
Title Recognising and recommending context in social web search

Authors(s) Saaya, Zurina, Smyth, Barry, Coyle, Maurice, Briggs, Peter

Publication date 2011-07-11

Publication information Saaya, Zurina, Barry Smyth, Maurice Coyle, and Peter Briggs. “Recognising and Recommending

Context in Social Web Search.” Springer, 2011.

Conference details Paper presented at the International Conference on User Modeling, Adaptation and Personalization

(UMAP-11). Girona, Spain. 11-15 July, 2011

Publisher Springer

Item record/more

information

http://hdl.handle.net/10197/3446

Publisher's statement The final publication is available at springerlink.com

Publisher's version (DOI) 10.1007/978-3-642-22362-4_25

Downloaded 2023-10-05T14:16:07Z

The UCD community has made this article openly available. Please share how this access

benefits you. Your story matters! (@ucd_oa)

© Some rights reserved. For more information

https://twitter.com/intent/tweet?via=ucd_oa&text=DOI%3A978-3-642-22361-7&url=http%3A%2F%2Fhdl.handle.net%2F10197%2F3446

Recognising and Recommending Context in
Social Web Search

Zurina Saaya, Barry Smyth, Maurice Coyle and Peter Briggs

CLARITY: Centre for Sensor Web Technologies
School of Computer Science and Informatics

University College Dublin, Ireland
firstname.lastname@ucd.ie

http://www.clarity-centre.org

Abstract. In this paper we focus on an approach to social search,
HeyStaks that is designed to integrate with mainstream search engines
such as Google, Yahoo and Bing. HeyStaks is motivated by the idea that
Web search is an inherently social or collaborative activity. Heystaks
users search as normal but benefit from collaboration features, allowing
searchers to better organise and share their search experiences. Users
can create and share repositories of search knowledge (so-called search
staks) in order to benefit from the searches of friends and colleagues.
As such search staks are community-based information resources. A key
challenge for HeyStaks is predicting which search stak is most relevant
to the users current search context and in this paper we focus on this
so-called stak recommendation issue by looking at a number of different
approaches to profling and recommending community-search knowledge.

Keywords: social search, context recommendation

1 Introduction

The social web is represented by a class of web sites and applications in which
user participation is the primary driver of value. Discussions of the social web
often use the phrase collective intelligence or wisdom of crowds to refer to the
value created by the collective contributions of all these people writing articles for
Wikipedia1, sharing tagged photos on Flickr2, sharing bookmarks on Delicious3,
streaming their personal blogs into the open seas of the blogosphere and using
and sharing the search knowledge in collaborative environment[3].

Recently ideas from the social web has begun to exert their influence beyond
content creation and on to content curation and information discovery. In short,
many researchers have begun to consider the role of collaboration during infor-
mation search and content discovery; see for example the work of Ariadne [10],
SearchTogether[6] and CoSearch[1]. Golovchinsky et al. [2] proposes a taxonomy

1 http://www.wikipedia.org
2 http://www.flickr.com
3 http://www.delicious.com

2 Recognising and Recommending Context in Social Web

of collaborative information sharing highlight key dimensions such as the intent,
depth, concurrency, and location for a variety of collaborative information ser-
vices. Very briefly, for example, Golovchinsky et al. distinguish between services
that support implicit versus explicit collaboration, services that over shallow UI-
based collaboration versus deeper algorithmic support for collaboration, services
that support synchronous versus asynchronous collaboration , and finally those
services that assume information seekers are co-located versus those that assume
remote collaboration.

In this paper we will focus on HeyStaks, the details of which have been
previously published in [8]. In short, HeyStaks brings a layer of collaboration
to mainstream search engines, via a browser plugin which allows searchers to
organise and share their search experiences and to collaborate with others as
they search. HeyStaks is a collaborative web search service that offers elements
of implicit and explicit intent among searchers. It provides for a range of UI
enhancements to support collaborating searchers as well as deeper algorithmic
components in order to identify relevant results from a community of collabo-
rators. Finally, it assumes asynchronous, remote collaboration: searchers do not
need to be co-located and collaboration can occur overtime as recent searchers
benefit from recommendations that originate from earlier search sessions.

