.

The socio-economic status of cluster 2 is somewhere between that of the
other two groups, but closer to cluster 1 than 3. Households in cluster 2
are likely to have better sewage facilities and larger dwellings than those
in cluster 3 but lack some luxury assets such as a video player. They are
also likely to keep poultry and cook with wood rather than electricity which
suggests this group may be less modern than cluster 1 to some degree.

It is interesting to note that the largest group is the wealthy/modern
cluster 1 while the smallest group is cluster 3 who have the lowest living
standards.

An almost identical table to Table 1 was produced for a 3 component
model with a 2 dimensional latent trait. There were some further differences
in the Power for Lighting and Cell Phone items but the clusters have the
same substantive interpretation.

imsart-aoas ver. 2012/04/10 file: McParlandEtAl.tex date: January 22, 2014
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Table 1
The cardinality of each group and the modal response to items on which the modal

response differs across groups.

G 1 2 3

# 7864 6543 3210

# Bedrooms 2 2 ≤1
Separate Living Area Yes Yes No
Toilet Facilities Yard Yard Bush
Toilet Type Pit Pit None
Power for Cooking Electric Wood Wood
Stove Yes No No
Fridge Yes Yes No
Television Yes Yes No
Video Yes No No
Poultry No Yes No

A more detailed picture of how the groups differ from each other is pre-
sented in Figures 3 and 4. Box plots of the MCMC samples of the cluster
specific mean parameter µ

g
are shown in these figures. The box plots for

the binary/ordinal items (Figure 3) have a different interpretation to those
for the nominal items (Figure 4). The binary and ordinal responses have
been coded with the convention that larger responses correspond to greater
wealth. Thus a higher mean value for the latent data corresponding to these
items is indicative of greater wealth. To interpret the box plots for the nom-
inal items all latent dimensions for a particular item must be considered. If
the mean of one dimension (k, say) is greater than the means of the oth-
ers for a particular cluster, then the response corresponding to dimension k
is the most likely response within that cluster. If the means for all dimen-
sions for a particular item are less than 0 then the most likely response by
households in that cluster is the first choice.

The box plots corresponding to the binary and ordinal items are shown in
Figure 3. The elements of the mean of cluster 1 (the wealthy/modern cluster)
µ
1
can be seen to be greater than those for the other clusters in general;

this reflects the greater wealth observed in cluster 1 compared to the other
groups. Similarly the elements of µ

3
(the least wealthy group) are lower

than those for the other groups reflecting the lower socio economic status of
households in cluster 3. The difference between cluster 3 and clusters 1 and
2 is particularly stark on the location of toilet facilities (ToiletFac) and the
type of toilet facilities (ToiletType) items. The means for clusters 1 and 2
are notably higher than the mean for cluster 3 since the responses for groups
1 and 2 are typically a number of categories higher on these items.

Figure 4 shows box plots of the MCMC samples of the dimensions of the
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Group Means for Binary/Ordinal Items
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Fig 3: Box plots of MCMC samples of the dimensions of the cluster means,
µ
g
, corresponding to binary and ordinal items.

cluster mean parameters, µ
g
, corresponding to the nominal items. Focusing

on the latent dimensions corresponding to the PowerCook item, say, it can
be seen that the highest mean for cluster 1 is on the ‘electricity’ dimen-
sion followed closely by the ‘wood’ dimension, and that these means are
greater than 0. This implies that the most likely response to the Power-
Cook item for cluster 1 is electricity but that a significant proportion of the
households in this group cook with wood. The highest means for clusters
2 and 3 are on the ‘wood’ latent dimension. Thus most of the households
in these clusters cook with wood in contrast to the wealthy/modern cluster
1. This difference is indicative of a socio-economic divide. In a similar way,
the mean parameters for the PowerLight item suggest that electricity is the
most likely source of power for lighting for households in all clusters; the
parameter estimates associated with the Roof item suggest corrugated iron
roofs are the predominant roofing type on dwellings in the Agincourt region.

