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Abstract— Power consumption in Wireless Sensor Networks 

(WSNs) is a very important issue. Using measured sensor 

network data, this paper shows that it is possible to conserve a 

significant amount of energy through the proper use of data 

prediction and node scheduling without a significant loss in 

accuracy. Results show that it is possible to increase lifetime by 

up to 2600% at the cost of increasing average error by 0.5oC for 

temperature or 1.5% for humidity measurements. The four main 

design issues tackled are clustering, prediction, scheduling, and 
spike errors.   

Keywords-wireless sensor networks; gaussian predictor; 

scheduling; entropy; 

I.  INTRODUCTION 

Wireless Sensor Networks consist of nodes which are used 
to detect or track real world quantities [1]. These nodes are 
autonomous and are able to self organize into intelligent 
networks. Each autonomous node contains a micro controller, 
memory, a radio transceiver, and sensors. The disadvantage of 
being autonomous is that nodes need to function without an 
external power source. Most nodes are battery powered. This 
limited supply of energy makes power consumption a major 
issue in WSNs.  

One of the ways that this problem can be tackled is through 
the use of scheduling. Fundamentally, scheduling determines 
when nodes are switched on or off. There are many ways in 
which scheduling decisions for the network can be made. In 
this paper a method, called MulS, for developing efficient 
schedules is presented. The method is assessed using measured 
data obtained from the Lausanne Urban Canopy Experiment 
(LUCE) deployment [3].   

The general approach is that the WSN first gathers 
exploratory data which is used to find relationships between 
the data sensed at different nodes. These data relationships 
allow prediction of the data for the entire WSN by only 
measuring the data at a subset of the nodes. Nodes with strong 
data relationships are clustered together. Next, within each 
cluster, a node is selected as an active node. Using these active 
nodes, the value at all other nodes can be predicted. A schedule 
is made up of multiple sets of active nodes (subsets) with each 
taking measurements in turn in a round-robin fashion. When a 
schedule is running only the selected nodes are active while the 
other nodes are switched off thus saving energy.  

The novel aspect of this research is the use of multiple 
subsets. Previous research mostly deals with up to two subsets 
which, at most, can double network lifetime. Through the use 
of multiple subsets we aim to increase network lifetime and to 
share the workload fairly among all the nodes.  

As production cost of a wireless node decrease, it is a fair 
presumption that the network density of deployments will also 
increase. This makes results presented here relevant for the 
future as using multiple subsets will be highly advantageous in 
high density networks.  

MulS is designed for use in a two tier networks such as 
TENET [2]. TENET is a WSN architecture consisting of lower 
tier nodes and master nodes. MulS provides an effective way to 
reduce energy consumption of the lower tier motes through the 
use of scheduling. Results show that MulS is able to give an 
improvement of up to 2600% in lifetime with an average error 
of less than 1.5% in humidity and 0.5oC in temperature. In 
addition, we assess a number of prediction algorithms, showing 
that multivariate Gaussian prediction is only effective for 
certain quantities. Finally, we address the problem of spike 
errors.   

The remainder of this paper is broken into parts. In Section 
2 we discuss related work and point out the novelty of our 
approach. In Section 3 we describe MulS in detail. In Section 4 
we examine the results and implications they have. Finally, the 
paper ends with a conclusion and suggestions for future work. 

II. RELATED WORK 

Scheduling is an important research topic in wireless 
networks. The purpose of scheduling is to coordinate resourses 
within a network in order to reach a certain goal. In the case of 
WSNs the resources are nodes and the goal is usually to 
conserve energy while maintaining an acceptable degree of 
sensing accuracy. Current research on WSN scheduling can be 
broken into two main categories - the sampling schedule and 
the communication schedule. Communication scheduling deals 
with transmission timing. Sampling schedules can be adjusted 
based on data relationships such as temporal and spatial 
correlation. This research falls under the sampling schedule 
category hence communication scheduling is not further 
elaborated on.  
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Sampling scheduling uses correlations to reduce the volume 
of data sent back to the master node while maintaining an 
acceptable degree of error. Scheduling using temporal 
correlation has been dealt separately by [10] and [11] (Contour 
maps). Contour Maps sets thresholds where nodes only send 
data if it is above a threshold. In [10], a method to evaluate 
sensor data characteristics, using a Kalman Filter is presented. 
This allows each node the capability to autonomously adjust its 
sampling rate.  

Work on spatial correlation for scheduling can be broken 
into two categories; coverage-based and data similarity-based. 
In the data similarity approach, nodes make decisions based on 
data correlation between neighbours. For instance, in Contour 
Maps, nodes suppress data transmission if its neighbouring 
node is transmitting a similar value. In CAG [12], clusters are 
formed when the forwarding tree is built using a user-specified 
error threshold which is sent during the query phase. Nodes 
join a cluster if their reading is within the error threshold of the 
clusterheads reading. Both CAG and Contour Maps are data 
similarity methods with coverage bounds, the drawback of 
such methods is that data correlations which aren’t bounded by 
distance will be missed.  