Here we are emphasised on a key challenge for HeyStaks and its users. Specif-
ically, the central concept in HeyStaks is the notion of a search stak, which acts
like a folder for our search experiences. Briefly, a user can create a search stak
on a topic of their choosing and they can opt to share this stak with other users.
Now, as they search (using HeyStaks and their favourite mainstream search en-
gine) the results that they select (or tag or share) will be associated with their
active stak so that these results can be subsequently recommended to other stak
members in the future when appropriate. In this way, stak members can benefit
from the past searches of friends or colleagues who share their staks. A key prob-
lem here for HeyStaks to ensure that the right stak is chosen for a given search
session. One way to solve this is to ask the user to pick their stak at the start of
their search session, but since many users forget to do this, this is not a practical
solution in reality. The alternative is to use information about the user’s current
search session as the basis for automatically selecting and recommending an ap-
propriate stak at search time. In this paper then we focus on this stak selection
problem and in what follows we describe and evaluate a recommendation-based
strategy that works well enough in practice to automatically suggest relevant
staks to the user at search time, or even automatically switch users into a likely
stak without their intervention.

2 A Review of HeyStaks

In designing HeyStaks our primary goal is to provide social Web search en-
hancements, while at the same time allowing searchers to continue to use their
favourite search engine. HeyStaks adds two basic features to any mainstream
search engine. First, it allows users to create search staks, as a type of folder

Recognising and Recommending Context in Social Web 3

for their search experiences at search time, and the creator can invite initial
members by providing their email addresses. Staks can be configured to be pub-
lic (anyone can join) or private (invitation only). Second, HeyStaks uses staks
to generate recommendations that are added to the underlying search results
that come from the mainstream search engine. These recommendations are re-
sults that stak members have previously found to be relevant for similar queries
and help the searcher to discover results that friends or colleagues have found
interesting, results that may otherwise be buried deep within Google’s default
result-list.

!"#$%

&'()*+%

,+-./*+%

01*"+23%4#5'#*6%

7--(8"+%

1*+9*+%

:--5(*%

1)"$%
;,%

1)"$%
<#=*>%

?*@1)"$/%

,+-./*+%

01*"+23%A-+)"(6%

!*2-BB*#="C-#%4#5'#*%

1-2'"(%D*).-+$%

!*)+'*9*%

!*2-BB*#="C-#%E"#='=")*/%

FG"('H*=%!*2-BB*#="C-#/%

Fig. 1. The HeyStaks system architecture and outline recommendation model.

As shown in Figure 1, HeyStaks takes the form of two basic components:
a client-side browser toolbar and a back-end server. The toolbar (see Figure 2)
allows users to create and share staks and provides a range of ancillary services,
such as the ability to tag or vote for pages. The toolbar also captures search re-
sult click-thrus and manages the integration of HeyStaks recommendations with
the default result-list. The back-end server manages the individual stak indexes
(indexing individual pages against query/tag terms and positive/negative votes),
the stak database (stak titles, members, descriptions, status, etc.), the HeyStaks
social networking service and, of course, the recommendation engine.

In the following sections we review how HeyStaks captures search activities
within search staks and how this search knowledge is used to generate and filter
result recommendations at search time; more detailed technical details can be
found in [9, 8].

2.1 Profiling Stak Pages

Each stak in HeyStaks captures the search activities of its stak members within
the stak’s context. The basic unit of stak information is a result (URL) and

4 Recognising and Recommending Context in Social Web

!"#$%&'()*++,-&.) /0%"1.&%"2)!"#$%&'()3"04()

5678")$%&')

Fig. 2. The searcher is looking for information from a specialist mountain biking brand,
Hard Rock, but Google responds with results related to the restaurant/hotel chain.
HeyStaks recognises the query as relevant to the the searcher’sMountain Biking stak
and presents a set of more relevant results drawn from this stak.

each stak (S) is associated with a set of results, S = {r1, ..., rk}. Each result
is also anonymously associated with a number of implicit and explicit interest
indicators, based on the type of actions that users can perform on these pages,
which include:

– Selections (or Click-thrus) – that is, a user selects a search result (whether
organic or recommended). Similarly,
HeyStaks allows a user to preview a page by opening it in a frame (rather
than a window), and to popout a page from a preview frame into a browser
window;

– Voting – that is, a user positively votes on a given search result or the current
web page;

– Sharing – that is, a user chooses to share a specific search result or web page
with another user (via email or by posting to their Facebook wall etc.);

– Tagging/Commenting – that is, the user chooses to tag and/or comment on
a particular result or web page.