To further investigate the difference between the 3 clusters the response
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Fig 4: Box plots of MCMC samples of the dimensions of the cluster means,
µ
g
, corresponding to nominal items. The first plot shows box plots of the

means of the latent dimensions relating to the PowerCook item, the second
shows the means of the dimensions representing the PowerLight item and
the third shows the means of the dimensions corresponding to the Roof item.

probabilities to individual survey items within a cluster are examined. For
example Table 2 shows the probability of observing each possible response
to the Stove item, conditional on the members of each cluster.

The distances between the cluster specific item response probability vec-
tors can be used to make pairwise comparisons of groups. The distance mea-
sure used here is Hellinger distance (Bishop, 2006; Cam and Yang, 1990;
Rao, 1995). Pairwise comparisons between clusters are illustrated in Fig-
ure 5. The Hellinger distance between response probability vectors for each
item are plotted. The groups that are most different are clusters 1 (the
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Group 1 vs. Group 2
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(a) Hellinger distances between groups 1 and 2. Total distance is 3.544

Group 1 vs. Group 3
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(b) Hellinger distances between groups 1 and 3. Total distance is 7.316

Group 2 vs. Group 3
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(c) Hellinger distances between groups 2 and 3. Total distance is 5.643

Fig 5: Pairwise comparisons of groups using Hellinger distance.
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Table 2
Cluster specific response probabilities to the survey item Stove.

G No Yes

1 0.005 0.995
2 0.509 0.491
3 0.626 0.374

wealthy/modern cluster) and 3 (the least wealthy cluster). The sum of the
Hellinger distances between these groups across all items is 7.316. The items
for which the Hellinger distance between the response probability vectors is
largest are ToiletType, ToiletFac, Stove and PowerLight, highlighting the ar-
eas in which households in these clusters differ most. There are noteworthy
Hellinger distances for many other items also. The difference in response
patterns for these items is also evident in the box plots in Figures 3 and 4.

The sum of the Hellinger distances between clusters 1 and 2 (the wealthier
two clusters) across all items is 3.544 making these two groups the most
similar. There are some notable differences however; the Hellinger distance
between the groups on the items Stove and PowerCook are 0.501 and 0.556
respectively which accounts for almost 30% of the total distance.

Clusters 2 and 3 are quite different and the sum of the Hellinger distances
between these groups is 5.643. As was the case for clusters 1 and 3 the items
ToiletType and ToiletFac provide the largest Hellinger distances between
groups 2 and 3. In contrast however there are much smaller differences for
the items Stove and PowerCook. Again these results highlight the specific
areas in which the socio-economic status of households within each cluster
differ. A similar pattern was observed in Table 1 and Figures 3 and 4.

5.3. Results: Four and Two Component MFA-MD models. Many of the
substantive results returned by the 4 component model are similar to those
inferred from the 3 component model. Notably the items listed in Table 1
(i.e. those items for which the modal response differs across groups in the
3 component solution) are a subset of those items for which the modal re-
sponse differs across groups in the 4 component solution (details provided
in McParland et al. (2014b)). Groups A, B and C in the 4 component model
are substantively similar to groups 1, 2 and 3 from the 3 component model
respectively. Group D returned by the 4 component model is interesting
however. It is similar to group A in that households in this cluster possess
many modern conveniences but the standard of their dwelling is not at the
same level as those in group A. The standard of dwellings in group D is
similar to those in group C, however the households differ from group C
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in terms of the modern conveniences they possess. Further investigation re-
vealed that households in group C are either in group 1 (wealthy) or group
3 (poor) of the 3 component solution. Figure 6 plots the Hellinger distance
between groups A and C and groups C and D illustrating the differences
and similarities between these clusters. It can be seen that the largest dis-
tances between groups A and C concern items related to the dwelling while
the largest distances between groups C and D concern modern convenience
ownership.

Interestingly, group 2 and group B, under the 3 and 4 component solutions
respectively, consist of almost exactly the same households. These groups are
deemed to be wealthy but less modern than group 1 and group A, under
the 3 and 4 component solutions respectively. Indeed, under the 5 and 6
component models, the essence of this cluster remains intact.

