
Title Exploring the drivers of light rail ridership : an empirical route level analysis of selected 

Australian, North American and European systems

Authors(s) Currie, Graham, Ahern, Aoife, Delbosc, Alexa

Publication date 2011

Publication information Currie, Graham, Aoife Ahern, and Alexa Delbosc. “Exploring the Drivers of Light Rail Ridership : 

An Empirical Route Level Analysis of Selected Australian, North American and European 

Systems” 38, no. 3 (2011).

Publisher Springer

Item record/more 

information

http://hdl.handle.net/10197/2879

Publisher's statement The final publication is available at springerlink.com

Publisher's version (DOI) 10.1007/s11116-010-9314-9

Downloaded 2023-10-06T13:54:56Z

The UCD community has made this article openly available. Please share how this access

benefits you. Your story matters! (@ucd_oa)

© Some rights reserved. For more information

https://twitter.com/intent/tweet?via=ucd_oa&text=Exploring+the+drivers+of+light+rail+r...&url=http%3A%2F%2Fhdl.handle.net%2F10197%2F2879


DOI 10.1007/s11116-010-9314-9 
 
 
 
 
Exploring the drivers of light rail ridership: an empirical 
route level analysis of selected Australian, North American 
and European systems 

 

G. Currie 
•
   A. Ahern 

•
   A. Delbosc 

 
 
 
 
 
 
 
Abstract This paper explores the relative influence of factors affecting light rail ridership 

on 57 light rail routes in Australia, Europe and North America through an empirical 

examination of route level data. Previous research suggests a wide range of possible 

ridership drivers but is mixed in clarifying major influences. A multiple-regression 

analysis of route level ridership (boardings per route km) and catchment residential and 

employ-ment density, car ownership, service level, speed, stop spacing, share of accessible 

stops, share of segregated right of away and integrated fares was undertaken. This 

established a statistically significant model (99% level, R
2
 = 0.76) with five significant 

variables including service level, routes being in Europe, speed, integrated ticketing and 

employment density. In general these findings support selected results from previous 

research. A sec-ondary analysis of service effectiveness measures (boardings/vehicle km, 

i.e. the relative ridership performance for a given level of service), established a 

statistically significant model (99% level, R
2
 = 0.67) with 6 significant explanatory 

variables including being in Europe, speed, employment density, integrated ticketing, 

track segregation and service level. The latter implies that a higher frequency results in 

higher service effectiveness. Overall the research findings stress the importance of 

providing a high level of service as a major driver of light rail ridership. The ‘European 

Factor’ is also an important though intriguing influence but its cause remains unclear and 

requires further research to elaborate its nature. 
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Introduction 

 
The introduction of new light rail has been proposed as a means of improving the attrac-

tiveness of urban transport systems struggling under the combined impacts of traffic con-

gestion, overcrowding, ageing infrastructure and pollution. Transport authorities evaluating the 

feasibility of light rail face a difficult challenge in assessing the benefits of increased public 

transport ridership against the high fixed costs of implementation. Factors driving ridership are 

not always clear and there is much evidence that light rail ridership expectations are not always 

met (Edwards and Mackett  1996; Mackett and Babalik-Sutcliffe  2003). The cultural and 

socio-economic context of the cities where light rail is implemented is thought to affect 

ridership as much as the specifics of service design and operation.  
This paper explores the relative influence of factors affecting light rail ridership 

through an empirical examination of route level data using a multiple-regression analysis 

of potential explanatory factors. Analysis focuses on 57 light rail routes in Australia, 

Europe and North America. These systems contrast in a number of ways including system 

age, operating speed, the nature of system right of way, service and ticket integration, 

scale of network etc. An aim of the research is to explore the relative value of these 

features in terms of ridership impacts.  
The next section presents a review of previous research literature focussing on factors 

driving ridership in light rail systems. Section  3 describes the research methodology and 

Sect.  4 presents a brief description of the light rail routes examined including an outline of 

existing route level ridership performance and associated explanatory data. Section  5 

outlines the findings of the analysis. The paper concludes by summarising key findings 

and discussing the implications of these. Suggestions for future research are identified. 
 