The coverage approach [13], [9] and [14], tries to maintain 
a certain degree of sensing coverage over the monitored area 
while switching off as many nodes as possible. The 
disadvantage of this approach is that sometimes neighbouring 
nodes aren’t correlated. For instance it is feasible that two 
nodes with close proximity have a large dissimilarity in 
readings (e.g if they are separated by a wall). Because of this 
we decided to investigate the data relationship approach. 

The data relationship approach has been dealt with in [5], 
[6] and [8]. BBQ [5] is a model-based querying approach, 
which chooses a data acquisition plan for the sensor network to 
best answer the query. The algorithm first builds a PDF 
(Probability Density Function) model based on historical data. 
Based on this model, values are estimated to answer queries. 
The degree of uncertainty willing to be accepted by the user is 
defined in the query. For estimates with high uncertainty the 
system may retrieve updated sensor readings from the sensor 
network. BBQ also implements a cost model which is able to 
compare the relative cost of executing different plans.  

KEN [6] also uses probabilistic methods to predict data, the 
major difference is that BBQ is ‘pull based’ where as KEN is 
‘push based’. In KEN, data is acquired at a steady rate in order 
to detect anomalies. A dynamic probabilistic model of nodes in 
the sensor network and the sink is kept synchronized. 
Whenever data is not within the error bounds of the model, a 
node will send the data back to the sink. However this only 
deals with temporal correlations. In order to use spatial 
correlations KEN uses distributed clustering at the cost of 
higher intra-source communication.  

Through the use of a multivariate Gaussian model, the 
system described in [8] builds two subsets where one subset 
can predict readings in the second subset. Measurements are 
ping-ponged between the subsets.  

 

Like the systems reported in [8], BBQ, and KEN, the MulS 
system proposed herein relies on probabilistic methods to 
predict data. Like KEN it is ‘push based’. The major difference 
with KEN is that MulS runs on multiple subsets in a round 
robin fashion and is a centralized approach thus no intra-source 
communication is needed. The advantage of MulS is a huge in 
increase in lifetime. Through the proper use of scheduling, 
MulS ensures that the workload is fairly distributed over the 
whole network.  

A similarity with [8] is that MulS relies on multivariate 
Gaussian for prediction. We show that the multivariate 
Gaussian predictor is not as efficient when monitoring certain 
attributes and we give a simple alternative method. We also 
present a method to evaluate different attributes in deciding 
which prediction method to use.  Finally we propose a 
technique for reducing error spikes.  

III. OVERVIEW OF APPROACH 

MulS has two main functions, scheduling and prediction. 
As shown in Fig.1, a schedule is made up of multiple subsets of 
nodes which activate in turns in a round robin fashion. It is the 
purpose of the scheduling algorithm to determine the optimum 
active nodes for each subset. Prediction methods are used to 
estimate the values of other nodes base on the active subset.  

Once network connectivity is established an exploratory 
phase is initialized to gather data from every node in 
predetermined intervals. After the exploratory phase, 
scheduling is performed. Fig. 2 shows the scheduling method. 
Using the data obtained during the exploratory phase, nodes are 
clustered into groups. The purpose is to group nodes with 
strong data relationships. This allows more accurate prediction 
to be performed for inactive nodes. 

 

 

Figure 1.  Scheduling Framework (MulS)  



 

Figure 2.  Scheduling Method  

 

Figure 3.  Data Relationship of Three Nodes Measured using Entropy as the 
Weight (Ambient Temperature) 

Fig. 3 shows the data relationship of three nodes. Of the 
three, Node 22 and Node 23 have a strong data relationship 
(low entropy) thus they will be grouped together. Node 12 has 
a big difference in values especially between 1200 and 1600. 

A subset is formed by selecting one node to represent each 
group (which in this case either node 22 or 23 can be picked to 
be the Active Node).   The size of the subsets n, can be 
determined by the user based on the degree of error and 
lifetime that the user wants to achieve.  To find the second 
subset, active nodes of the first subset are deleted from the 
data. Using this modified data, clustering and active node 
selection is done again. Once selected, nodes from the first 
subset are reassigned to the second subset nodes based on data 
relationship.  To get the third subset the process is repeated, 
only this time it is the active nodes of subsets 1 and 2 which are 
deleted from the data. This process is repeated till the full 
number of subsets needed is met. Each node is only allocated 
once in a subset. The subsets are applied in a round robin 
fashion to maintain accuracy and the graceful degradation of 
the network. 

 Normalized cut (N-cut) [4] was used as the clustering 
algorithm. Nodes are grouped based on weights. Nodes with 
similar weights have a higher chance of being grouped 
together. In this paper, three different measures of weight 
(distance, data difference, and entropy) were used and 
evaluated. 