Recognising and Recommending Context in Social Web 5

Each of these actions can be associated with a degree of confidence that the
user finds the page to be relevant for example, implicit actions such as result
selections are weaker than explicit actions, such as tagging or sharing a page.
Each result page rSi from stak S, is associated with these indicators of relevance,
including the total number of times a result has been selected (Sl), the query
terms (q1, ..., qn) that led to its selection, the terms contained in the snippet of
the selected result (s1, ..., sj), the number of times a result has been tagged (Tg),
the terms used to tag it (t1, ..., tm), the votes it has received (v+, v−), and the
number of people it has been shared with (Sh) as indicated by Equation 1.

rSi = {q1...qn, s1...sj , t1...tm, v+, v−, Sl, Tg, Sh} . (1)

Importantly, this means each result page is associated with a set of term data
(query terms and/or tag terms) and a set of usage data (the selection, tag, share,
and voting count). The term data is represented as a Lucene (lucene.apache.org)
index, with each result indexed under its associated query and tag terms, and
this provides the basis for retrieving and ranking recommendation candidates.
The usage data provides an additional source of evidence that can be used to
filter results and to generate a final set of recommendations.

2.2 Recommending Results: Relevance & Reputation

At search time, the searcher’s query qT and current stak ST are used to generate
a list of recommendations to be returned to the searcher. There are two key steps
when it comes to generating recommendations. First, a set of recommendation
candidates are retrieved from ST by querying the corresponding Lucene index
with qT . This effectively produces a list of recommendations based on the overlap
between the query terms and the terms used to index each recommendation
(query, snippet, and tag terms). Second, these recommendations are filtered and
ranked. Results that do not exceed certain activity thresholds are eliminated as
candidates; e.g., results with only a single selection or results with more negative
votes than positive votes (see [8]). The remaining recommendation candidates are
then ranked according to two key factors: relevance and reputation. Essentially
each result is evaluated using a weighted score of its relevance and reputation
score as per Equation 2; where w is used to adjust the relative influence of
relevance and reputation and is usually set to 0.5.

score(r, qT) = w × rep(r) + (1− w)× rel(qT , r) . (2)

The relevance of a result r with respect to a query qT is computed based on
Lucene’s standard TF*IDF metric [4] as per Equation 2. The reputation of a
result is a function of the reputation of the stak members who have added the
result to the stak. And their reputation in turn is based on the degree to which
results that they have added to staks have been subsequently recommended to,
and selected, by other users; see [5] for additional information.

6 Recognising and Recommending Context in Social Web

3 Recognising Context & Recommending Staks

In this paper we are not concerned with recommending individual result pages
to HeyStaks users. Rather, our focus is on the so-called stak selection task.
Briefly, the success of HeyStaks depends critically on users correctly identifying
an appropriate stak for their searches at search time. As in the example in
Fig. 2, as the user search for mountain bike related information they need to
choose Mountain Biking as their current stak. If they do this consistently then
HeyStaks will learn to associate the right pages with the right staks, and be in a
position to make high quality recommendations for stak members. However, the
need to manually select a stak at the start of a new search session is an extra
burden on the searcher. To make this as easy as possible, HeyStaks integrates its
stak-lists as part of the mainstream search engine interface (see Fig. 2) but still
many users, especially during the early stages forget to do this, and this means
that a majority of search sessions are associated with the searcher’s default stak
(My Searches) rather than a more specific and appropriate stak of which they
are a member.

The solution to this problem, which is the main contribution of this paper,
is to proactively predict and recommend a suitable stak to the user at search
time. To do this we draw on ideas from recommender systems and traditional
information retrieval. As described above, each stak is a separate search index
that is made up of documents that have been selected, tagged, and/or shared by
stak members. For our stak recommendation solution we treat each stak index
itself as a type of summary document; effectively the terms and URLs contained
in the stak index become the terms of the summary document and in this way a
collection of staks can be represented as a collection of documents. Using Lucene,
these documents can then be transformed into a stak summary index (or SSI);
see Fig. 3. Then, at search time, we can use the searcher’s query as a probe into
this stak summary index to identify a set of staks that most relevant to the query;
in this work we focus only on staks that the user is currently a member of but a
similar technique could be used to recommend other third-party staks in certain
circumstances. These recommended staks can then be suggested directly to the
user as a reminder to set their appropriate stak context; or, alternatively, we can
configure HeyStaks to automatically pre-select the top ranking recommendation
as the current stak context, while providing the searcher with an option to undo
this if they deem the stak to be incorrect.