 
Research context: light rail ridership drivers 

 
A large range of research evidence based on behavioural research studies has now iden-

tified passenger responses to transport system changes for a range of service design 

aspects (e.g. Balcombe  2004; Evans  2004; McCollom and Pratt  2004; Pratt and Evans  

2004). The focus of this paper and hence this literature review is aggregate analysis of 

system wide or route performance. Aggregate studies necessarily abstract from the 

detailed perspectives of behavioural research at the individual level. Nevertheless they 

have value in exploring factors influencing system-wide ridership drivers.  
Table  1 presents a summary of the proposed drivers of light rail ridership based on 

mainly aggregate empirical studies in the research literature.  
The density of urban development has long been identified as a major driver of rider-ship: 

‘‘nearly every study that has focussed on transit ridership has provided evidence that density is 

the primary determinant of transit ridership’’ (Johnson  2003, p. 32). Although urban density is 

often cited as a ridership driver in light rail based research it is often not identified as a primary 

driver. Kain and Liu ( 1999) examined the factors determining the high ridership of light rail 

systems in Houston and San Diego. While stating that factors like urban density and 

employment levels play a role in determining patronage levels, they concluded that the most 

important factors to determine patronage are high service levels (measured in vehicle 

kilometres on a route) and cheap fares. Babalik-Sutcliffe ( 2002) suggests that it is a mix of 

supportive factors rather than any single factor which attracts high light rail patronage. 

Although she suggests that supportive urban development, including density and design 

features, is important the findings also emphasise a supportive 
 



Table 1   Light rail ridership drivers—previous aggregate research 
 
Identified ridership driver Research source 
  

High density residential development (Hass-Klau and Crampton  2002) 
 (Johnson  2003) 
 (Seskin and Cervero  1996) 
 (Kain et al.  2004) 
 (Babalik-Sutcliffe  2002) 
 (Kain and Liu  1999) 
Public transport network effect (Babalik-Sutcliffe  2002) 
 (Mackett and Babalik-Sutcliffe  2003) 
 (Denant Boemont and Mills  1999) 
High service levels (Kain and Liu  1999) 
 (Mackett and Babalik-Sutcliffe  2003) 
Low car ownership (Babalik-Sutcliffe  2002) 
 (Mackett and Babalik-Sutcliffe  2003) 
Low fares (Kain and Liu  1999) 
 (Mackett and Babalik-Sutcliffe  2003) 
Modal integration (Babalik-Sutcliffe  2002) 
 (Kain et al.  2004) 
Ticket integration (Crampton  2002) 
 (Hass-Klau and Crampton  2002) 
 (Mackett and Babalik-Sutcliffe  2003) 
Pedestrianisation (Hass-Klau and Crampton  2002) 
Reliable service (Mackett and Babalik-Sutcliffe  2003) 
Strong economic conditions (Babalik-Sutcliffe  2002) 
High employment (Kain and Liu  1999) 
High speed (Hass-Klau and Crampton  2002) 
 (Crampton  2002) 
Stop distance (Hass-Klau and Crampton  2002) 
 (Crampton  2002) 
Strong policy support (Knowles  2007) 
Light rail network density (Hass-Klau and Crampton  2002) 
 (Crampton  2002) 
Easy station access (Kain et al.  2004) 
  

 

 
public transport policy environment including integration of public transport modes and 

services. Similar findings resulted from the work of Kain et al. ( 2004) in a study of light 

rail use in the United States. They found residential population density near stations and 

integration with other modes to be significant factors in high ridership although they also 

noted the importance of easy accessibility to stations for a wider range of user types. A 

study of system-wide light rail data from 24 cities (Crampton  2002; Hass-Klau and 

Crampton  2002) found that population density was the second of two influential explan-

atory variables explaining a light rail performance index (including ridership) which were 

significant at the 99% confidence level (the first being integrated ticketing). A series of 

other factors were also significant (but at a 95% confidence level). 
 



 

 
High service levels, measured in terms of frequency and span of hours covered, has 

often been cited as an important driver of light rail patronage. It was considered a principal 

driver in the US light rail research by Kain and Liu ( 1999). Fitzroy and Smith ( 1998) in 

their study of the European Freiburg public transport system state that high service levels 

are important for achieving high patronage levels. Route level demand forecasting models 

developed by Stopher ( 1992) also found that service quantity of buses, measured as the 

number of buses per hour, was the single largest most significant factor in an empirical 

analysis of US bus routes.  
Interestingly Hass-Klau and Crampton ( 2002) in their study of 24 light rail systems did 

not find service levels (measured as peak headway or service span or hours run at peak 
frequencies) to be a significant influence on their light rail performance index.  

A number of researchers have cited the importance of an integrated public transport 

network as a key driver of high light rail patronage (FitzRoy and Smith  1998; Denant 

Boemont and Mills  1999; Babalik-Sutcliffe  2002). Patronage drivers in this case involve 

service and fare integration as well as the wider ‘network effects’ these can generate. 