Similar substantive results are inferred from the two component MFA-MD
solution. Again it is notable that those items for which the modal response
differs across groups in the 2 component solution (detailed in McParland
et al. (2014b)) are a subset of those items for which the modal response dif-
fers across groups in the 3 component solution (detailed in Table 1). Groups
A and B under the 2 component solution relate generally to clusters 1 and
2 in the 3 component solution. The poorer cluster B in the 2 component
solution separates to create clusters 2 and 3 in the 3 component solution.
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Fig 6: Hellinger distances between groups A and C (red) and groups C and
D (blue). The total distances are 4.219 and 5.699 respectively.
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5.4. Comparison to Existing Methodology. Several other approaches to
exploring the SES landscape based on asset survey data are detailed in
the demography literature. It is therefore of interest to compare the re-
sults obtained when exploring the Agincourt SES landscape using the pro-
posed MFA-MD model to those obtained when existing methods are ap-
plied. In particular, two existing methods for analyzing mixed type socio-
economic data are considered; that of Filmer and Pritchett (2001) and that
of Collinson et al. (2009), mentioned in Section 2.

The Filmer and Pritchett (2001) approach codes ordinal and nominal
responses using dummy binary variables and a principal component analysis
(PCA) is applied to the resulting data matrix. The Collinson et al. (2009)
approach constructs a continuous asset index from the raw data. Figure
7 shows the standardized first principal component scores plotted against
the standardized asset index of Collinson et al. (2009) when these methods
were applied to the Agincourt data. The points are colored by the three
group clustering solution considered here. The two alternative scores do
seem to broadly agree. In addition the 3 cluster solution appears to roughly
correspond to the gradation of the first principal component scores. However,
Filmer and Pritchett (2001) partition households into the lowest 40%, middle
40% and top 20% based on these principal component scores; their choice of
percentiles is arbitrary. Comparing the allocation based on this criterion to
that from our model results in a Rand and adjusted Rand index of 0. 61 and
0.15 respectively. Thus the clustering solution using the MFA-MD model is
quite different than that currently in use. Clustering households is not the
primary goal for Collinson et al. (2009) though they do classify households
as ‘chronically poor’ if they have below median asset index score. The MFA-
MD model allocates households using a more preferable objective model
based approach, while recognizing the different data types and treating them
accordingly.

6. Discussion. This paper set out to describe and understand the SES
landscape in the Agincourt region in South Africa through clustering house-
holds based on their asset status survey data. The MFA-MD model de-
scribed in this paper successfully achieved this aim by clustering households
into groups of differing socio-economic status. Which households are in each
group and what differentiates these clusters from each other can be exam-
ined in the model output. This information is potentially of great benefit to
various authorities in the Agincourt region. The interpretation of the SES
clusters could aid decision making with regard to infrastructural develop-
ment and other social policy. Further, the resulting clustering memberships

imsart-aoas ver. 2012/04/10 file: McParlandEtAl.tex date: January 22, 2014
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Fig 7: Comparing the principal component based approach of Filmer and
Pritchett (2001) to the asset index of Collinson et al. (2009). The gray line
shows where both scores are equal and the points are colored according to
the 3 group, 1 dimensional latent trait, MFA-MD solution.

and cluster interpretations will be used to aid targeted sampling of a par-
ticular cluster of households in the Agincourt region in future surveys. New
questions in future surveys can be derived based on the substantive infor-
mation now known about the SES clusters. The clustering output from the
MFA-MD model could also be used as covariate input to other models, such
as mortality models. There may be important differences in mortality rates
in different socio-economic strata within the region; new health policies may
need to take these differences into account. A key interest for the sociol-
ogists studying the Agincourt region is understanding social mobility, and
substantively examining SES clusters is the first step in this process. Thus
the clustering exploration of the SES landscape in Agincourt will provide
support to researchers in the Agincourt region, through the exposure of
(dis)similar features of the clusters of households. The information provided
about the SES Agincourt landscape is based on a statistically principled
clustering approach, rather than ad hoc measures.

