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A Combined Experimental-Numerical Investigation of

Fracture of Polycrystalline Cubic Boron Nitride
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aSchool of Mechanical and Materials Engineering, University College Dublin, Ireland

Abstract

Numerical modelling of a series of experimental Single Edge V-Notched Beam

tests was carried out for a number of grades of polycrystalline cubic boron ni-

tride using the finite volume method (FV) and cohesive zone model approach.

The effect of notch root radius observed experimentally was reproduced nu-

merically via a unique CZM for each material examined. It was also found

that the shape of the cohesive zone model can be significant, especially when

the material has a relatively high fracture energy. It was also demonstrated

that the experimentally observed drop in fracture toughness with increase in

test rate was not explainable in terms of the system dynamics. It was found

that in order to predict the experimental fracture loads for a range of loading

rates, it was necessary to modify the CZM in such a way as to preserve the

micro-structural length scale information of the material embedded within

the CZM.
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1. Introduction

Over the last 25 years, Polycrystalline Cubic Boron Nitride (PCBN) has

become an increasingly important tool choice for the efficient machining of

hard ferrous materials. This is, in part, due to a desire to reduce cost while

increasing tool performance. Customers, in particular, the aerospace [1, 2]

and automotive industries [3, 4, 5, 6] require a cutting tool that will give a

long tool life and deliver precision and consistency to the machining operation

over the life of the tool. In addition, parts are now being machined out of

aerospace or other abrasive alloys which would present major challenges with

conventional tooling. An ideal cutting material should possess the following

material characteristics:

• Extremely high hardness.

• Good toughness.

• High thermal conductivity.

• Chemical inertness.

Typical property values for the main categories of cutting tool materials are

shown in Figure 1 [7]. Polycrystalline Diamond (PCD) outperforms all the

other tool materials in almost all cases, with the notable exception of fracture

toughness. However, PCD is not suitable for use in ferrous metalworking

since it is chemically unstable in the presence of iron [8]. The diamond

particles in a PCD compact begin to decompose into graphite at 700◦C. This

is a major limitation for the use of PCD, as around 80% of common workpiece

materials are ferrous [9]. PCBN, on the other hand is thermally stable and
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Figure 1: Typical values for the properties for the main classes of cutting tool materials.

After [7].

highly resistant to chemical attack. As a result, the high temperatures which

occur near the tip of the cutting tool do not pose difficulties and can be used

to promote hot cutting when machining ferrous metals, making it an excellent

choice of tool material for the metalworking industry. The heat induced soft

cutting means that the PCBN tool is not in contact with the workpiece in its

hardened state which greatly improves the tool life when compared with other

cutting tool materials [10]. PCBN tooling is also effective in the machining

of softer, but highly abrasive grey cast irons.

The superior characteristics of PCBN make it ideally suited to both high

speed and dry machining where the adoption of advanced cutting practices,

such as minimum quantity lubricant (MQL) and ultra high speed machining,

substantially increase the economic viability of using the more expensive

PCBN tooling [10].
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Cubic Boron Nitride (CBN), a synthetic material, is the second hardest

material in the world. PCBN, as used for cutting tools, is a sintered mass of

CBN particles of the order of 1-25 µm with a variety of ceramic and metal

phases. The end product is a bulk material with a unique combination of

high hot hardness and chemical stability which are increasingly important in

the metal cutting industry today. However failure due to fracture and chip-

ping is still a major problem in the industry. In order to improve the fracture

toughness of these materials it is firstly necessary to fully characterize the

fracture properties and the underlying fracture mechanisms of the material

under a wide range of operating conditions. This requires undertaking fun-

damental research into the properties of the material and the behaviour of

PCBN in the cutting process.

The effect of a characteristic length scale on the experimentally mea-

sured fracture toughness of materials has been investigated analytically by

a number of researchers, notably by Taylor [11, 12, 13], Carolan et al. [14]

and Elices et al. [15]. These authors have shown that the characteristic

length scale can be related back to the microstructure of the material. The

current work shows that the characteristic length scale or microstructural

information is embedded within the cohesive zone formulation and affects

the fracture behaviour of the material under a range of loading conditions.

2. Experimental Method

In this work fracture tests were performed on PCBN Single Edge V-

Notched Beam (SEVNB) specimens. The fracture toughness of two grades

of PCBN, denoted A and B, was evaluated at a number of crosshead dis-
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placement rates from 1 mm/min to 1 m/s, and at a number of different

temperatures between room temperature and 750◦C. The fracture toughness

of a further three grades, denoted C, D and E, was determined at 1 mm/min

and room temperature.