Service integration occurs where transfers between modes/services involve a short walk 

and wait plus well-coordinated and closely scheduled arrival and departure times.  
Fare integration occurs where there is no requirement to incur additional fare cost, or to 

have to go through a fare payment transaction whilst transferring. ‘Network effects’ have 

been closely related to both service and fare integration. These are ‘synergies’ where 

cohesiveness, cooperation and efficient interconnectivity within networks enable the 

achievement of goals or performance outcomes which exceed the sum of individual 

factors (Capineri and Kamann  1998). In public transport patronage terms they occur when 

pas-sengers can easily access a large network rather than a single route thus considerably 

enhancing the opportunities for access to a wider range of destinations.  
Integrated fares were identified as the single most influential of two variables in the 

Hass-Klau and Crampton ( 2002) study of 24 light rail systems. A 0.64 correlation with an 
index of light rail system wide performance (including ridership) was identified.  

A range of other factors have been suggested which might also influence light rail 

ridership. Cheap fares were cited two reports (FitzRoy and Smith  1998; Kain and Liu  

1999). A number of researchers cite the importance of a strong policy context as a basis 

for high light rail ridership (e.g. Knowles  2007). Several researchers have suggested that 

high car ownership can act to reduce light rail usage (Babalik-Sutcliffe  2002; Mackett and 

Babalik-Sutcliffe  2003). Hass-Klau and Crampton ( 2002) suggested that pedestrian zone 

length in cities, average speed, stop distance and the density of the light rail network were 

also related to their index of light rail performance (based on ridership per route km). 

Correlation analysis suggested better performance (ridership) at slower speeds and short 

stop distances (Crampton  2002) whereas pedestrian zone scale and density of the network 

were positively related with ridership variables.  
The results of the Hass-Klau and Crampton ( 2002) and Crampton ( 2002) analyses are 

worthy of further examination relative to this study since a multiple regression analysis of light 

rail performance factors was also undertaken. System-wide (rather than route level) data from 

24 light rail systems from around the world (but with 75% from Europe) was compiled. The 

dependent variable was a performance index based on the ranking of systems. This was based 

on per capita light rail ridership, total transit ridership per capita, light rail ridership per route 

km, the annual growth rate of light rail ridership, the growth rate of total transit ridership and 

light rail passenger kms per track km. The authors note the weakness of their small sample and 

hence suggest caution in use of their analysis. They 

 



 
report an R

2
 of 0.60 with major explanatory variables including travel card use (ticket 

integration), pedestrianisation, population density and low fares.  
Overall many factors are considered to have influenced ridership on light rail systems 

however on balance what factors are important appear varied between studies. Clarifying 
these issues is a major aim of the research methodology developed for the project. 
 
 
Methodology 

 
The method aims to measure the strength of the relationship between light rail route level 
ridership and a series of possible explanatory variables. 
 
Variables 
 
Table  2 shows the variables used to explore ridership drivers and the major sources of the 

data collated. The selection of variables was based on previous research and also on the 

availability of data. Only those variables that could be reasonably measured across 

countries were included and this was a challenging and time consuming part of the project. 

An unfortunate limitation is that we were unable to generate a ‘‘cost’’ variable that was 

applicable across such different contexts and appropriate to the years that ridership data 

was available.  
Whenever possible, route level data was collated for this analysis rather than the system 

wide data used in previous studies (e.g. Hass-Klau and Crampton  2002). This increased 

the scale of the data collection task but was chosen to increase the number of available 

points and also to enable a wider exploration of explanatory factors e.g. by exploring 

variations in ridership within specific light rail systems. In general route data is consistent 

with the base year 2006–2008 however it was not possible to exactly match data for a 

specific year in each case and best nearest case for matching data was used.  
Whenever possible, car ownership, urban density and employment density was mea-

sured in the 800 m catchment around a route; Australia, Toronto, and Dublin were mea-

sured in this way. However this route-catchment data was not available for those routes in 

the UK, France and the United States. For these locations data for the entire city was used 

and interpolated to estimate catchment density. 
 
The statistical model 
 
A linear regression modelling approach was adopted using the following model: 
 

Yi   ¼ b0   þ b1Xi1   þ b2Xi2   þ ₃ ₃ ₃ þ bnXn  þ ei  
where Yi = dependent variable i, Xi = independent variables predicting Yi, b = regres-sion 
coefficients to be estimated, e = error.  

