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minimize the impact of anaesthetic interventions. Just how anaesthesia and analgesia impact cancer 
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ABSTRACT 

Cancer continues to be a key cause of morbidity and mortality worldwide and its overall 

incidence continues to increase. Anaesthetists are increasingly faced with the challenge of 

managing cancer patients, either for surgical resection to debulk or excise the primary 

tumour, surgical emergencies in patients on chemotherapy, or for the analgesic 

management of disease- or treatment-related chronic pain. Metastatic recurrence is a 

concern. Surgery and a number of perioperative factors are suspected to accelerate tumour 

growth and potentially increase the risk of metastatic recurrence. Retrospective analyses have 

suggested an association between anaesthetic technique and cancer outcomes, and 

anaesthetists have sought to ameliorate the consequences of surgical trauma and minimize the 

impact of anaesthetic interventions. Just how anaesthesia and analgesia impact cancer 

recurrence and consequent survival is very topical, as understanding the potential mechanisms 

and interactions impacts on the anaesthetist‟s ability to contribute to the successful outcome 

of oncological interventions. 

 

Keywords: anaesthesia; metastases; recurrence; cancer; regional; opioids; NSAIDs  
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Introduction: 

 

Cancer continues to be a key cause of morbidity and mortality worldwide and its overall 

incidence continues to increase, despite growing efforts towards its prevention and 

considerable advances in its treatment.  

 

Worldwide in 2008, it was estimated almost 13 million new cancer cases were diagnosed 

and over 7 million people died from cancer. In the UK, over a third of people will 

develop some form of cancer during their lifetime and over 150,000 people died from 

cancer in 2010 (http://www.cancerresearchuk.org/cancer-info/cancerstats/keyfacts [Accessed 

20 July 2013]) . In the USA in 2013, it is estimated that over 1.6 million new cases will be 

diagnosed, and every day over 1,500 people will die from cancer.[1]  

 

Anaesthetists are increasingly faced with the challenge of managing cancer patients, 

either for surgical resection to debulk or excise the primary tumour, the mainstay of 

treatment in many forms of cancer (particularly solid tumours), or for the analgesic 

management of disease- or treatment-related chronic pain in a proportion of the 

increasing number of people living with or overcoming cancer, concurrent with 

improvements in oncological therapies.[2-4] 

 

Metastatic recurrence is a concern and occurs commonly. While the pattern of tumour growth 

is usually non-linear, with periods of dormancy alternating with periods of growth [5-8], 

surgery potentially alters this pattern. Examination of the hazard rate of recurrence subsequent 

to primary tumour resection has shown that while progression of initially dormant micro-

metastases does not seem to be subject to direct induction by surgery, early recurrence during 
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the first two postoperative years may be.[9-13] 

 

As surgery is suspected to accelerate tumour growth and potentially increase the risk of 

metastatic recurrence, anaesthetists have sought to ameliorate the consequences of surgical 

trauma and minimize the impact of anaesthetic interventions.[14] A number of perioperative 

factors have been suggested to directly affect tumour cells and impact on cell-mediated 

immunity potentially enhancing the risk of metastatic recurrence.[15-17] There is, therefore, a 

strong rationale for the development of perioperative techniques to lower the risk of cancer 

recurrence. 

 

How anaesthesia and analgesia impact cancer recurrence and consequent survival is very 

topical,[4, 18-21] as understanding the potential mechanisms and interactions impacts on the 

anaesthetist‟s ability to contribute to the successful outcome of oncological interventions. 

 

How does metastasis occur and how might it be influenced: 

 

The metastatic process is intricate. Beginning with the detachment of metastatic cells from the 

primary tumour, metastasis depends on the essential processes of first angiogenesis, to 

establish an independent blood supply, and evasion of the host‟s immune mechanisms. This 

culminates in proliferation of metastasis within a distant organ(s).[15]  

 

Cancer cells result from a single cell rendered „genetically unstable‟ by multiple cycles of 

division, mutated and susceptible to the acquisition of further mutations.[22] Mutation 

renders this cell resistant to the normal regulation of cell division, enabling uncontrolled 

cellular proliferation.[23] However, an evolving tumour cannot progress beyond a 2mm 
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diameter without angiogenesis occurring to meet its increasing metabolic requirements.[24] 

The tumour releases pro-angiogenic factors, including vascular endothelial growth factor 

(VEGF) and prostaglandin E2 (PGE2), to initiate and maintain vascular and lymphatic 

angiogenesis leading to the formation of a new capillary network.[25]  

 

A collection of cancer cells may then separate from the primary tumour mass and penetrate 

the neighboring tissues. Tumour cells enter the systemic circulation by breaching the 

basement membranes of thin-walled vessels, including lymphatics, heralding the 

conversion from benign carcinoma in-situ to invasive malignant tumour. Once within the 

systemic circulation, these cells then migrate to the capillary bed of a distant organ, 

where proliferation continues resulting in the formation of a tumour secondary 

(metastasis). 