2.1. Low Rate Tests

Low rate tests were performed using a screw driven tensile testing ma-

chine, type Hounsfield H50KS. Three different crosshead displacement rates

were applied, 1 mm/min, 10 mm/min and 350 mm/min. In addition to this

five different test temperatures were prescribed, up to 750◦C. The load was

measured using a 10 kN load cell. The fracture toughness, KIc, was evalu-

ated using the load at initiation method [16]. The main assumption of this

analysis is that linear elastic fracture mechanics (LEFM) can provide a re-

alistic description of the stress field at initiation. A schematic and photo of

the test setup used can be seen in Figure 2. Fracture toughness was then

evaluated using Equation (1).

KIc =
Pins

bh3/2
.f(α) (1)

where s is the span , Pin is the breaking load, α = a/h, where a is initial

crack length and f is a calibration function given by Equation (2).

f(α) =
3α0.5[1.99− α(1− α)(2.15− 3.93α + 2.7α2)]

2(1 + 2α)(1− α2)1.5
(2)

2.2. High Rate Tests

As outlined in Section 2.1 the accuracy of the load at fracture analysis

depends on a precise determination of the crack initiation load. Determina-

tion of this load at high rates can be rather more complicated due to inertia
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Figure 2: Low rate TPB test.

and stress wave propagation effects. Hence, at the initiation of fracture, the

fracture load does not necessarily have to coincide with the peak load on the

load time trace obtained by the machine load cell.

According to Belenky et al. [17], there are three main categories for

measuring dynamic fracture toughness: high rate bending, high rate tension

and dynamic wedging. The majority of investigations have attempted to

extend existing quasi-static techniques to a dynamic loading situation, hence

the proliferation of high rate bending techniques. The bend test can be one-,

three- or four-point with the load provided by a modified Hopkinson bar, a

drop tower, a high rate servo-hydraulic machine or a Charpy pendulum [18].

Both Belenky et al. [17] and Kim and Chao [19] reported significant increases

in fracture toughness at increased loading rates for monolithic ceramics.

Kalthoff at al. [20] showed that the dynamic effects at the crack tip were

significantly smaller than the load measured at the striker contact point. It

follows then, that there exists a unique relationship between the dynamic
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fracture toughness of the material and the time to fracture initiation. Weis-

brod and Rittel [21] have also used the time to initiation method to measure

the dynamic fracture toughness using a one point bend impact configuration.

They measured the time for fracture initiation via a small strain gauge placed

close to the crack tip and measuring the strain at this point as a function of

time during the fracture event. This strain gauge can also be can be used as a

load cell if calibrated beforehand under static conditions. The precalibrated

strain gauge approach is used in the current work to determine the fracture

load.

In the current work a minute strain gauge (type: Vishay EA-015LA-

120, gauge length: 0.38 mm), designated as the tip strain gauge (TSG) was

bonded close to the crack tip for all high rate tests to record the fracture

initiation time, tf and fracture initiation strain εf . A photo of a fractured

specimen with the strain gauge still attached close to the crack tip is given

in Figure 3.

Initial testing incorporated a small trigger circuit attached to the top of

the sample as shown in Figure 4. The intention of this trigger circuit was to

facilitate precise determination of the point at which the striker contacts the

specimen. However it was subsequently found that given the small size of the

sample and the proximity of the TSG to the trigger line that the closing of

the trigger circuit resulted in a substantial voltage spike in the strain gauge

output. In addition to this the trigger did not fire until sufficient contact

pressure was applied between the striker and the trigger line. This meant

that the contact circuit could not be used as an accurate measure of the

onset of loading. To simplify the experimental arrangement, a light gate was
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used to trigger the recording of the TSG signal. The strain was recorded

on a Handyscope HS3 100 MHz signal conditioning amplifier, while the load

was recorded by a 25 MHz amplifier. The time at which loading of the

sample began, ts was then determined directly from the TSG signal by the

intersection of two straight lines as shown in Figure 5. The time to fracture,

tf , was measured as the time difference between the initiation time and peak

value of the TSG signal.

Figure 3: Fractured Specimen showing position of TSG.