A step-wise inclusion criteria was used where variables were included in the model 
based on their level of statistical significance (significance probability of 95% for 
inclusion and removal if significance dropped below 90%).  

The main dependent variable was ridership per route km however a secondary analysis 
was also undertaken using boardings per vehicle km as the dependent variable. The latter 

explored ridership influences after accounting for variations in relative service levels. 

Service levels were found to be important in explaining ridership per route km and varied 



 

    
  

Table 2   Explanatory variables collated—light rail ridership drivers  
    

Variable/measure Method and source   
    

 Australia North America Europe 
    

Boardings per year    

Used to calculate 2007 data Data provided by Toronto—TTC
a Based on SYPTE

c 
boardings/route and operators US—FTIS

b and website data
d 

vehicle km    

Vehicle Kilometres    

Used to calculate Melbourne provided by As above for Based on SYPTE
c
  and 

boardings/vehicle operator; others estimated Boardings p.a. website data
d 

km from published timetables   

Residential density    

Residents per square ABS
e Toronto—SC

f
, Dublin: CSO

h
  UK: census

i 
metre  US—census

g Others: based on SYPTE
c 

   Rouen—estimated from 
   Wikipedia 
Employment density    

Jobs per square metre ABS
e Toronto—SC

f
, Dublin: CSO

h
  UK: census

i 
  US—FTIS

b Others: based on SYPTE
c 

   Selected European centres 
   using Data from INSEE

j 
Car ownership    

Cars per 1,000 ABS
e Toronto—TT Dublin: CSO

h
  UK: census

i 
residents  Survey

k
  US— France—CERTU

l 
  census

g  

Service level    

Vehicle trips per Based on an analysis of Toronto—TTC
a Based on SYPTE

c 
annum published timetables for 2007 US—FTIS

b and website data
d 

Speed    

Average travel time      As above for service level As above for As above for service level 
divided by route  service level  

length (kph)    

Stop spacing    

Route length divided     As above for service level As above for As above for service level 
by number of stops  service level  

minus 1    

Share accessible stops    

Proportion of stops As above for service level As above for As above for service level 
that are wheelchair  service level  

accessible    

Share segregated right of way   

Proportion of track Data provided by VicRoads, Toronto: based on   Visual inspection of Google 
out of mixed traffic and an analysis of Google route inspection; Maps Dublin: Data 

 Maps others : visual provided by RPA UK 
  inspection of systems: web site data

d 
  Google Maps  

Integrated fares    

No fare on transfer Operator website Operator website Operator website 
    

 
 

 



 
Table 2   Explanatory variables collated—light rail ridership drivers 
 
Variable/measure Method and source   
    

 Australia North Europe 
  America  
    

Route length    

Used to calculate service Melbourne provided by Toronto— Mix of web site data and Google 
level, speed, stop spacing operator; others TTC data Earth Route Inspection UK/ 
and ROW Google Earth Google Dublin—web site data

d 
  Earth  

 
a Toronto Transit Commission 2008 data ( www.ttc.ca) (last accessed Nov 2009)  
 

b 2006 data from Florida Transit Information System, see  http://www.ftis.org/ (last accessed Nov 2009)  
 

c A study of European Light Rail Performance for South Yorkshire Passenger Transport Executive 
undertaken by (Egis Semaly Ltd and Faber Maunsell  2003). Data is thought to related to the 
calendar year 2003  
 

d UK/Dublin website data at  www.tramlink.co.uk,  www.centro.org.uk,  www.railway-technology.com,  
www.supertram.com http://www.rpa.ie/en/Pages/default.aspx (last accessed Nov 2009)  
 

e GIS Analysis of (Australian Bureau of Statistics  2006)  
 

f Based on 2006 data and GIS analysis of (Statistics Canada  2007)  
 

g Major statistical area, 2000, (U. S. Census Bureau  2000)  http://www.census.gov/ (last accessed Nov 2009)  
 

h GIS analysis of Central Statistics Office, Ireland, Census for 2006 at  http://www.cso.ie/ (last accessed 
Nov 2009)  
 

i GIS analysis of UK Census data for 2001,  https://www.census.ac.uk/Default.aspx (last accessed Nov 
2009)  
 

j INSEE—National Institute of Statistics and Economic Studies—France,  http://www.insee.fr/en/  
default.asp (last accessed Nov 2009)  
 

k Transport Tomorrow Survey, (University of Toronto  2006)  
 

l Center for Studies on Networks, Transport, Urban Planning and Public Works, France,  http://  
www.certu.fr/spip.php?page=sommaire&lang=en (last accessed Nov 2009)  

 

 
widely between systems. The secondary analysis explored ridership influences by 
removing this effect.  