 

The conclusion of the metastatic process depends on the specific cancer‟s metastatic 

predisposition (type, stage and site) and on a multitude of interactions between the 

tumour cells and the host‟s immune system.  

 

Interaction between the immune system and cancer cells: 

 

The developing tumour induces an inflammatory state resulting in the recruitment of 

immune cells. Cell-mediated immunity forms the principle defense against cancer cell 

invasion, with less than one in a thousand invading cancer cells viable after 24 hours. 

However, even with intact immunity, some cancer cells w i l l  e l u d e  the host‟s 

defences and continue to grow. 
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The major components of cell-mediated immunity include natural killer (NK) cells, 

cytotoxic T -cells (CTC), mononuclear cells, macrophages, and dendritic cells. NK cells, 

CTC and dendritic cells are involved in controlling tumour development.[26-28] NK cells 

are large, granular cytotoxic lymphocytes that provoke the early lysis of tumour cells 

spontaneously, without requiring prior sensitization to these tumour cells.[16, 29] A 

decrease in NK cell activity has been associated with the promotion of breast cancer 

growth and metastasis in an experimental rat model.[30] Similarly decreased NK cell 

numbers have been associated with an increased susceptibility to cancer, or metastases 

post oncological surgery.[31] Increased NK cell activity correlates with resistance to 

metastasis.[32-34] CTC form part of adaptive immunity, becoming sensitized to tumour 

cells (via the presentation of tumour-specific antigens by dendritic cells) and lysing them. 

Tumour infiltration by CTC has been associated with a positive prognosis in colorectal 

cancer.[35] 

 

However, recruited immune cells may not all favour tumour eradication. T h e  CD11b+ 

subset of macrophages recognize metastatic breast cancer cells and these tumour-associated 

macrophages (TAM) aid their progression.[36] Tumour-associated neutrophils (TAN) 

produce reactive oxygen species, growth factors and PGE2, aiding tumour growth and tumour 

spread.[37, 38] Myeloid-derived suppressor cells inhibit NK cell and CTC activities.[39]  

 

Likewise, the immune system is modulated by multiple cytokines, which may 

paradoxically hinder or assist cancer progression.[40] Pro-inflammatory cytokines may 

favour tumour progression.[41] Inflammation may play a central role in cancer, with 

increased levels of interleukin (IL)-1, tumour necrosis factor alpha (TNF-α) and PGE2 

associated with negative effects on tumour progression.[26] PGE2 inhibits the function of 
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dendritic cells and thereby CTC. [42, 43] It also inhibits the cytotoxic activity of NK cells and 

CTC.[9] Inflammation also influences the differentiation and dissemination of cancer cells, 

accelerating their growth rate, and potentially also inhibits anticancer immunity disrupting 

the balance between proliferation and eradication.[26, 44, 45] 

 

Manipulation of the immune system may form the basis of neoadjuvant oncological therapies, 

aimed at increasing the anticancer response. For example, perioperative immune stimulation 

has shown a potential survival benefit in a rat model[46] and recombinant NK cells could 

have therapeutic potential.[47] 

 

In the same manner, the mechanisms by which surgery, anaesthesia and analgesia may affect 

the immune response and cancer cellular pathways are complex and multi-factorial.[48] 

These mechanisms may include direct and/or indirect effects on cellular immunity (whether 

impeding or facilitating tumour growth), tumour cells themselves (affecting metabolism and 

mitotic capacity), extracellular matrix and the balance of angiogenic factors (influencing 

metastatic capability).  

 

Several studies have demonstrated the effects of anaesthesia and analgesia on host defences 

and their possible effect on tumour growth and spread.[32, 49, 50] This immune modulation 

combined with the surgical stress and inflammatory response and possible direct effects 

of drugs on the cancer cells themselves may create perioperative conditions advantageous 

to cancer cells.[51-53] Additionally adjuvant oncological treatment tends not to be 

commenced in the immediate postoperative period to facilitate patient‟s recovery, allowing for 

the establishment and spread of perioperative micro-metastases.[16, 54, 55] 

 

http://bja.oxfordjournals.org/
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This has led to a focus on perioperative factors that may be modified in order to tip the 

balance in favour of reduced cancer spread and recurrence.[31]  

 

How surgery may influence recurrence: 

 

While the surgical excision of a primary tumour forms an essential part of multimodal 

oncological treatment, offering a particular prognostic advantage in the treatment of solid 

tumours, the surgical process can inadvertently aid the metastatic process.[56] Animal models 

have demonstrated surgical enhancement of tumour growth and metastasis, including a 

significant increase in number of metastases and tumour retention.[32-34, 57, 58] Colorectal 

cancer metastases to the liver have also been shown to have accelerated growth rate after 

surgery.[59] 