3. Experimental Results

The experimentally determined fracture toughnesses for all rate tempera-

ture combinations of PCBN A and PCBN B are plotted in Figures 6 and 7 re-

spectively. The nominal crosshead displacement rates varied from 1 mm/min

(1.67×10−5 m/s) to 1 m/s. The test temperatures varied from room temper-

ature, 20◦C to 750◦C, close to the operating temperature of the tool material.

At least three repeats were performed at each rate temperature combination.

The fracture toughnesses were calculated using the load at initiation method.

Only low rate tests were conducted at higher temperatures. This was due to
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Figure 4: Schematic of the high rate TPB test.
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Figure 5: Two typical strain time traces for PCBN B for a drop velocity of 0.3 m/s.
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the expense of high temperature gauges needed to evaluate fracture tough-

ness at high rates. Petrović [22] has successfully used these high temperature

gauges to measure the dynamic fracture properties of PCD up to 650◦C.
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Figure 6: Variation of apparent fracture toughness with rate and temperature for PCBN

A.

It should be noted that Figures 6 and 7 plot apparent or measured fracture

toughnesses, denoted Kb rather than the critical fracture toughness, denoted

Kc. It is known that the effect of the blunt notch plays a role in the systematic

overestimation of the fracture toughness [23]. A detailed analysis of the effect

of notch root radius on the measured fracture toughness for the materials used

in the current work can be found in [14]. The average notch root radius for

PCBN A was approximately 120 µm while for PCBN B the average notch

root radius was 150 µm. The apparent fracture toughness, Kb for PCBN

A, 7.7 MPa m1/2, at low rate and low temperature was less than 7% greater

than the calculated critical fracture toughness, KIc of 7.2 MPa m1/2, whereas
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Figure 7: Variation of apparent fracture toughness with rate and temperature for PCBN

B.

Kb for PCBN B, 11.9 MPa m1/2, was 5.4 times greater than the measured

critical fracture toughness of 2.2 MPa m1/2.

The degree to which fracture toughness is over estimated by a blunt

notched specimen over a sharp cracked specimen can be found by including

a micro-structural length scale, rc, in the maximum circumferential stress

criterion proposed by Ritchie [24]:

Kb = KIc

(
1 +

R

2rc

) 3
2

1 +
R

rc

(3)

It has been shown by Carolan et al. [14] that, in the case of PCBN, the

microstructural length scale is always equal to the nominal CBN grain size.

A large drop in Kb was noted for PCBN A with increase in loading rate,

while no significant statistical decrease was noted for PCBN B over the range
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of test rates. Significant variation in measured fracture toughness was noted

for both materials at different test temperatures. However, no consistent

trend was noted with increase in test temperature. It is speculated that the

measured difference in Kb values at increased test temperatures is due to the

relief of the existing residual stress state caused by the manufacture of the

specimen. This hypothesis was not investigated further in this work.

The critical fracture toughness, grain size, and critical distance evaluated

using Equation 3 for the five grades investigated in this work are give in

Table 1. It should be noted that the calculated critical distance, rc, is very

close to the nominal CBN grain size for all grades examined. In the case

of PCBN A the range of notch root radii available for experimentation was

not sufficient to determine a value of rc with any degree of certainty using

Equation 3. However it is shown in this work, using a cohesive zone model

approach, that an rc value equal to the given grain size of 22 µm fits the

experimental data well.

Grade KIc [MPa m1/2] Grain size [µm] rc [µm]

PCBN A 7.7 22 n/a

PCBN B 2.8 1 0.97±0.34

PCBN C 2.2 1.5 1.47±0.56

PCBN D 4.9 3 3.15±0.43

PCBN E 3.8 3 3.04±0.27

Table 1: Critical fracture toughness, grain size and critical distance of PCBN grades.
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4. Finite Volume Method

The finite volume (FV) method describes a family of numerical proce-

dures that can be used to discretise the governing equations of continuum

mechanics into a system of algebraic equations. The method was first devel-

oped for the solution of solid mechanics problems by Demirdzić et al. [25]

and Ivanković et al. [26]. The simplicity of the formulation has meant that

the FV method is gradually gaining acceptance as an alternative to the pre-

eminent finite element (FE) method for solving solid mechanics problems.

It has already been used in a wide range of applications from the fracture

of polymers [27, 28], adhesives [29], viscoelastic materials [30] and problems

involving fluid structure interaction [31, 27]. In addition memory utilisation

is very efficient. The FV method offers several major advantages including

[32]:

• Relying on the laws of mass, momentum and energy conservation in

their original integral form, the method is conservative, yet can be

implemented relatively simply.