The R value is the multiple correlation of the regression model. The adjusted R
2
 is the 

proportion of the variance in the dependent variable that is explained by the regression 
model. Beta (b) values represent the statistically standardised relationship between an 
explanatory variable and its dependent variable. These values show the relative influence 
of the variables within the model.  

A major concern for reliable use of multiple regression methodology is the use of a 

large data set from which results can be based (Green  1991; Kelley and Maxwell  2003). 

Hair et al. ( 2006) provide some simple advice which enables an informed assessment of 
sample requirements; 
 
• Simple regression can be effective with a sample size of 20, but maintaining power at 

0.80 in multiple regression requires a minimum sample of 50 and preferably 100 
observations for most research situations.   

• The minimum ratio of observations to (explanatory) variables is 5–1, but the preferred 
ratio is 15 or 20–1, and this should increase when stepwise estimation is used (which is 
used in this analysis).  

http://www.ttc.ca/
http://www.ftis.org/
http://www.tramlink.co.uk/
http://www.centro.org.uk/
http://www.railway-technology.com/
http://www.supertram.com/
http://www.supertram.com/
http://www.census.gov/
http://www.cso.ie/
https://www.census.ac.uk/Default.aspx
http://www.insee.fr/en/default.asp
http://www.insee.fr/en/default.asp
http://www.insee.fr/en/default.asp
http://www.certu.fr/spip.php?page=sommaire&lang=en
http://www.certu.fr/spip.php?page=sommaire&lang=en
http://www.certu.fr/spip.php?page=sommaire&lang=en


 
 

 
The eventual number of data points collated for the research was 57. This only just 

meets the minimum threshold of requirements suggested by this source hence clearly the 
statistical reliability of the method requires careful examination in its application. 
 
Statistical reliability tests 
 
A number of statistical tests were undertaken to assess the reliability of the analysis: 
 
• Collinearity tests whether the predictors in the model are so highly correlated as to be 

interchangeable. Collinearity can inflate error values resulting in an unstable model. A 
Variance Inflation Factor (VIF) over 10 is cause for concern (Myers  1990).   

• Casewise Diagnostics—This examines whether any cases are having an unusual 

influence on the model, either as a spurious outlier that conflicts with the model or as 

an unduly large influence on the model. In an ordinary sample only 5% of cases should 
have standardised residuals outside ± 2.  

 
• Three criteria determine whether a single case is having undue influence on the model: 

Cook’s Distance, leverage and Mahalanobis Distance. A Cook’s Distance value greater 

than 1 is of concern (Cook and Weisberg  1982). Any values over 3 times the average 

leverage (k ? 1/n) are of concern (Stevens  2002). With a sample size below 50, 

Mahalanobis distances approaching 11 or over may be cause for concern (Barnett and 

Lewis  1978).  
 
• Regression assumptions—The Durbin–Watson value tests to see if residual errors are 

uncorrelated. A value less than 1 or greater than 3 is cause for concern (Durbin and 
Watson  1951). Plots of standardised residuals can assess if residuals are skewed.  

 
The results of these tests are reviewed as part of assessment of the reliability of 

modelling results. 
 
 
Light rail system data 

 
Table  3 shows the 57 routes for which light rail data was collated. Data collection was 

mainly based on data availability and ease of access. However it was hoped to explore 

how performance varied by right of way design (Melbourne and Toronto have significant 

mixed traffic operations whilst the other systems operate on significant segregated rights 

of way (Currie and Shalaby  2007)).  
Table  4 shows summary data from each of the systems analysed. Ridership is consid-

erably higher on European routes. Australian routes have less than half the rate of Boar-

dings/Route Km but they are more effective than North American in terms of Boardings/ 
Vehicle Km.  

Residential and employment density are, perhaps surprisingly, considerably lower in Europe 

than in Australia or North America data. The residential density result for Australia is 

consistent with Hass-Klau and Crampton ( 2002), who found Melbourne to have an urban 

density within 600 m of tram routes which was higher than all European cities excluding Koln. 

The same source found densities for Dallas (whole system) and San Diego to be above many 

European Cities (e.g. Dublin and Rouen which are included in this analysis).  
Car ownership in the light rail catchment is highest in North America. Australia is 

second with 18% less car ownership in light rail route catchments than North America 
closely followed by Europe (25% less than the US). 
 