  

The distance weight is based on the physical distance 
between two nodes. Hence nodes which are closer in proximity 
are grouped together. Data difference is the average difference 
between the data values of two different nodes. Thus nodes 
with less difference are clustered together. The third method 
used for clustering is calculation of the entropy between two 
nodes. Given the covariance matrix of the data obtained from 
two nodes Σ, the measure of entropy is: 

                           ������� � ln���2πe��  |Σ| �                (1) 

After all the nodes have been clustered, the active node 
which will represent the other nodes within the group for that 
particular subset is picked. Two methods were used. In the first 
method, active nodes are selected by choosing the node which 
is closest to the mean value of the other nodes within the group. 
The second method is by choosing the node which has the 
smallest total entropy within the group.  

Two methods are used to predict the data which would be 
obtained by inactive nodes. The first method is simply that 
every node within the cluster takes the value of the current 
active node. The second method is through the use of the 
multivariate Gaussian model constructed during the 
exploratory phase to predict the data. In [5] it states that if o is 
observed for attributes O (O being the data obtained during the 

exploratory phase), then the mean ��|�� (predicted value of the 

inactive node) over the remaining attributes is given by:  

                         ��|�� � �� � Σ��Σ��
�1�� � ���                   (2) 

where � is the current observed value of the active node, �� 
and ��is the mean of the active node and the inactive node. 
Σ�� and Σ�� are formed by selecting the corresponding rows  
and columns from the original covariance matrix.  

Six different clustering and prediction algorithms were 
studied. Table 1 shows the breakdown of the different - weight, 
active node selection method, and data prediction method used 
by the different algorithms. The first four, MG, AVG, ENT, 
and DIS, test the effectiveness of the different prediction and 
clustering methods. They only run on a single subset of active 
nodes. The best clustering and prediction methods, MG and 
ENT are extended to run in a round-robin fashion. The 
algorithms are called MGSCHE and ENTSCHE respectively. 
Both scheduling methods use clustering based on entropy. 

The purpose of this paper is to find the best scheduling and 
prediction method. To achieve these, two assumptions were 
made. The first is that using multiple master nodes will allow 
every lower tier node to transmit directly to the master. 
Secondly, the energy cost of every function (e.g sensing, 
waking up and transmitting) for every node is the same. These 
assumptions on the power model allow us to directly relate the 
percentage of network lifetime improvement to the number of 
subsets used in a schedule. The simple assumption used herein 
is that lifetime will increase as the number of subsets increases. 
It is anticipated that using multiple subsets in a round robin 
fashion will increase the error.  
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TABLE I.   ALGORITHMS 

Name Weight 

Active 

Node 

Selection 

Data 

Prediction 

Method 

Scheduling 

AVG 
Data 

Average  
Mean 

Active Node 

Value 
No 

ENT Entropy  Mean 
Active Node 

Value 
No 

DIS Distance Mean 
Active Node 

Value 
No 

MG Entropy  Entropy 
Multivariate 

Gaussian 
No 

MGSCHE Entropy  Entropy 
Multivariate 

Gaussian 
Yes 

ENTSCHE Entropy  Entropy 
Active Node 

Value 
Yes 

 

IV. RESULTS & DISCUSSION 

The six different scheduling and prediction methods shown 
in Table 1 were tested using data obtained from [3]. A 
summary of the dataset is given in Table 2. For AVG the 
average data of one day was used as the weight.  

Fig. 4 shows the average absolute error obtained over the 
four temperature datasets when using the four predictors 
(AVG, ENT, DIS and MG). Given that N is the number of 
nodes in the network and T the total duration of the dataset, 
then the average absolute error is: 

                     � �  
!"
∑ ∑ $%&�', �� � %)�', ��$"

*+ 
!
,+             (3) 

where i is the node id which runs from 1 to N, t is the time 
instance, %&  is the actual measured value and %)  is the 

predicted value.  

TABLE II.  DATASETS 

Name Date Attribute Intervals Period 

Number 

of 

Nodes 

RH 

1
st
 

Dec 

1/12/2006 
Relative 

Humidity 

Every 15 

Minutes 

16 

days 
53 

RH 

1
st
 Jan 

1/1/2007 Relative 

Humidity 

Every 15 

Minutes 

16 

days 
53 

ST 1
st
 

Dec 

1/12/2006 Surface 

Temperature 

Every 15 

Minutes 

15 

days 
53 

ST 

20
th
 

Dec 

20/12/2006 
Surface 

Temperature 

Every 15 

Minutes 

15 

days 
53 

AT 1
st
 

Dec 

1/12/2006 Ambient 

Temperature 

Every 15 

Minutes 

16 

days 
51 

AT 1
st
 

Jan 

1/1/2007 Ambient 

Temperature 

Every 15 

Minutes 

15 

days 
53 

 

Results show that ENT is the best predictor when 
measuring temperature. Fig. 5 shows the average absolute error 
obtained for relative humidity, where ENT is the worst 
performer. MG is the best algorithm for relative humidity. The 
performance of both ENT and MG show that clustering using 
entropy is the best method for these data sets. The question 
arises of when to use multivariate Gaussian as the predictor and 
when to use the simplistic method of taking the active node’s 
value as the value of the other nodes within the cluster. 