• It employs a segregated solution, since the equations are linearised and

the set of equations for each dependent variable are decoupled. This

results in very efficient memory management.

• Equations are solved sequentially using an iterative solver. This makes

the method inherently suitable for the solution of non-linear problems.

• The FV method is conservative, which makes it appropriate for co-

hesive failure models as they are implemented along cell faces where

equilibrium is considered.
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4.1. OpenFOAM

All of the simulations in the current work were conducted using OpenFOAM-

1.6-ext [33, 34]. OpenFOAM (Open Source Field Operation and Manipula-

tion) software is a fully 3-dimensional, finite volume, object oriented C++

library. It is used primarily to create solvers to solve complex physics prob-

lems. One of the main strengths of OpenFOAM is that new powerful solvers

and utilities can be created by a user provided the user has a solid under-

standing of the underlying FV methods, physics and programming techniques

involved. OpenFOAM is divided into a set of pre-compiled libraries that are

dynamically linked during compilation of solvers and utilities. A solver is usu-

ally designed to solve a specific computational continuum mechanics problem,

while utilities perform pre- and post-processing tasks, such as meshing and

data manipulation. The main theme of the design of OpenFOAM is that the

solver applications being modelled have a syntax that resembles the partial

differential equation being solved. This makes programming of the method

relatively straightforward. For example, the equation

∂(ρV )

∂t
+∇.φV −∇.µ∇V = −∇p (4)

is represented by the code as:

solve

(

fvm::ddt(rho,V)

+ fvm::div(phi, V)

- fvm::laplacian(mu, V)

==

14



-fvc::grad(p)

)

Finite volume method (fvm) returns a FV matrix from the discretisation

of a geometric (volume) field while finite volume calculus (fvc) returns a

geometric field. In other words fvm is used to treat implicit terms while fvc

is used to treat explicit terms.

5. Modelling the TPB Test

In the present work, the simulation of pure Mode I crack growth in the

TPB test is considered. The PCBN is initially treated as a homogeneous

material. Only normal separation along a prescribed crack path is modelled.

This is clearly a simplification of the actual fracture process which is rather

more complex, involving a combination of both intergranular and transgran-

ular fracture as well as micro-cracking adjacent to the main crack path. The

tractions transmitted across the assumed crack path are related to the open-

ing displacement of the cohesive layer via a cohesive zone (CZ) law along

the interface. Before the normal tractions on the crack path cell faces reach

the cohesive strength of the material, the cohesive surface behaves in the

same manner as the bulk material and is modelled using the symmetryPlane

boundary condition. Once the stress level on the cell face reaches the cohe-

sive strength, σmax, representing the onset of damage, the material behaves

according to the prescribed CZM.

5.1. Mesh Generation

Figure 8 shows the typical finite volume representation of the three point

bend notched specimen. A patch is a term specific to OpenFOAM which
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encompasses one or more areas of the boundary surface which may or may

not be physically connected. A number of meshes with different notch root

radius geometries were created, from 1 µm to 500 µm. The boundary condi-

tions shown in Figure 8 are also OpenFOAM specific and correspond to the

following:

• tractionDisplacement: specifies a traction and/or displacement in

x, y, z on the surface. In this case the surface is set to be traction free.

• directionMixed: is a mixed boundary condition which allows a combi-

nation of both a fixed value, fixedValue, and a fixed gradient, fixedGradient,

boundary condition. The mixing factor is controlled in OpenFOAM

by the valueFraction variable. Furthermore, the directionMixed

boundary condition allows for directional decomposition into the nor-

mal and tangential directions.

• cohesive: is the boundary condition along which the cohesive model

is implemented. The tractions on the boundary are specified according

to the prescribed cohesive zone formulation.

• symmetryPlane: is OpenFOAM’s nomenclature for a plane of symme-

try.

Each mesh was created in 2-D (1 cell through thickness) and plane strain

conditions were specified. The meshes were defined using blockMesh, Open-

FOAM’s built in meshing utility. The advantage of using this utility over

other commercial packages is that it allows for very easy manipulation of

single aspects of a complex geometry, for example, varying the notch root
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radius (NRR) in a three point bend specimen. This allows for a numerical

prediction of the failure load at any notch root radius and a comparison with

the analytical technique described in [14] can then be made. Because of the

symmetry of the problem it is only necessary to model one half of the total

geometry.