 



 
Table 3 Light rail routes selected for analysis   
     

  Australia North America Europe 
    

Number of 24 21 12 
route     

data     

points     

Cities/  Melbourne—109, 96, 86, 112, 19, Toronto—501, Dublin—Red, Green 
routes  75, 59, 8, 16, 1, 3, 5, 48, 55, 67, 502–503, Croydon—Wimbledon, 

  57, 72, 6,70, 64,78–79, 82 504–508,505,506, Beckenhamand New 
   509–510, 511, 512 Addington lines

a 
  Adelaide (one route operated) Boston, MA—Green Sheffield—Meadowhall, 
   Line Halfway and Middlewood 
    lines

a 
  Sydney (one route operated) Baltimore, MD—(one Tyne and Wear—Green and 
   route operated) yellow lines

a 
   Charlotte, NC—Lynx Midland Metro—Birmingham 
   Light Rail to Wolverhampton 
   Houston, TX—Red Manchester—Bury, Altrincham 
   Line and Eccles Lines

a 
   Dallas, TX—DART

a  

   Minneapolis, MN— Nottingham—Hucknall 
   Hiawatha Line Lyon—Line 1, Line 2 
   Tacoma, WA— Montpellier—Line 1 
   Tacoma Link  

   Buffalo, NY—Niagara Rouen—Line 1 
   Frontier  

   Tampa, FL—  

   Hillsborough  

   Portland, OR—MAX
a  

   Sacramento, CA—  

   Regional Transit  

   Sand Diego, CA—  

   trolley
a  

   Saint Louis, MO—  

   Metrolink  
 
a   

These lines analysed as a group due to poor data availability 

 
Australian light rail systems are characterised by low service levels, slow speeds, short 

stop spacing, a very low share of accessible stops and a low share of segregated right of 

way compared to both US and European systems. However there are more integrated fare 

systems in Australia. Interestingly the US systems have the highest service levels 

measured as vehicle trips p.a. They also have the longest stop spacing (841 m which is just 

over 3 times that in Australia). European service levels are almost as high as the US but 

con-siderably above those in Australia (there is 48% more service in European systems 

than in Australia and 80% more in the US than Australia). European systems have the 

highest speeds, a complete system of accessible stops and more than double the track 

segregation in Australia. However it has the lowest share of integrated fares.  
Figure  1 illustrates the relationship between average speed, stop spacing and % seg-

regated right of way. Neither relationship for the aggregate data is strong; the correlation 
 
 



     
   

Table 4   Average of light rail route variable statistics by continent   
     

 Australia North America Europe  
     

Dependent variables (ridership)     

Boardings/route Km Mean 433,820 582,320 879,754 
 SD 219,522 458,220 470,945 
Boardings/vehicle Km Mean 6.4 5.2 9.5 
 SD 2.0 2.3 3.8 
Explanatory variables     

Residential density Mean 3,713 3,222 2,484 
 SD 942 3,948 1,439 
Employment density Mean 7,611 2,500 1,506 
 SD 2,455 3,296 1,098 
Car ownership Mean 434 531 396 
 SD 53 156 78 
Service level (vehicle trips/annum) Mean 64,260 114,877 94,679 
 SD 15,341 58,811 18,208 
Average speed (kph) Mean 17 18 25 
 SD 2 7 6 
Stop spacing Mean 279 841 722 
 SD 98 642 251 
% Accessible stops Mean 21 54 100 
 SD 26 50 0 
% Segregated right of way Mean 24 39 54 
 SD 23 47 40 
Integrated fares Percent 96 76 50 
     

 
between stop spacing and speed is R = 0.61 and between stop spacing and share of ROW 
is R = 0.39. 
 
 
Results 
 
The following independent variables were submitted in a step-wise regression (as 
described in the section ‘‘the statistical model’’): average stop spacing, average speed, 
percent of each route with segregated track, employment density, residential density, car 
ownership, vehicle trips per annum, continent (dummy variables) and integrated ticketing 

(dummy variable). The dependent variable was boardings/route km.
1
  

Table  5 shows the result set from the multiple regression analysis. The model proved 
statistically significant at the 99% level with five significant explanatory variables and an 

adjusted R
2
 of 0.76 suggesting that 76% of the variance in Boardings/Route Km are 

explained by the model.  
The most important factor influencing ridership is Service Level measured as vehicle 

trips p.a. (b = 0.74). This is closely followed by routes being in Europe (b = 0.72) a 

 
1 

A log transformation of Boardings/Route Km (and, later, boardings/vehicle km) resulted in a lower R
2
 so the 

untransformed variable was used. 
 