 

The presence of circulating cancer cells after excision of histologically negative margins, 

whether pre-existing micro-metastases escaping dormancy or the additional unintentional 

dissemination of tumour emboli during surgery, is independently associated with increased 

risk of cancer recurrence and decreased disease-free survival in colorectal[60-62] and breast 

cancer.[63-65] 

 

The consequence of these residual cancer cells depends on the tumour‟s genotype,[5] 

phenotype and environment, as influenced by the host‟s immune competence,[26] as outlined 

above. However, the inflammatory reaction triggered by surgery potentially plays a major role 

in the early risk of recurrence during the first two postoperative years.[10-13] Major surgery, 

which cancer surgery typically is, is characterised by both a neuroendocrine (hypothalamic-

pituitary axis and sympathetic nervous system)  and a cytokine mediated stress response [66] 
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commensurate to the degree of surgical trauma, transiently suppressing cell-mediated 

immunity, particularly NK cell activity, in the host (in direct proportion to the magnitude of 

the stress response) during the critical period when fate of residual cancer cells may be 

determined.[67] 

 

Additionally, surgery may, again inadvertently, facilitate the metastatically essential process 

of lymphovascular angiogenesis. The process of angiogenesis is regulated by pro-angiogenic 

factors [including VEGF, fibroblast growth factor and transforming growth factor beta (TGF 

β)] and anti-angiogenic factors [including endostatin (an endogenous mediator formed by the 

fragmentation of collagen) and angiostatin], which exist in a fragile balance. Growth factors 

and inflammatory mediators, including PGE2, are involved after tissue injury during 

postoperative wound healing and may mediate metastatic progression.[62, 68, 69] 

 

Anti-angiogenic factors have been shown to decrease metastasis of lung cancer cells in a 

mouse model.[70] However, surgery potentially lowers these anti-angiogenic factors and has 

been shown to increase pro-angiogenic factors in patients undergoing mastectomy for breast 

cancer [71] and animal models of ovarian cancer.[72, 73] Furthermore, surgical stress has an 

effect on matrix-metalloproteinases (MMPs), the proteolytic enzymes that facilitate the 

penetration of the extracellular matrix and basement membrane during the metastatic 

process.[53] 

 

Concurrent factors also need consideration, some of which may neither be directly related to 

surgery nor amenable to the anaesthetist‟s intervention. Older age, female gender and tumour 

node metastasis status are associated with decreased cancer-free survival.[74] A history of 

depression may predict tumour recurrence and overall survival,[75] presumably secondary to 
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the effects of perioperative psychological stress and anxiety on the neuroendocrine stress 

response exerting a significant effect on the micro-environment of the tumour or micro-

metastases. Barron and colleagues, in a small retrospective study that should be interpreted 

cautiously, [76] found that the non-selective β-adrenoreceptor antagonist, propranolol, is 

associated with a diminution in the proportion of detrimental stress effects thereby 

lowering the incidence of cancer-related mortality. 

 

Other concurrent perioperative factors can potentially be ameliorated by the anaesthetist‟s 

actions, including hypoxia, hyperglycaemia, hypotension, allogeneic blood transfusion 

and inadvertent intraoperative hypothermia.[4] As allogeneic blood transfusion 

modulates the host immune system, it may also influence cancer recurrence.[77] As 

transfused leucocytes potentially alter circulating lymphocyte ratios and function, 

irradiated or leucocyte-depleted red-cells are frequently preferentially administered to 

oncology patients. However, even where leucocyte-depleted red cells are used, 

transfusion has been associated with decreased cancer-free survival and decreased overall 

survival in lung cancer [78] and a recent meta-analysis by Churchhouse and colleagues 

[79], while not reaching definitive conclusions, suggested an association between 

transfusion and decreased cancer-free survival. Interestingly, a recent animal study found 

that erythrocytes rather than leucocytes are implicated in the cancer-promoting effects of 

both autologous and allogeneic blood transfusions.[80] 

 

Intraoperative hypothermia is common, whether as a result of blunted thermoregulation or the 

theatre environment, and alters host immunity at a cellular level with inhibition of antigen 

presentation and decreased cytokine secretion. Moslemi-Kebria and colleagues, in a 
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retrospective study,[81] demonstrated a significant decrease in overall survival for a cohort of 

patients experiencing hypothermia (< 36
o
C) during debulking of advanced ovarian cancer. 