5.2. Influence of Elastic Compliance of Test Rig

Numerical simulations were performed for each notch geometry for quasi-

static loading, (loading rate = 1mm/min), using both a linear type and a

Dugdale type cohesive law. It was found that the fracture times were con-

siderably less, up to 50%, than those observed experimentally. An elastic

support and striker as described by [35] was specified numerically in order to

account for the machine loop compliance during the fracture test. A reason-

able stiffness value can be obtained by considering the striker and supports as

simple cylinders and then calculating the respective stiffness using k = EA/L

The effect of an elastic support on both the load time trace and crack growth

behaviour after fracture of the sample is clearly shown in Figure 9. It should

be noted that inclusion of an elastic support in the solver greatly affected the

convergence characteristics of the solver for each time step. As an example,

a TPB with NRR = 100 µm loaded at a crosshead displacement rate of 1

mm/min with initial time step set to 1 ms is considered. The solution for

the first time step converged to a tolerance of 1× 10−06 after 144 outer iter-

ation in a time of 11,360 s when a rigid support was specified, whereas for

an elastic support with stiffness 5 MN/m the solution had only converged to

a tolerance of 0.01 after 1,000 iterations in a time of 146,537 s. Specification

of an extremely compliant support (stiffness < 2 MN/m) caused the solution

18



to diverge for all time steps examined.

Inclusion of an elastic support does not affect the failure load at low rates.

It does, however affect the measured striker and support loads at higher rates.

However, the striker load cannot be used as a reliable measure of crack tip

load as explained previously. The solver was adapted to output the strain at

a predefined face close to the notch tip at the approximate location of the tip

strain gauge in the instrumented test specimens. It is this measure of strain

which was used to estimate the crack tip load.

For the sake of reduced computing time, it was decided to dispense with

specifying the support and striker stiffness for all TPB simulations. This has

the obvious effect of affecting the crack propagation phase of the simulation.

However, since no experimental evidence of the crack propagation phase (such

as the evolution of crack length as a function of time) was collected in the

current work, propagation is not currently of interest. A complete analysis

would require the incorporation of contact procedures at both the striker and

supports [36].

5.3. Mesh Sensitivity

Figure 10 shows the results of a simple mesh sensitivity study on two TPB

geometries with different NRR. As the main region of interest is confined to

the development of the stress field around the notch tip, it is appropriate

that the best measure of sensitivity be the number of cells around the notch

arc rather than the total number of cells in the entire model. For both cases,

there is relatively little change in predicted fracture load once there is 100

cells around the notch arc shown in Figure 8. All subsequent TPB geometries

then had at least this amount of cells prescribed around the notch arc.
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5.4. CZM Parameter Sensitivity

Numerical predictions for different notch root radii may have different

sensitivities to the two cohesive parameters, GIc and σmax. In particular, it

is important to investigate whether there is more than one set of cohesive

parameters which allow a characteristic geometry to be modelled. An essen-

tial aspect of ensuring that the correct cohesive parameters are specified is a

sensitivity analysis for each test geometry modelled.

5.5. Effect of CZM Shape

The effect of CZM shape has been reported to have an influence on the

predicted failure of brittle materials as discussed by Chandra [37], Rots [38].

Figure 11 presents schematically the shape of four simple cohesive zone mod-

els, Dugdale, weak bilinear, linear and strong bilinear. Table 2 gives the val-

ues of δc,i used in Figures 12. Each CZM has the same fracture energy, GIc,

and cohesive strength, σmax. They differ only in the slope of the softening

part of the cohesive curve, ranging from Dugdale, which has zero slope to

what has been termed strong bilinear, which has a steep slope.

Figures 12 and 13 present the effects of the initial steepness of the cohesive

zone formulation on the predicted failure load of both PCBN A and PCBN

B. This effect has been presented for a sharp notch, NRR = 10 µm, and

a blunt notch, NRR = 150 µm, for both materials. These notch root radii

approximately represent the sharpened and unsharpened experimental test

specimen geometries.

It can be seen in Figure 12 that the shape of the CZM model has no effect

on the failure load for the sharp initial notch with NRR = 10 µm. This is

obvious if one considers the micro-structural criteria for an equivalent sharp
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Figure 11: Schematic of CZM models with increasing slope of the damage region.