 
Fig. 1 Average speed, stop 
spacing and segregated right of 
way share 
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Table 5   Multiple regression results—boardings/route km 
 
R

2
  (adjusted) = 0.76; F(5,51) = 37.0, p \ 0.001 

 
Variable Unstandardised weight Standard error B Beta (b), standardised t-Value 
     

Constant 34,336.831 148,520.297   

Explanatory variables     

Vehicle trips/annum 6.912 0.632 0.741 10.938 
Europe 714,593.149 80,030.637 0.720 8.929 
Speed -27,728.595 5,525.895 -0.395 -5.018 
Employment density 25.643 8.200 0.236 3.127 
Integrated ticketing 241,967.756 72,057.231 0.244 3.358 
     

 
 
 
dummy variable added to the analysis to test if regional circumstances could explain 

variations in performance. In this case the results firmly suggest that there is something 

special about the European context which makes ridership higher than in North America 

and Australia. Speed has the third strongest link with Boardings/Route Km (b = -0.40). 

Here slower speed is associated with higher ridership; although this coefficient appears to 

 



 
fail the logic test of expectations, previous work has found similarly paradoxical findings 

regarding running speed (Crampton  2002; Hass-Klau and Crampton  2002; Currie and 
Delbosc  2010). The reason is that dwell times increase as loadings rise. As a result busier 

routes tend to be slower.  
Integrated ticketing (b = 0.24) and Employment Density (b = 0.24) were the other two 

significant explanatory variables in the model.  
None of the other explanatory variables explored proved to be statistically significant in 

the modelling. Variables such as car ownership and residential density were excluded from 
the final model for this reason.  

Statistical assessment of this model showed that collinearity was not a concern as all 

VIF values were below 2. Three data points were outside of ±2 residuals but this is within 

5% of the sample size. No cases had a Cook’s distance near 1 nor did any values have a 

leverage over 0.32 (three times the average leverage). Six cases had Mahalanobis Dis-

tances over the conservative cut-off of 11 but considering they were not suspect under the 

other criteria they are unlikely to be cause for concern. The Durbin–Watson value was 1.5, 

within accepted values. Plots of residuals versus predicted values show some degree of 

heteroscedasticity, which is unsurprising with the small sample size. This suggests that 

caution should be used when generalising these results to all light rail systems. 
 
Secondary analyses 
 
A series of secondary analyses were undertaken to further explore the results.  

The first tested a different explanatory variable: Boardings/Vehicle Km, a measure of 

system ‘service effectiveness’; i.e. the relative ridership performance for a given level of 

service (after Fielding  1987). The logic of this test was to try and control for the domi-

nating influence of service level (measured as vehicle kilometres per annum) from the 

initial regression and to see if a different set of variables influences service effectiveness. 
 
Boardings/vehicle km model 
 
A model using Boardings/Vehicle Km as the dependent variable and with the same explanatory 

variables proved to be statistically significant. Again collinearity was not a concern in this 

model as all VIF values were below 2 and only 2 data points were outside of  
±2 residuals. The Durbin–Watson value was 1.4, within accepted values. Plots of residuals 
versus predicted values showed acceptable levels of heteroscedasticity.  

No cases had a Cook’s distance near 1 but one case (Toronto 509/510) had a Maha-
lanobis Distance of over 18 and a leverage value of concern. These values indicate this 
data point is placing undue influence on the model so it was removed from this analysis. 
Table  6 shows the result set from the multiple regression analysis focussing on Boardings/ 

Vehicle Km. This model was significant at 99% level with an overall adjusted R
2
 of 0.67.  

Almost all of the same variables were significant in this model however their relative 

influence was very different. Being in Europe was the most important influence on 

Boardings/Vehicle Km (b = 0.96) with speed the second most influential factor (b = -

0.51). Employment density fourth (b = 0.47) and integrated ticketing came third (b = 

0.37). Track segregation was significant in this model where it was not significant in the 

last (b = 0.28). Interestingly service level (vehicle trips p.a.) was again significant (b = 

0.17) implying that a higher frequency results in higher service effectiveness. 
 