 

How anaesthesia and analgesia may influence recurrence: 

 

Before discussing the potential mechanisms how anaesthesia and analgesia may affect cancer 

recurrence, with or without modulation of the immune system, it is important to note that 

effective postoperative analgesia may facilitate resistance to metastasis [82] and that a high 

level of perioperative immune-suppression has been observed in animal models where acute 

postoperative pain was highest.[34, 83-86] 

 

Several studies [11, 74, 87-93] have suggested that perioperative anaesthetic and analgesic 

techniques and drugs may affect postoperative inflammation and immune function. 

 

Volatile agents 

 

Volatile agents have been associated with immune-modulation and potentially increased 

tumour metastasis in-vitro and in experimental animal models. The possible mechanisms are 

multiple: decreasing NK cell activity,[94] interfering with lymphocyte antigen activity [95] 

and inducing apoptosis in T-lymphocytes [96] and B-lymphocytes.[97]  

 

Furthermore, volatile agents may have direct effects on cancer cells. Volatile agents have 

been shown to alter cancer cell gene expression in-vitro.[98] Tavare and colleagues [99] have 

suggested that volatile agents upregulate hypoxia-inducible factor (HIF- 1α) in cancer cells. 

HIF-1α increases angiogenesis and has a resultant association with poor prognosis. However, 
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volatile agents may also have positive effects: migration of colon cancer cells was decreased, 

following the inhibition of MMPs release from neutrophils pre-treated with sevoflurane and 

desflurane.[100] 

 

Non-volatile agents 

 

The non-volatile anaesthetic gas, nitrous oxide (N2O), and the anaesthetic induction agents 

have also received scrutiny of their immune modulating effects and potential effects on cancer 

recurrence. Used concurrently with isoflurane and remifentanil, N2O demonstrated no 

difference in cancer recurrence in patients undergoing colectomy for cancer.[101] Ketamine 

and thiopentone, in an inoculation animal model of breast cancer, have been shown to 

suppress NK cell activity with a related increase in breast cancer tumour metastasis.[94] 

Ketamine has demonstrated effects on cellular immunity in laboratory models, including 

inhibition of T lymphocyte maturation [102] and NK cell cytotoxicity,[32] both albeit at 

supraclinical concentrations. Clinically, low dose ketamine (0.15mg/kg) has been shown to 

suppress NK cell cytotoxicity and inhibit the production of pro-inflammatory cytokines 

(IL-6 and TNF-α).[103] 

 

On the other hand, propofol may have an anti-neoplastic effect, decreasing the production of 

PGE2 by monocytes in vitro.[104] It did not suppress NK cell cytotoxicity in a rat model of 

breast cancer, nor was it associated with an increase in tumour recurrence.[94] 

 

Local anaesthetics 
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Local anaesthetics (LAs) are suggested to have anti-proliferative and cytotoxic effects on 

cancer cells in a number of in-vitro studies. Lidocaine has been shown to inhibit epidermal 

growth factor in-vitro, decreasing the proliferation of tongue cancer cells.[105] It has also 

been shown to alter the DNA methylation status of certain breast cancer cell lines and is 

associated with the re-activation of tumour suppressor genes.[106] Lidocaine and bupivacaine 

(racemic and isomer specific) inhibited transcription pathways associated with the initiation 

and metastasis of cancer and decreased mesenchymal stem cell proliferation in-vitro.[107] 

Werdehausen and colleagues [108] demonstrated the cytotoxicity of eight local anaesthetic 

agents on T-lymphoma cells in-vitro, with the magnitude of their cytotoxicity correlating with 

individual potency and lipophilicity. 

 

Adjuncts 

 

Lastly, the anaesthetic adjunct clonidine, an α2-adrenoceptor agonist, has been shown to 

alter NK cell activity and augment cellular proliferation in-vitro and in experimental 

animals.[32] The stimulation of α2-adrenoceptors, present on certain breast cancer cells, 

increases proliferation of these cells.[109] 

 

Of particular interest is the anaesthetist‟s approach towards analgesia, perhaps beginning with 

opioid use as the effects of morphine on cancer appeared in the literature as early as 1962.[110] 

 

How opioids may influence cancer recurrence: 
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Opioids are routinely used as postoperative analgesics, forming a key part of the 

armamentarium for the management of cancer pain, whether disease or treatment-related 

chronic pain or acute postoperative pain.  

 

Clinical evidence surrounding the effect of opioids on cancer processes is limited. 