Type σmax [MPa] δc,1 [µm] δc,2 [µm] δc,3 [µm] δc,4 [µm]

Dugdale 600 0.117

Weak bilinear 600 0.117 0.155

Linear 600 0.233

Strong bilinear 600 0.117 8.17

Table 2: CZM parameters used in Figure 11 for PCBN A. GIc = 70 J/m2 in all cases.
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Figure 12: Effect of CZM shape on PCBN A (GIc = 70 J/m2, σmax = 600 MPa on a

sharp notch, NRR = 10 µm, and a blunt notch, NRR = 150 µm.
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Figure 13: Effect of CZM shape on PCBN B (GIc = 11 J/m2, σmax = 1000 MPa on a

sharp notch, NRR = 10 µm, and a blunt notch, NRR = 150 µm.

crack expressed by Damani [23] and Kübler [39] and discussed in the case

of PCBN in [14]. The critical distance information is embedded within the

cohesive model and the 10 µm notch root radius is much less than the value

of rc calculated for PCBN A.

A decrease in predicted fracture load was observed for the initial blunt

notch. In this case the notch root radius is much more than rc. It was found

that the Dugdale model could not predict the failure load accurately for both

sharp notched and blunt notched experiments. A linear model gives much

more accurate predictions. This agrees with the findings of both Chandra

[37] and Rots [38] who found in studies on concrete that if the damage stems

from processes such as microcracking, as is the case with ceramics, rather

than plasticity, as with metals, a linear or bilinear cohesive zone law is better

suited to predicting damage than a Dugdale model.

PCBN B is a much less tough material than PCBN A and has a smaller

critical distance, limited by the CBN grain size. Both the sharp notch and

23



the blunt notch exhibit a decrease in the numerically predicted fracture load

with increasing initial steepness. This can be explained by the fact that both

notch root radii examined are significantly in excess of the critical distance,

rc. Furthermore, the rate of decrease in both cases is approximately similar,

indicating that the the choice of cohesive zone shape is not important pro-

viding that the cohesive zone parameters, GIc and σmax give good agreement

with the experimental results.. This is because for all the experimental ge-

ometries tested for the failure of PCBN B is very much dominated by the

choice of σmax and GIc plays a minor role.

6. Comparison with Experimental and Analytical Results

Table 3 lists the CZM parameters used in the current study. The fracture

energy GIc was derived from experimentally determined fracture toughness.

σmax was found for PCBN A and PCBN B via an inverse analysis technique

[40]. The measured flexural strength reported in [41] was used as an initial

estimate for σmax. In both cases this was found to be much too low to satisfy

the experimentally determined failure loads as shown. The cohesive strength,

σmax, was subsequently increased until a good fit with the experimental data

was obtained. The effect of both GIc and σmax on the predicted failure loads

of notched specimens with different notch root radii for both PCBN A and

PCBN B are shown in Figures 14 - 17. Several simulations with notch root

radii varying from 10 µm to 500 µ in steps of 10 µm were used to generate

a curve for each cohesive zone formulation.

A comparison of Figures 16 and 17 reveal that varying σmax causes the

numerically predicted fracture load to diverge at large values of R/rc, while
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varying GIc causes the numerically predicted fracture load to diverge at low

values of R/rc. This indicates that fracture of blunt notches is mainly domi-

nated by σmax, a strength criterion, while the fracture of progressively sharper

initial notches is influenced by the value of GIc. This is intuitively obvious,

since only atomically sharp cracks provide an absolute measure of fracture

toughness, while extremely blunt notches tend towards a measure of flexural

strength. However it has been shown by Carolan et al. [14] if the notch

tip radius is greater than 3.2rc then the computed fracture toughness is suf-

ficiently close to the actual fracture toughness. Indeed, most experimental

measurements taken in this work are neither measures of strength nor of

toughness but rather a combination of both parameters.

Grade GIc [J/m2] σmax [MPa] CZM type

PCBN A 70 600 Linear

PCBN B 11 1000 Dugdale

PCBN C 8.7 730 Dugdale

PCBN D 38.5 1120 Linear

PCBN E 19.9 875 Linear

Table 3: CZM parameters used in the current work.