The MFA-MD model also provides a novel model-based approach to clus-
tering mixed categorical data. The SES data used here is a mix of binary,
ordinal and nominal data. The MFA-MD model provides clustering capa-
bilities in the context of such mixed data without mistreating any one data
type. A factor analytic model is fitted to each group individually which may
be interpreted in the usual manner.

Future research directions are plentiful and varied. The lack of a for-
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26 MCPARLAND ET AL.

mal model selection criterion for the MFA-MD model is the most pressing,
and challenging. The provision of a formal criterion would facilitate appli-
cation of the MFA-MD model in settings in which an optimal model must
be selected; a formal criterion which selects the most appropriate number
of components and also the dimension of the latent trait would be very
beneficial. Model selection tools based on the marginal likelihood (Friel and
Wyse, 2011) are a natural approach to model selection within the Bayesian
paradigm, but the intractable likelihood of the observed data Y poses diffi-
culties for the MFA-MD model. This renders even approximate approaches
such as BIC unusable. One alternative would be to approximate the observed
likelihood using the underlying latent data Z, but this also brings difficulties
and uncertainty (McParland and Gormley, 2013). Other joint approaches to
clustering and choosing the number of components are popular in the lit-
erature; using a Dirichlet process mixture model or incorporating reversible
jump MCMC may provide fruitful future research directions. However, the
applied nature of the work here and the requirement of interpretative clus-
ters and model parameters motivated the use of a finite mixture model.
Approaches to choosing the number of latent factors such as those consid-
ered in Lopes and West (2004) or Bhattacharya and Dunson (2011) could
also have potential within the MFA-MD context.

Additionally, there are several ways in which the MFA-MD model itself
could be extended. Here, the last time point from the Agincourt survey was
analyzed. However, there have been several waves of this particular survey
– extending the MFA-MD model to appropriately model longitudinal data
would be beneficial. In this way the Agincourt households could be tracked
across time as they may or may not move between socio-economic strata.
As with most clustering models, the variables included in the model are
potentially influential. The addition of a variable selection method within
the context of the MFA-MD model could significantly improve clustering
performance and provide substantive insight to asset indicators of SES. A
reduction in the number of variables would also decrease the computational
time required to fit such models. In a similar vein, the Metropolis-Hastings
step required to sample the threshold parameters in the current model fitting
approach could potentially be removed by using a rank likelihood approach
(Hoff, 2009). This could also offer an improvement in computational time.

Other areas of ongoing and future work include the inclusion of modeling
continuous data by the MFA-MD model. This would facilitate the clustering
of mixed data consisting of both continuous and categorical data (McParland
et al., 2014a), and requires little extension to the MFA-MD model proposed
here. Allowing further correlations in the latent variable beyond those pro-
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duced by the latent trait is an interesting model extension; this could be
achieved by relaxing the unit variance in the probit link. Finally, covariate
information could naturally be incorporated in the MFA-MD model in the
mixture of experts framework (Gormley and Murphy, 2008; Jacobs et al.,
1991); such an approach could be insightful in understanding cause-effect re-
lationships in the Agincourt SES clusters and should be a straight forward
extension.

Acknowledgements. The authors wish to thank Professor Brendan
Murphy, Professor Adrian Raftery, the members of the Working Group on
Statistical Learning at University College Dublin and the members of the
Working Group on Model-based Clustering at the University of Washington
for numerous suggestions that contributed enormously to this work.
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APPENDIX A: SURVEY ITEMS

Table 3
A list of all survey items and the possible responses. The final three items in the table are

regarded as nominal, all other items are binary or ordinal.

Item Description Response Options

Construct Indicates whether main dwelling is still (No, Yes)
under construction.