However, in addition to their analgesic effects, opiates are known to exert 

immunomodulatory effects which may impact on cancer progression and recurrence. A 

range of mechanisms and cancer effects have been suggested, both beneficial and 

detrimental. Immunosuppression has been documented in-vitro and in-vivo, in both 

animal models and humans. Opioids suppress immune function via inhibition of both 

humoral and cell-mediated immunity,[18, 111] however, not all to the same degree or in the 

same way (with morphine being the most studied). Fentanyl has been shown to decrease NK 

cell function in a rat model for up to 8 days.[32] Franchi and colleagues [112] demonstrated a 

mu opioid receptor (MOR)-mediated reduction of toll-like receptor expression by morphine in 

a mouse model. Both the promotion and inhibition of tumour cell growth has been 

shown.[50, 113-117]  

 

The evidence overall is conflicting, with discrepant results prevalent.[9, 48, 74, 88-93] 

Interpretation of the evidence is complicated by the fact that much of the literature is 

retrospective and comprehensive data on actual opioid use is variable, with the potential 

confounding influences of opiate type, dose, route of administration, duration of exposure 

unknown.[9, 18] The effect of tolerance or withdrawal and tumour cell specificity have also 

been proposed to account for the conflicting evidence.[118] Similarly, it may not be possible 

to create a tumour environment completely devoid of the influences of opioids, as human 

physiology includes an endogenous opioid system. 
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The pro- or anti-cancer effects of this endogenous opioid system remain poorly 

understood. The endogenous pathways point predominantly to anti-cancer effects and 

exogenous opioids to pro-cancer effects. The reason is unclear, given that both 

endogenous and exogenous opioids act on the MOR. β-Endorphin has effects on 

immunity and the surgical stress response, and has been touted as possible anti-cancer 

therapeutic agent.[119] Potential anti-neoplastic effects of increased β-endorphin include 

the augmentation of NK cell cytotoxicity and attenuation of the stress response (by 

favouring anti-inflammatory cytokines).  

 

The potential effects of the endogenous opioid system are not limited to the endogenous 

hormones. Indeed, changes at a receptor level may also have an impact on the effects of both 

endogenous and exogenous opioids. The MOR has been studied in this regard. 

 

Stressing the interaction between the opioid and immune systems, inflammatory cytokines 

(IL-1, IL-4, IL-6 and TNF) have been shown to regulate MOR gene expression.[120] In-vitro 

and in-vivo rodent models of subtypes of lung cancer have demonstrated upregulation of 

MOR, resulting in amplified tumour growth and metastases. Silencing MOR expression or 

using methylnaltrexone, a peripheral MOR antagonist, appeared to negate the opioid-induced 

effects on tumour growth and metastasis.[121-123] A synergistic effect between 

methynaltrexone and other chemotherapeutic agents has been demonstrated, potentially 

decreasing unwanted side-effects of cytotoxic agents by reducing the therapeutic dose 

required.[124]  
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Polymorphisms of the MOR gene are also relevant. A single-nucleotide polymorphism of the 

MOR gene (A118G), already shown to decrease the analgesic response to opioids,[125, 126] 

has been associated with a significantly increased probability of survival at 10 years in a 

recent study of 2,039 women with breast cancer by Bortsov and colleagues.[127] However, 

cautious interpretation is recommended because of a number of limiting factors, including 

omission of data on patient perception of pain, adequacy of pain control, the use of strong 

opioids and ongoing oncological treatments.[18] 

 

Opioids, particularly morphinergic pathways through their stimulation of MOR, have been 

suspected to directly increase tumour growth rate.[123] Morphine has been shown to 

stimulate tumour cell migration and proliferation in human endothelial cells in-vitro.[128] 

Proposed mechanisms for effects of tumour growth rate include enhanced angiogenesis, 

including enhancing cyclooxygenase-2 (COX-2) and increased PGE2 production,[129] 

and activation of VEGF and epidermal growth factor.[130] When studied in a breast 

cancer cell line, while demonstrating no direct proliferative effect, morphine has also 

been linked to augmented production of urokinase plasminogen activator (UPA).[131] 

With a similar morphine-induced increase in secretion of UPA in human colon cancer 

cells,[132] an association between morphine and the metastatic potential of these tumours 

may exist as UPA promotes tumour invasion and metastasis. There is some evidence that 

aprotinin, a serine protease inhibitor with UPA-inhibitory effects, may improve cancer 

survival if used in the perioperative setting.[133] 

 

Moreover, the activation of specific genes (“genetic switching”) during the perioperative 

period is theorised to contribute to cancer recurrence. Breast cancer cells, which express 

MOR, demonstrated a morphine-induced increase in cell migration, possibly mediated by the 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

activation of the NET1 gene.[51] The NET1 gene has been shown to promote cancer cell 

migration in adenocarcinoma. “Genetic switching” at tumour microvascular level triggered by 

opioids is also mediated by TAMs, likely via adrenergic signalling. 