It was noted in the preceding experimental work that the CBN grain

size played a fundamental role in governing the overall fracture behaviour of

PCBN specimens. Considering the fundamental critical distance relation:

σ =
K√
2πr

(5)
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and noting that at fracture, K = KIc, σ = σmax and r = rc, it follows that:

σmax =
KIc√
2πrc

(6)

Rearranging for rc yields:

rc =

(
KIc

σmax

)2
1

2π
(7)

Inserting values obtained from numerical analysis for both PCBN A and

PCBN B and noting that GIc = K2
Ic(1− ν2)/E, it is found that rc,A = 22.9

µm and rc,B = 0.85 µm. Both values are remarkably close to the given CBN

grain sizes of 22 µm and 1 µm respectively.

The idea of a constant critical distance equal to the CBN grain size was

subsequently applied to the numerical analysis of PCBN C, PCBN D and

PCBN E. In each case, the critical distance, rc was assumed to be constant

and equal to the given grain size and KIc was taken from experimental anal-

ysis. σmax was then calculated via Equation (6). The numerical predictions

of failure load are shown in Figures 18 - 20. Very good agreement is observed

between the experimental data and the numerical predictions, although it

should be noted in the case of PCBN C, PCBN D and PCBN E the nu-

merical predictions tend to underestimate the failure load. In some cases a

linear CZM model was employed while in other case a Dugdale model was

employed. This is detailed in a parametric study on CZM shape in Section

5.5. In general, a linear CZM is specified for the tougher materials while the

shape is less important for PCBN materials with low values of G.
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Figure 14: The effect of varying σmax on the fracture load of PCBN A for a variety of

normalised notch root radii, R/rc. GIc was fixed as 70 J/m2 for all cases and rc was

assumed to be 22 µm. The crosshead displacement rate was 1 mm/min. Results are for

linear CZM.

7. Dynamic Effects

Figure 21 (a) plots the numerically predicted striker load and notch tip

strain versus time for a PCBN B, NRR = 150 µm, sample loaded at 1

mm/min. The CZM parameters are, type linear, GIc = 11 J/m2, σmax =

1000 MPa. The full transient momentum equation is solved with time step

equal to 1 ms.The strain is output by the solver at a cell face corresponding

to the exact position of the centre of the TSG in the dynamic experiments

described in Section 2.2. A number of observations can be made. Firstly,

the striker load prior to fracture is linear with respect to time. The support

load is identical to the striker load and is not shown in Figure 21 (a) for

clarity. Secondly, the strain close to the notch tip is also linear with respect
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Figure 15: The effect of varying GIc on the fracture load of PCBN A for a variety of

normalised notch root radii, R/rc. σmax was fixed as 600 MPa for all cases and rc was

assumed to be 22 µm. The crosshead displacement rate was 1 mm/min. Results are for

linear CZM.

to time. Therefore the load and notch tip strain are linearly proportional to

each other.

Figure 21 (b) plots both the numerically predicted striker and support

load and the notch tip strain versus time for the same geometry and the same

CZM parameters as in Figure 21 (a). The loading rate in this case was 1 m/s

and the time step was reduced appropriately to 0.1 µs. A plot of notch tip

load is also shown. This is found by multiplying the notch tip strain-time

output by the quasi-static proportionality factor, the ratio of quasi-static

striker load to quasi-static crack tip strain found in Figure 21 (a). It can be

clearly seen that the load at the crack tip is subjected to significantly less

dynamic oscillatory effects than either the striker or support load. The striker

load is almost zero at the point of fracture. Taking this as the failure load, it
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Figure 16: The effect of varying σmax on the fracture load of PCBN B for a variety of

normalised notch root radii, R/rc. GIc was fixed as 11 J/m2 for all cases and rc was

assumed to be 1 µm. The crosshead displacement rate was 1 mm/min. Results are for

Dugdale CZM.

could be wrongly deduced that the dynamic fracture toughness of PCBN was

also almost zero. It should also be noted that the predicted support load for

the dynamic case is tensile up until a time of about 3.9 µs. This is because

the simulation does not allow for bouncing of the specimen. However, this

has a minor influence on the system dynamics once the support load becomes

compressive and is not an issue in the current work.

Furthermore, the calibrated failure load as predicted by the notch tip

strain gauge is 914 N, the same as the striker failure load for the quasi-static

simulation given in Figure 21 (a). Experimental failure loads however at 1

m/s were found to vary widely depending on the stiffness of the striker and

supports being used. This indicates that for the range of rates experimentally

examined, dynamic effects are not significant and the peak calibrated crack
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Figure 17: The effect of varying GIc on the fracture load of PCBN B for a variety of

normalised notch root radii, R/rc. σmax was fixed as 1000 MPa for all cases and rc was

assumed to be 1 µm. The crosshead displacement rate was 1 mm/min. Results are for

Dugdale CZM.