 

Figure 4.  Average Error (Four Temperature Datasets) 

 

Figure 5.  Average Error (Two Humidity Datasets) 

 

Figure 6.  Performance of ENT compared to MG vs.  Standard Deviation of 

Entropy 
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The trends of the datasets have been identified as the reason 
for this performance difference between the two algorithms. 
Further investigation revealed that there is a relationship 
between their performance and the standard deviation of the 
entropy (StdDevE) calculated over every node. As shown in 
Fig. 6, ENT only outperforms MG when the standard deviation 
is more than 0.5. This results points to two main conclusions; 
1) the best method for clustering is using entropy as a weight 
and 2) the effectiveness of the prediction is governed by 
StdDevE. Next we tested MG and ENT running on multiple 
schedules (MulS).    

MG and ENT operate using the best predictor nodes within 
the network hence using multiple subsets increases error. 
Simulation results show that the average error increase of using 
ENTSCHE and MGSCHE is only 13.7% and 1.5% 
respectively. 

Fig. 7 shows the performance of MGSCHE and ENTSCHE. 
The percentage improvement in network lifetime is directly 
related to the number of subsets used. For instance an 
improvement of 2600% means 26 subsets were used in a round 
robin fashion. The number of operating nodes per-subset is 
found by dividing the total number of nodes (53 nodes) by the 
number of subsets (26 subsets) and rounding down the answer. 
In this case the number of active nodes per-subset is 2. 

What is interesting about Fig. 7 is that the average error in 
humidity when running MGSCHE on 2 nodes per subset is 
only around 1.5%. Which means that at the expense of only 
average error of 1.5%, the network lifetime can be improved by 
26 times. MGSCHE achieves similar results when tested with 
ambient temperature as shown in Fig. 8. Results show that an 
improvement of 2500% is possible with an increase average 
error of less than 0.5oC. 

 

 

Figure 7.  Relative Humidity 1
st
 – 16

th
 January 2007 (RH 1

st
 Jan) 

 

Figure 8.  Ambient Temperature 1st – 16th January 2007 (AT 1st Jan) 

 

Figure 9.  Surface Temperature 20th Dec 2006 – 4th Jan 2007 (ST 20th Dec) 

Fig. 9 shows the performance of ENTCHE when used to 
monitor surface temperature (StdDevE > 0.5). As expected it 
performs better than MGSCHE. It shows that the maximum 
increase in network lifetime it can support while maintaining 
an average error of 0.5oC is only 200%. This is poor when 
compared with the performance of MGSCHE on other datasets. 

Next we take a fine-grained look at the performance of 
MulS. Fig. 10 shows the difference in average absolute error 
over all nodes at time t when there are only two active nodes 
compared to when there are 26 active nodes. The average 
absolute error at each interval t is: 

      �* �
 
!
∑ $%&�', �� � %)�', ��$!
,+                 (4) 

This shows that to limit error spikes to 2% it is best to use 
more active nodes during certain times of the day. The 
important thing is to know when to employ additional nodes to 
avoid spike errors. It was found that most errors occur between 
1100 and 1500. Using this knowledge the system can then 
specify that measurements between 1100 and 1500 should have 
more active nodes to reduce the maximum error. Similar results 
were also obtained in test with surface temperature.  
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Figure 10.  MGSCHE Average Error - Relative Humidity 10th – 16th January 

2007 (RH 1st Jan) 

V. CONCLUSION & FUTURE DIRECTION 

In this research the focus was on developing a means of 
deriving an efficient schedule from training data. By 
simulation, it is shown that clustering using an entropy metric 
performs best. In terms of predictors both MG and ENT have 
their strengths. The choice of predictor can be made based on 
the standard deviation of the entropy.  

In terms of performance we show that with just two nodes 
per-subset, giving energy savings of up to 2600%, using MulS-
MGSCHE provides an average error of less than 1.5% in 
relative humidity and 0.5oC in ambient temperature. Even 
though this is good performance, spike errors can be 
significant. We have demonstrated a simple method of 
preventing them simply by adding more active nodes during 
certain periods of the day.  

As initial results are promising we plan to further this 
research in four ways. We plan: 1) to work on improving the 
predictors, 2) to consider temporal correlations, 3) to 
experiment with transmission, 4) to implement the system in a 
WSN testbed. 
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