 

Avoiding opioids may positively impact cancer recurrence when alternative pain management 

strategies are possible. However, while single-dose or low-dose opioids can potentially 

promote tumour growth, extended exposure to high concentrations may suppress tumour 

growth.[117] Chronic high-dose morphine has been shown to attenuate angiogensis in an in 

vitro murine model of lung cancer, with decreased tumour progression and an associated 

significant reduction in VEGF secretion under hypoxic conditions.[118]  

 

Opioids may also decrease tumour adhesion, migration and proliferation. Morphine has 

been shown to decrease MMPs and increase MMP inhibitors in a dose-dependent 

manner. Potentially mediated by the nitric oxide (NO) system, morphine has inhibited 

MMP production in breast cancer cell lines (MMP-2 and MMP-9) [115] and colon cancer 

cancer cells.[134] 

 

Moreover, the NO pathway is associated with morphine‟s induction of apoptosis in 

human endothelial cells, with activation of nuclear factor (NF)-κB.[135] NF-κB is a 

potent transcription factor in the regulation of inflammation and apoptosis. At clinically 

relevant doses, morphine also induces in-vitro apoptosis in lung cancer and 

promyelocytic leukaemia cell lines.[136] 

 

Given that there may be a rationale for avoiding or minimizing opioid use, there has been 

investigation into whether the opioid-sparing effects of non-steroidal anti-inflammatory 
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drugs (NSAIDs) and regional anaesthesia and analgesia may have beneficial anti-cancer 

effects. 

 

How NSAIDs may influence cancer recurrence: 

 

Owing to their effects on COX-2 and PGE2, major mediators in cancer progression,[38] 

NSAIDs have a strong potential anti-cancer effect.[27] The inhibition of PGE2 

production, secondary to COX-2 inhibition, may have direct impact on cancer cell 

mutation, proliferation and survival. Its suppression may also have beneficial effects on 

cell-mediated immunity, increasing the cytotoxicity of NK cells and CTC.[9] Key 

enzymes that control the production of prostaglandins, cyclooxygenases (COX-1 and 

COX-2), prototypic targets of the NSAIDs, are frequently over-expressed or deregulated 

in the progression of cancer. 

 

COX-2 expression has been linked to multiple aspects of the metastatic process, 

including bone marrow metastasis.[137-141] In murine models of breast cancer, COX-2 

has been shown to be involved in osteoclastogenesis (via IL-11)[138] and stimulation of 

osteoclasts to resorb bone (via PGE2 and IL-8).[139] It has also been associated with 

increased tumourgenicity and clonogenicity, conferring genomic instability and changes 

in cell cycle regulation, including resistance to anoikis, as well as resistance to 

chemotherapeutic agents ( including doxorubicin).[142-146] COX-2 has also been 

associated with cancer cell migration.[146] Recent data also suggest an intersection of 

lymphangiogenic growth factor signaling and the prostaglandin pathways in the control 

of metastatic spread via the lymphatic vasculature.[38]  
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The association between COX-2 expression and cancer recurrence and survival has been 

studied recently in a number of cancer types.[147-152] COX-2 expression has been 

associated with increased cancer recurrence[147] and forms a prognostic marker of poor 

outcome.[150, 152] Its expression has been associated with decreased survival[149] and 

its inhibition with decreased mortality[148, 151]. A recent meta-analysis of observational 

studies in patients with ovarian cancer by Lee and colleagues[148] suggested that 

increased COX-2 expression may be an independent risk factor for decreased overall 

survival. 

 

The use of NSAIDs, most commonly aspirin, to inhibit COX-2 and the subsequent effects 

on cancer outcomes have also been studied. Aspirin has been associated with reduced all-

cause and colorectal cancer-specific mortality,[153] reduced prostate cancer-specific 

mortality.[154] It has also been associated with better outcomes following prostate 

radiation therapy[155] and lower recurrence in patients with colorectal cancer.[156]  

 

Rothwell and colleagues[157] recently conducted a pooled analysis of  51 randomised, 

controlled trials studying the effects of daily aspirin use in the prevention of vascular 

events and found a significant decrease in overall cancer mortality in both men and 

women after three to five years of aspirin use. Similarly, Jacobs and colleagues[158] 

demonstrated a reduction in cancer mortality associated with daily aspirin use, regardless 

of duration, in their retrospective analysis of a pooled US cohort (over 100,000 

individuals). 

 

The role of NSAIDs in anti-cancer therapy, including its role as a perioperative strategy 

(likely mediated through a reduction in inflammation), remains unclear, with the choice 
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of drug, optimum dose, optimum timing and ideal duration unknown. Their utilisation 

seems primarily limited by the unwanted side-effects associated with chronic use.[151, 

159-164] More research is needed into various non-specific and COX-2 specific 

NSAIDs, safer enteric and non-enteric delivery mechanisms and timing and duration of 

treatment. 

 

Given concerns over the side-effects of chronic NSAID use, there is particular interest as to 

whether or not regional anaesthesia offers an advantage over traditional general anaesthesia 

techniques and whether the avoidance of opioid analgesia through regional analgesia 

techniques, often to decrease non-cancer related opioid side effects, offers an advantage with 

regards to cancer outcome and recurrence. 