!"

#!!"

$!!"

%!!"

&!!"

'!!!"

'#!!"

!" (" '!" '(" #!" #("

!"
#$
%&
"'
()
*#

+(
,-
.(

/012(,µ3012.(

)*+,-./01" 234,-.+,5601"

Figure 18: Numerical fracture load predictions for PCBN C. GIc = 8.7 J/m2, σmax = 730

MPa. A Dugdale CZM is employed.
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Figure 19: Numerical fracture load predictions for PCBN D. GIc = 38.5 J/m2, σmax =

1120 MPa. A linear CZM is employed.
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Figure 20: Numerical fracture load predictions for PCBN E. GIc = 19.9 J/m2, σmax =

875 MPa. A linear CZM is employed.

31



tip load can be used as an indicator of the failure load. It can also be

concluded that the dynamic effects of impact loading are not responsible

for the experimentally observed changes in fracture toughness at the rates

examined.

This means that the experimentally observed drop in fracture toughness

can only be accounted for numerically by changing the parameters of the

cohesive zone model. Figure 22 uses the Dugdale model to schematically

describe the parameters that can be adjusted. The critical opening displace-

ment, δc is set by the selection of GIc and σmax. GIc,d represents the dynamic

critical fracture energy in Figure 22 while GIc,s represents the static critical

fracture energy.

There are two extremes that may be considered when changing the frac-

ture energy. In the first instance σmax can be kept constant so that σmax,d/σmax,s =

1 and δc,d/δc,s = GIc,d/GIc,s. The second extreme is to keep δc constant so

that δc,d/δc,s = 1 and σmax,d/σmax,s = GIc,d/GIc,s. The intermediate option

depicted in Figure 22 ensures that the experimentally observed decrease in

G follows the locus such that σmax/δc is constant. It follows from this that:√
GIc,d

GIc,s

=
σmax,d

σmax,s

(8)

And noting that GIc ∝ K2
Ic, it follows that:

KIc,d

KIc,s

=
σmax,d

σmax,s

(9)

Rearranging:
KIc,d

σmax,d

=
KIc,s

σmax,s

(10)
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(a) Loading rate = 1 mm/min. A straight line relationship between the crack

tip strain and the measured striker load is observed.
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(b) Loading rate = 1 m/s. The failure load as predicted by the tip strain

gauge is identical to that predicted for the low rate test.

Figure 21: Effect of rate on the numerically predicted fracture load and for PCBN B, NRR

= 150 µm, σmax = 1000 MPa, GIc = 11 J/m2.
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Figure 22: The Dugdale model. Parameters can be changed for static and dynamic ex-

perimental results. Parameters are GIc, σmax and δc.

Equation (10) indicates that the intermediate option preserves the process

zone size/critical distance. Figure 23 plots the average experimentally deter-

mined failure loads at rates from 1 mm/min to 1 m/s and the numerically

predicted failure loads using the 3 options outlined above. The failure loads

are all calculated using the crack tip load from the strain gauge as described

above. Excellent agreement is obtained where the constant critical distance

is preserved. This is a further indication of the important role that the CBN

grain size plays in governing the fracture mechanisms of PCBN material.

8. Conclusions

The fracture toughness of five grade of PCBN was measured across a

range of rates and temperatures using a TPB test. It was shown that a

unique set of cohesive zone parameters can accurately predict the failure of

PCBN for a variety of different notch geometries. The choice of cohesive
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Figure 23: Effect of CZM parameter choice on the numerically predicted fracture load at

high rates.

zone shape is also important.

Dynamic effects in the system were found to be insufficient to explain the

observed drop in experimentally measured fracture toughness.It was demon-

strated that the load at the crack tip is less susceptible to dynamic effects

than either the striker or support load. This validates the experimental pro-

cedure used in this work for measuring dynamic fracture toughness.

It was demonstrated that in order to accurately predict the experimental

failure load as a function of loading rate, the cohesive zone parameters had

to be changed in such a way as to preserve the critical distance, rc, which

has been found through the numerous experimental studies in this work to

be approximately equal to the grain size.
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