In the above we assume that the user’s own search query (qT) is used as the
SSI query (or stak query), but in fact there are a number of additional sources of
information that can be usefully harnessed for this. For example, at search time,
the initial set of search engine results represents a valuable source of additional
context information. This approach also has been used in [7] to classify the
queries with text classification algorithm.

For instance, the terms in the title and snippets (RS+T), and URLs (RURL)
of the result-list can also be used in addition to the user’s short search query,
during stak recommendation. For this reason we refer to three basic types of stak

Recognising and Recommending Context in Social Web 7

Heystaks Toolbar
s1

.

.
qT

!

!

qT , Su RURL, RS+T

S1-Sk

S1-Sk

stak recommendation list

Stak
Summaries

Index

s2

sn

HeyStaks

Fig. 3. Stak Recommendation.

recommendation strategy – query, snippet, URL – depending on which sources
of information form the user’s stak query (SQ).

At stak recommendation time we use Lucene’s standard TF*IDF weighting
model as the basis for scoring recommended staks as shown in Equations 3 and
4. Effectively, terms in the stak summary index (SSI) are scored based on the
TF*IDF model, which prefers terms that are frequent within a given stak but
infrequent across the user’s staks (SU) as a whole.

RecList(SQ, SU , SSI) =
SortDesc(Score(SQ, S, SSI))
∀SεSU

(3)

Score(SU , S, SSI) =
∑
tεSU

tf(t, S)× idf(t, SSI) (4)

In this way we can generate different recommendation lists (RLURL, RLquery,
RLS+T ,) by using different sources of data as the stak query (SQ); for example,
we can use the terms in result titles and snippets as the stak query, which will
lead to staks being recommended because they contain lots of distinctive title
and snippet terms. Of course we can also look to combine these different sources
of query terms, for example, by ranking recommended staks according to their
position across the recommendation lists produced by different sources of query
terms. For instance, we can define the rank score of a given stak, across a set of
recommendation lists, to be the sum of the positions of the stak in the different
recommendation lists with a simple penalty assigned for lists that do not contain
the stak as per Equations 5 and 6. The final recommendation list is then sorted
in ascending order of the rank scores of recommended staks.

RankScore(s,RL1 −RLn) =
∑

RLiεRL1−RLn

PositionScore(s,RLi) (5)

8 Recognising and Recommending Context in Social Web

PositionScore(s,RL) =

{
Position(s,RL) if sεRL;
Length(RL) + 1 otherwise.

(6)

We have described a general purpose approach to stak recommendation,
which accommodates different sources of query data, and provides for a flexible
way to combine multiple recommendation lists to generate an ensemble recom-
mendation list. The intuition of course is that by combining different sources of
query data we will generate better recommendations, which we shall look at in
the following evaluation.

4 Evaluation

In this section we evaluate the different forms of our stak recommendation ap-
proach, based on live-user search data, and focusing in particular on the overall
recommendation accuracy of the different techniques, and combinations of tech-
niques, across different stak types.

4.1 Setup

The data for this evaluation stems from HeyStaks usage logs generated during
the period October 2008 - October 2009. The sample data used contains 114,109
individual, timestamped search activities. Each refers to a specific search query
submitted by a particular user in a given stak context. For the purpose of this
evaluation we limit our interest to only those activities that are associated with
non-default search staks; this means that we focused on search sessions where
the user did select a specific stak for their search. There are 8,100 of these
activities across 158 unique users and, on average, users were members of 6.94
staks each. We also collect data on the size of each of these staks, based on the
number of URLs they contain to categorise staks as either small, medium, large
or extra-large as per Table 1

Table 1. Staks Categories

URLs Size # Staks % of Staks

1 - 10 Small 378 63%
11 - 100 Medium 178 30%
101 - 500 Large 31 5%
500+ X-Large 11 2%

For the purpose of this study we evaluate a range of different recommendation
strategies based on our three basic techniques, namely, query, snippet, URL
and including all combinations of these techniques. In addition we also evaluate
a baseline random recommendation strategy, which suggests staks at random

Recognising and Recommending Context in Social Web 9

from the user’s stak-list. This leads to a total of eight different recommendation
alternatives. To evaluate these alternatives, we generate a recommendation list
for each of the 8,100 search instances and compute the percentage of times
that the known active stak is recommended among the top k recommendations
(k = 1− 5).