 

How regional anaesthesia and analgesia may influence cancer recurrence: 

 

Proposed theoretical benefits of regional anaesthesia may be indirect, including a decreased 

surgical stress response with subsequent amelioration of the associated effects on host 

immunity, reduced opioid and intraoperative volatile anaesthetic requirements, optimised 

analgesia and the aforementioned potential anti-cancer effects of the local anaesthetic agents 

themselves.[107, 165, 166] The combination of some or all of these proposed effects could 

theoretically alter the perioperative balance of pro-tumour and anti-tumour influences. 

 

Regional anaesthesia may influence the expression of several cytokines expressed 

perioperatively, including IL-4 and IL-10 [167], which may directly or indirectly influence 

the immune system response to residual cancer cells post-surgery.  
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There are a number of studies suggesting regional anaesthesia exerts a positive effect on anti-

cancer immunity and cancer metastasis.[33, 34, 58, 83-86] Bar-Yosef and colleagues [84] 

found that the addition of spinal anaesthesia to general anaesthesia, compared with general 

anaesthesia alone, decreased lung metastasis post laparotomy in a rat model. Similarly, spinal 

anaesthesia has been associated with preservation of NK cell function in a mouse model.[58]  

 

However, conflicting evidence regarding the anti-cancer effect of regional anaesthesia  exists. 

With regards to the mechanism whereby regional anaesthesia may mediate an anti-cancer 

effect, Conrick-Martin and colleagues [29] conducted a recent meta-analysis which found, 

when compared with general anaesthesia, there was no association between regional 

anaesthesia and the retention of NK cell function. Similarly, the presence of a regional 

anaesthetic technique (a continuous paravetrebral block) was not associated with an alteration 

in the concentrations of pro-angiogenic factors (VEGF and PGE2), associated with cancer 

metastasis and subsequent recurrence, in patients undergoing surgery for breast cancer.[25] 

 

As even a small improvement in cancer recurrence attributable to anaesthesia technique 

would potentially bring large benefits for patients and cost-savings for healthcare 

systems,[168] the literature contains a number of retrospective analyses of the potential 

association between regional anaesthesia and cancer recurrence.[87-92, 169-181] A renewed 

interest was brought about by a retrospective study by Exadaktylos and colleagues [87] which 

found an association between reduced recurrence in breast cancer patients undergoing 

mastectomy and axillary node clearance receiving paravertebral anaesthesia and analgesia 

compared with patients who received GA and opioid analgesia, subsequent retrospective 

analyses across a variety of cancer surgery types has yielded conflicting results.  
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While an association with decreased cancer recurrence or recurrence risk has been 

demonstrated in several cancers (breast cancer,[87] prostate cancer,[88] ovarian cancer,[172] 

laryngeal cancer,[178] melanoma[175] and a subset of colon cancer patients [91]), no 

difference in cancer recurrence  has been shown in others (localised prostate cancer,[92] 

cervical cancer,[169] colon cancer [74, 91, 176]) and ovarian cancer [177]). 

 

Likewise, while investigators have demonstrated improved survival or a trend towards 

improved survival,[90, 92, 170, 171, 175, 176, 178, 181, 182] others have found no change in 

survival rates,[74, 89, 169, 170, 174, 177, 179] or found the demonstrated improved survival 

absent in the presence of pre-existing metastases.[90] 

 

Results within a study may also be counter-intuitive or conflicting. Cummings and colleagues 

[176] conducted a large database study of a retrospective population of over 42,000 patients 

and found that while there was no difference in cancer recurrence associated with the addition 

of epidural analgesia compared with general anaesthesia alone, there was a significant 

improvement in five-year survival. Wuethrich and colleagues [92] found an improvement in 

clinical progression-free survival, but not in recurrence-free, cancer-specific or overall 

survival in prostate cancer patients. A further retrospective analysis by members of the same 

group concluded that regional anaesthesia (epidural) was not associated with a decreased risk 

of cancer progression nor increased survival after radical prostatectomy in prostate cancer 

patients at high risk of progression.[179] 

 

Possible variations in the perioperative milieu that potentially alter cancer outcomes (whether 

surgical or anaesthetic) and the fact that patient groups are in-homogenous, with different 

grades of histology, stage, and presence or absence of lymphovascular space infiltration 
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(LVSI), create difficulty in the interpretation of retrospective studies and the follow-up 

analyses of multicentre trials. It remains unclear what factors associated with regional 

anaesthesia techniques are most likely to impact outcomes, including duration and 

effectiveness of epidural, degree of opioid-sparing effect and degree of sympatholysis. In 

addition, the perioperative care that a patient receives is multidisciplinary. Multifactoral 

elements of pre- and postoperative care aimed at surgical recovery, including nutrition and 

fluid management, may influence outcomes.[183] 