 
 



 
Table 6   multiple regression results—boardings/vehicle km 
 
R

2
  (adjusted) = 0.67; F(6, 49) = 19.2, p \ 0.001 

 
Variable Unstandardised weight Standard error B Beta (b), standardised t-Value 
     

Constant 4.104 1.509   

Explanatory variables     

Europe 6.959 0.706 0.961 9.863 
Speed -0.259 0.049 -0.505 -5.342 
Employment density 0.00039 0.0001 0.471 3.910 
Integrated ticketing 2.688 0.649 0.371 4.140 
Track segregated 0.020 0.009 0.279 2.213 
Vehicle trips/annum 0.000012 0.00001 0.174 2.037 
     

 
 

 
Non-European models 
 
A separate analysis was undertaken of non-European systems however the validity of this 
analysis is questionable given the much smaller sample size in the non-European data (45 
compared to 57). 
 
 
Conclusion and discussion 
 
This paper has explored the relative influence of factors affecting light rail ridership on 57 

light rail routes in Australia, Europe and North America through an empirical examination 

of route level data. A multiple-regression analysis predicting route level ridership (boar-

dings per route km) using residential and employment density, car ownership, service 

level, speed, stop spacing, share of accessible stops, share of segregated right of away and 

integrated fares was undertaken. This established a statistically significant model (99% 

level, R
2
 = 0.76) with five significant variables including, in order of influence: service 

level (b = 0.74), routes being in Europe (b = 0.72), speed (b = -0.40), integrated tick-eting 

(b = 0.24) and employment density (b = 0.24). A model predicting boardings per vehicle 

km (R
2
 = 0.67) resulted in almost the same set of variables but in a different order of 

influence: Europe (b = 0.96), speed (b = -0.51), employment density (b = 0.47), integrated 

ticketing (b = 0.37), segregated right of way (b = 0.28) and vehicle trips/ annum (b = 

0.17). In general statistical tests of the model have confirmed its reliability however the 
sample is considered small and caution should be adopted in using findings for other light 

rail systems.  
The strength of service level in these results is consistent with a range of findings from 

previous route level research (including Stopher  1992; FitzRoy and Smith  1998; Kain 

and Liu  1999). In effect the quantum of service provided acts to drive the ridership that 

results, largely irrespective of other factors. It is interesting to note that service level was a 

significant (though small) influence on boardings per vehicle km, which suggests routes 

with a higher service level are more efficient.  
The strength of the European dummy variable (b = 0.72) is intriguing. On first glance 

one would expect that factors such as residential and employment density or car ownership 

 



 
would explain why European routes have higher ridership. However this analysis has 

already allowed for these differences, suggesting the European ‘‘bonus’’ to light rail rid-

ership is independent of these influences. Previous models (Hass-Klau and Crampton  

2002) suggest that high light rail ridership could be associated with pedestrianisation 

which may explain the ‘European factor’ in this analysis. Another possible explanation is 

that public transport mode share is considerably higher in Europe (12%/15% in 

France/UK) compared to 5% in Australia, 3% in the US and 8% in Canada (Kenworthy 

and Laube  2001). Higher mode share may be a proxy for a greater network effect or a 

culture of transit use. Either way the results point to important non-measured influences in 

the European context which are worthy of further research.  
The negative link between speed and ridership is also consistent with previous research 

(Crampton  2002; Hass-Klau and Crampton  2002; Currie and Delbosc  2010). In effect light 

rail systems with lower speed have higher ridership. This is likely to be a combined influence 

of longer boarding/dwell times due to higher ridership and the fact that inner urban areas (e.g. 

CBD’s) have high ridership, shorter stop spacing and hence slower speeds.  
The strength of integrated ticketing (b = 0.24) as a ridership driver is also consistent with 

previous research (e.g. Hass-Klau and Crampton  2002) while employment density (b = 0.24) 

has also been found to be an important driver (Kain and Liu  1999). It is interesting to note that 

employment density, not residential density, was the significant predictor in this model. 

Residential density has been identified as a significant route-level ridership driver in previous 

research (Seskin and Cervero  1996; Johnson  2003). Emerging evidence is sug-gesting that 

residential density is not a primary driver of transit ridership and that employment density may 

be the more important influence (Chen et al.  2008; Mees  2009).  
An additional secondary analysis of the non-European data was undertaken but had 

statistical concerns due to the lower number of data points.  
Overall the research findings stress the importance of providing a high level of service 

as a major driver of light rail ridership. The ‘European Factor’ is also important but 

requires further research to clarify the specific aspects of European systems which result in 

higher ridership. Mode share and cultural/behavioural influences have been suggested as 

possible reasons for this influence. This would be a fruitful area for exploration in future 

research. Further research, including a wider range of routes and data points, would also 

improve concerns over the reliability of the modelling. 
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