4.2 Overall Recommendation Precision

To begin with we will look at the overall success rate across the different rec-
ommendation alternatives. This data is presented in Fig. 4 as a graph of success
rate against recommendation-list size (k). Each recommendation technique is
represented as an individual line-graph based on its success rate for the different
values of k. For clarity we also present the mean average success rate across the
different values of k in Fig. 5.

0	

20	

40	

60	

80	

100	

1	
 2	
 3	
 4	
 5	

Su
cc
es
s	

(%

)	

Result-­‐list	
 Size	
 (k)	

URL	

Snippet	

Query	

SnippetQuery	

URLQuery	

URLSnippet	

URLSnippetQuery	

Random	

Fig. 4. Recommendation success rate

The results highlight a considerable variation in performance across the dif-
ferent recommendation strategies. As expected random performs poorly as the
baseline, with a success rate of between 17 and 48% depending on k; as expected,
success rates grow with increasing k since there are more opportunities to rec-
ommend the correct active stak. Generally speaking the ensemble approaches,
which combine multiple basic techniques, tend to outperform individual tech-
niques on their own. For example, one of the best performing strategies is the
combination of URL, snippet, and query with success score ranging from 60%
(k = 1) to 85% (k = 5), compared to the less impressive performance of say the
URL technique on its own, which varies from about 47% (k = 1) to just 51%
(k = 5).

It is interesting to pay special attention to the k = 1 results because the
ideal strategy for HeyStaks would be to automatically switch the user into a

10 Recognising and Recommending Context in Social Web

0	

25	

50	

75	

100	

UR
L	

Sn
ipp
et
	

Qu
er
y	

Sn
ipp
et
Qu
er
y	

UR
LQ
ue
ry	

UR
LS
nip
pe
t	

UR
LS
nip
pe
tQ
ue
ry	

Ra
nd
om
	

A
ve
ra
ge
	
 S
uc
ce
ss
	
 (%

)	

Alterna2ves	

Fig. 5. Mean average success rate

correct stak, rather than present a set of stak options. This would require a
reasonably high success rate at k = 1 to avoid user frustration in the case of
incorrect stak switches. Unfortunately, it appears from the results in Fig. 4 that
the success rates at k = 1 do not support such an automatic switching approach.
For example, the best performing strategy at k = 1, which combines URL and
query techniques, achieves a success rate of 65%, which does not seem high
enough to support an automatic stak switching.

4.3 Precision vs Stak Size

Of course the above results refer to recommendation success across all staks.
But not all staks are created equally. For example, as per Table 1, the majority
of staks (63%) contain relatively few URLs (1-10 URLs) which provides a much
weaker basis for indexing. It seems likely that this will have a great impact
on stak recommendation effectiveness compared to larger staks. To test this, in
Fig. 6 and Fig. 7 we present the recommendation success rate for each of the
recommendation alternatives, by stak size (comparing small, medium, large and
extra-large staks) for recommendation lists of size 1 (Fig. 6) and 3 (Fig. 7). It
is clear that there are significant differences in recommendation accuracy across
the various stak sizes. For example, looking at the combination of URL, snippet,
query we see a success rate of about 75% at k = 1 for the extra-large staks and
70% for the large staks, compared to only 36% and 31% for the medium and small
staks respectively. This is encouraging because, from a engineering standpoint,
it suggests that it may be practical to implement a reliable automatic stak
switching policy, at least for large staks which contain more than 100 URLs.
When we look at the results for k = 3 (see Fig. 7) we see similar effects, only
this time many ensemble techniques are achieving success rates in excess of 90%,
for a number of recommendation combinations across the extra-large staks.