 

Several potential confounding factors affect the interpretation of the existing evidence. These 

may be potential methodological problems, including with outcome measures and end-point 

choices, whether in the assessment of recurrence (e.g. biochemical [88, 92] vs. referral for 

oncological treatment [176]) or the absence of a standardized definition of survival (clinical 

progression free [92] vs. recurrence-free vs. overall).[184] Likewise, survival or recurrence 

data does not differentiate between the early recurrence thought to be due to perioperative 

factors and later recurrence due to reactivation of dormant micro-metastases not influenced by 

the perioperative period.[9] Analytical anomalies may also occur, such as overfitting in 

multivariate analyses [9, 93, 184] and selection bias, to which retrospective studies are 

inherently susceptible.  

 

Failure to report, analyse or control for potentially clinically significant impact factors as 

mentioned above (duration and effectiveness of regional anaesthesia, whether initiated pre- 

intra- or postoperatively, cancer stage and LVSI state) is also problematic. Unintentional 

hypothermia, allogenic blood transfusion and aforementioned  anaesthesia- and surgery-

independent influencers of cancer-free survival aside, opioids, NSAIDs, β-blockers and α-

agonists, which may themselves impact cancer outcomes, may have been given during the 
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perioperative period, whether as part of multimodal analgesia protocols, rescue analgesia for 

inadequate regional anaesthesia or, indeed, as a part of the regional anaesthetic technique. 

Likewise, the type and amount of intra-operative volatile anaesthetic, or absence thereof with 

total intravenous anaesthesia (TIVA), used for maintenance of general anaesthesia may have 

an impact. Finally, as the patient‟s perioperative inflammatory status may be a major 

prognostic determinant[185], the absence of its assessment is noteworthy. 

 

While the effects of regional anaesthesia may ultimately be tumour or tumour cell specific, as 

suggested by increased inhibitory effects of propofol-paravertebral anaesthesia/analgesia on 

oestrogen-receptor negative breast cancer,[52] the current literature is useful only in the 

formulation of hypotheses by underscoring the associations that exist.  

 

A causal link, if it exists, will only be confirmed by prospective, randomised control trials, 

which are urgently needed. Controlling for confounding factors, whether by matching groups 

for surgery-independent and anaesthesia-independent factors or analysing the effects of 

individual drugs, will hopefully broaden our understanding of this topic. 

 

Conclusion: 

 

There is some in-vitro and in-vivo experimental and retrospective clinical evidence 

linking anaesthetic/analgesic techniques with cancer outcomes and recurrence. Opioids, 

LAs and NSAIDs exert effects on cancer biology and NSAIDs and regional techniques 

may be beneficial through their avoidance of opioids. However, it is unclear as to 

whether avoidance of opioid analgesia may always benefit cancer patients, whether 
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NSAIDs can be safely used or how regional anaesthesia and analgesia should be used to 

have a potential benefit. 

 

The avoidance of opioids and, indeed, the suggestion that they may be detrimental in the 

absence of conclusive evidence, may have a negative impact on patient care. The denial 

of adequate analgesia and consequent potential increase in surgical stress response and 

chronic pain is especially noteworthy, as, while the exact cause/effect relationship 

remains unclear, cancer patients without chronic pain have a lower mortality than those 

who do.[186] 

 

Because only prospective, randomised, control trials can provide or prove a causal link, 

more research is urgently required. We eagerly await the results of current ongoing 

clinical trials, although we may only see them in a half a decade. 

 

Currently, none of the evidence conclusively supports changing routine anaesthetic 

practice for oncology patients undergoing surgery, nor does the evidence preclude 

anaesthesiologists from using multimodal analgesic techniques to improve pain control, 

reduce opioid requirements, reduce the surgical stress response and decrease 

inflammation. 

 

Practice Points: 

 Cancer-associated pain, whether acute or chronic, requires treatment. 

 While there is ongoing research on the potential effect of anaesthesia and analgesia on 

recurrence or metastasis, there is currently no evidence to justify altering anaesthetic 

technique in cancer patients. 
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 Cancer patients should continue to receive best practice anaesthetic technique in 

accordance with their own decisions and co-morbidities, as discussed with their 

individual anaesthetist.  

 The focus should be on good analgesia, amelioration of the stress response and 

reduction of inflammation as best practice. 

 

Research Agenda: 

 Completion of ongoing prospective randomized trials on the effect of anaesthetic 

technique on cancer outcome. 

 Evaluating an animal model of the effect of local anaesthetic lidocaine on cancer 

recurrence and, if promising, progressing to a clinical randomized trial of the effect of 

IV lidocaine on cancer outcome. 

 Translational and experimental investigation of the effect of anaesthetics and 

analgesics on cancer cell biology and the human immune response to it. 
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