Walls Construction materials used for walls. (Informal, Modern)
Floor Construction materials used for floor. (Informal, Modern)
Bedrooms Number of bedrooms in the household. (≤1, 2, 3, 4, 5, ≥ 6)
SepKit Indicates whether kitchen is separate (No, Yes)

from sleeping area.
SepLiv Indicates whether living room is separate (No, Yes)

from sleeping area.
ToiletFac Reports the physical location of toilet in (Bush, Other House,

the household. In Yard, In House )
ToiletType Reports the type of toilet used. (None, Pit, VIP, Modern)
WaterSup Reports the water supply source. (From a tap, Other)
Stove Reports stove ownership status. (No, Yes)
Fridge Reports fridge ownership status. (No, Yes)
TV Reports television ownership status. (No, Yes)
Video Reports video player ownership status. (No, Yes)
SatDish Reports satellite dish ownership status. (No, Yes)
Radio Reports radio ownership status. (No, Yes)
FixPhone Reports fixed phone ownership status. (No, Yes)
CellPhone Reports mobile phone ownership status. (No, Yes)
Car Reports car ownership status. (No, Yes)
MBike Reports motor bike ownership status. (No, Yes)
Bicycle Reports bicycle ownership status. (No, Yes)
Cart Reports animal drawn cart ownership (No, Yes)

status.
Cattle Reports cattle ownership status. (No, Yes)
Goats Reports goats ownership status. (No, Yes)
Poultry Reports poultry ownership status. (No, Yes)
Pigs Reports pig ownership status. (No, Yes)
Roof Construction materials used for roof. (Other informal, Thatch,

Other modern,
Corrugated iron, Tile)

PowerLight Main power supply for lights (Other, Candles, Paraffin,
and appliances. Solar, Battery/Generator,

Electricity)
PowerCook Main power supply for cooking. (Other, Wood, Paraffin,

Gas Bottle, Electricity)
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APPENDIX B: LATENT VARIABLE FORMULATION OF NOMINAL
RESPONSES

Suppose item j is nominal with Kj = 3 options: apple (denoted level 1),
banana (denoted level 2) or pear (denoted level 3). Thus zij = {z1ij , z2ij}.

(i)
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Fig 8: Latent variable formulation of nominal responses.

Figure 8 shows what the marginal distributions of the latent variables
might look like along with realizations from those distributions:

(i) Both z1ij and z2ij are less than 0 thus maxk{zkij} < 0 ⇒ yij = 1 i.e. apple.

(ii) z1ij = maxk{zkij} and z1ij > 0 ⇒ yij = 2 i.e. banana.

(iii) z2ij = maxk{zkij} and z2ij > 0 ⇒ yij = 3 i.e. pear.

In the MCMC algorithm, these latent variables are sampled conditional
on the observed data Y . Given the nominal response, the full conditional
distributions are truncated appropriately.

imsart-aoas ver. 2012/04/10 file: McParlandEtAl.tex date: January 22, 2014



30 MCPARLAND ET AL.

APPENDIX C: CONVERGENCE OF MARKOV CHAINS
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(a) Trace plot of the MCMC samples for
one of the threshold parameters of the
ToiletFac item.
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(b) Trace plot of the MCMC samples of
the mixing weight for group 3.
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(c) Trace plot of the MCMC samples for
the latent trait of the first household.
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(d) Trace plot of the MCMC samples of
the first dimension of the mean vector for
group 1.
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(e) Trace plot of the MCMC samples of
one of the loadings parameters for nominal
item Roof .
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Fig 9: Trace plots of Markov chains for selected parameters. The plots shown
are of the thinned MCMC samples, post burn-in.
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SUPPLEMENTARY MATERIAL

Supplement A: Full Conditional Posterior Distributions
(doi: COMPLETED BY THE TYPESETTER; .pdf). Derivations of the full
conditional posterior distributions.

Supplement B: Additional Results
(doi: COMPLETED BY THE TYPESETTER; .pdf). Additional tSSPR
sensitivity analysis, Bayesian latent residual plots and tables of results.

Supplement C: C code.
(doi: COMPLETED BY THE TYPESETTER; .zip). C code to fit the MFA-
MD model for clustering in the context of mixed categorical data.
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