Recognising and Recommending Context in Social Web 11

0	

25	

50	

75	

100	

UR
L	

Sn
ipp
et
	

Qu
er
y	

Sn
ipp
et
Qu
er
y	

UR
LQ
ue
ry	

UR
LS
nip
pe
t	

UR
LS
nip
pe
tQ
ue
ry	

Ra
nd
om
	

Su
cc
es
s	

(%

)	

Alterna0ves	

XLarge	

Large	

Medium	

Small	

Overall	
 Success	

Rate	

Fig. 6. Success rate by stak size where k = 1

0	

25	

50	

75	

100	

UR
L	

Sn
ipp
et
	

Qu
er
y	

Sn
ipp
et
Qu
er
y	

UR
LQ
ue
ry	

UR
LS
nip
pe
t	

UR
LS
nip
pe
tQ
ue
ry	

Ra
nd
om
	

Su
cc
es
s	

(%

)	

Alterna0ves	

XLarge	

Large	

Medium	

Small	

Overall	

Success	
 Rate	

Fig. 7. Success rate by stak size where k = 3

4.4 Conclusions

HeyStaks facilitates partitioned collaboration between searchers, by allowing
users to create and share their own search staks, and it does this by integrating
with mainstream search engines rather than expecting the user to change to a
new search engine. The main contribution of this work has been to highlight a
practical problem facing HeyStaks — the need to automatically predict the right
stak for users at search time — and to propose and evaluate a feasible solution
in the form of a stak recommendation strategy. To this end we have described a
general framework for stak recommendation. It is based on the indexing of user
staks, which accommodates a variety of different recommendation alternatives
using different types of query data at search time, such as search query terms,
title and snippet terms of search results, the URLs of search results, and usage
data from staks. We have described the results of a comprehensive evaluation of

12 Recognising and Recommending Context in Social Web

a wide variety of recommendation strategies, based on live user search data, and
the results speak to the practical effectiveness of this overall approach to stak rec-
ommendation. In particular, the success scores achieved across the larger staks
speak to the potential for a reliable automatic stak switching mechanism, and
at the very least it is possible to generate a short-list of stak recommendations
that are accurate up to nearly 90% of the time.

Acknowledgments

This work is supported by Science Foundation Ireland under grant 07/CE/I1147,
HeyStaks Technologies Ltd, Ministry of Higher Education Malaysia and Univer-
siti Teknikal Malaysia Melaka.

References

1. S. Amershi and M. R. Morris. Cosearch: a system for co-located collaborative web
search. In Proceeding of the twenty-sixth annual SIGCHI conference on Human
factors in computing systems, CHI ’08, pages 1647–1656, New York, NY, USA,
2008. ACM.

2. G. Golovchinsky, J. Pickens, and M. Back. A taxonomy of collaboration in online
information seeking. In JCDL Workshop on Collaborative Information Retrieval,
pages 1–3, 2008.

3. T. Gruber. Collective knowledge systems: Where the social web meets the semantic
web. Web Semantics: Science, Services and Agents on the World Wide Web, 6(1):4
– 13, 2008. Semantic Web and Web 2.0.

4. E. Hatcher and O. Gospodnetic. Lucene in action. Manning Publications, 2004.
5. K. McNally, M. P. O’Mahony, B. Smyth, M. Coyle, and P. Briggs. Towards a

reputation-based model of social web search. In IUI ’10: Proceeding of the 14th
international conference on Intelligent user interfaces, pages 179–188, New York,
NY, USA, 2010. ACM.

6. M. R. Morris and E. Horvitz. Searchtogether: an interface for collaborative web
search. In Proceedings of the 20th annual ACM symposium on User interface
software and technology, UIST ’07, pages 3–12, New York, NY, USA, 2007. ACM.

7. D. Shen, R. Pan, J.-T. Sun, J. J. Pan, K. Wu, J. Yin, and Q. Yang. Query
enrichment for web-query classification. ACM Trans. Inf. Syst., 24:320–352, July
2006.

8. B. Smyth, P. Briggs, M. Coyle, and M. O’Mahony. Google shared. a case-study in
social search. In Proceedings of the 17th International Conference on User Model-
ing, Adaptation, and Personalization, UMAP ’09, pages 283–294, Berlin, Heidel-
berg, 2009. Springer-Verlag.

9. B. Smyth, P. Briggs, M. Coyle, and M. P. O’Mahony. A case-based perspective
on social web search. In Proceedings of the 8th International Conference on Case-
Based Reasoning: Case-Based Reasoning Research and Development, ICCBR ’09,
pages 494–508, Berlin, Heidelberg, 2009. Springer-Verlag.

10. M. B. Twidale, D. M. Nichols, and C. D. Paice. Browsing is a collaborative process.
Information Processing & Management, 33(6):761 – 783, 1997.

