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RESEARCH ARTICLE

Adaptive WSN Scheduling for Lifetime Extension in
Environmental Monitoring Applications
Jong Chern Lim∗†, Chris Bleakley

Complex & Adaptive Systems Laboratory, School of Computer Science and Informatics, University College Dublin, Ireland

ABSTRACT

Wireless Sensor Networks (WSNs) are often used for environmental monitoring applications in which nodes periodically
measure environmental conditions and immediately send the measurements back to the sink for processing. Since WSN
nodes are typically battery powered, network lifetime is a major concern. A key research problem is how to determine
the data gathering schedule that will maximize network lifetime while meeting the user’s application-specific accuracy
requirements. In this work, a novel algorithm for determining efficient sampling schedules for data gathering WSNs is
proposed. The algorithm differs from previous work in that it dynamically adapts the sampling schedule based on the
observed spatial and temporal data correlations. The performance of the algorithm has been assessed using real-world
datasets. For two-tier networks, the proposed algorithm outperforms a highly cited previously published algorithm by up
to 512% in terms of lifetime and by up to 30% in terms of prediction accuracy. For multi-hop networks, the proposed
algorithm improves on the previously published algorithm by up to 553% and 38% in terms of lifetime and accuracy,
respectively.
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1. INTRODUCTION

Wireless Sensor Networks (WSNs) consist of nodes which
detect and track real world quantities [1]. Nodes are
autonomous and are able to self organize into intelligent
networks. Each node consists of a micro controller,
memory, a radio transceiver, and sensors. Most WSN
nodes are battery powered. The limited supply of energy
means power consumption is a major issue in WSNs. In
most applications, the radio transceivers are the largest
consumers of energy [2]. Consequently, much research has
been conducted on reducing the amount of time that the
radio is on ([3], [4], [5]).

An important application area for WSNs is environmen-
tal monitoring [1]. Environmental monitoring applications
require that a physical quantity is periodically measured
and the measurements are relayed across the network to
the base station, or sink, for processing. In many cases,
the base station must maintain an up-to-date (online) view
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of the physical quantity being measured. Thus measure-
ments must be transferred to the sink as soon as they are
available [6] [7] [8]. WSN measurements of data, such as
temperature, humidity, air pressure, wind speed, nitrogen
dioxide, and light, often exhibit strong spatial correlation
between nodes and strong temporal correlations between
different sampling times at the same node [9] [10] [11]
[12]. Knowledge of these correlations can be exploited to
reduce the number of measurements needed to meet the
application-specific sensing accuracy requirements. For
example, if outdoor temperature varies more slowly at
night than during the day, the sampling rate can be scaled
back during the night and increased during the day without
unduly affecting accuracy. The missing data can then be
estimated (imputed) based on the data actually collected.
This saves energy by reducing the amount of data trans-
mitted during the night since nodes can be scheduled to
enter sleep modes when they are not needed (see Section 2
for more details).

Clearly, there is a tradeoff between sensing accuracy and
lifetime [13] [14]. In general, it can be said that improved
accuracy requires collection and transmission of a greater



User Directed WSN Scheduling for Lifetime Extension Lim, J.C. & Bleakley, C.J.

number of sensor measurements which, in turn, means
shorter network lifetime. The efficiency of a particular
data collection schedule depends on the characteristics
of the data being collected. These characteristics vary
with time. Hence, the natural question arises, for a
given environmental monitoring application, how can the
data gathering schedule be determined and dynamically
adapted so as to maximize network lifetime while still
meeting the application accuracy requirements?

In this work, we propose a new adaptive scheduling
algorithm for WSNs which can be used in environmental
monitoring applications. The algorithm determines the
sampling schedule based on user specified accuracy goals,
network connectivity and a preliminary data collection
phase (as most monitoring applications gathers data
continuously at the sink, running a preliminary data
collection would cost nothing.). During preliminary data
collection, data is collected from all nodes at the full
rate. The preliminary data is divided into training and
evaluation data sets. The training data is used to build
spatial and temporal models of the data relationships. The
evaluation data is used to assess the performance of various
candidate scheduling strategies. The models developed
in the training phase are used to impute data which is
not scheduled for collection according to the candidate
strategy. The results of the imputation are compared with
the measured data. The schedule which meets the user’s
accuracy requirements and maximizes network lifetime
is deemed to be the most efficient and is applied to the
network during the operational phase.

The algorithm supports schedule adaptation to allow for
the time varying nature of the data relationships. Firstly,
the algorithm divides the day a number of time periods
or slots. A different sub-schedule is allowed in each slot.
This allows the algorithm to adapt to the differing degrees
of correlation present in the data at different times of the
day, e.g. midnight versus midday. Secondly, the accuracy
of imputation is assessed during the operational phase.
If the accuracy drops below the user specific accuracy
requirements, the slot is re-trained and the sub-schedule
updated. This allows the overall schedule to track long
term changes, such as the lengthening of daytime during
spring.

The algorithm differs from previous work in that
it supports dynamic adaptation of schedules. The
algorithm supports sub-sampling and round-robin sub-
setting scheduling strategies. Variants of the algorithm
are proposed for two-tier and multi-hop networks. The
performance of the algorithm is assessed by simulation
using real-world data sets. The algorithm is shown to
significantly extend network lifetime when compared with
a previously published scheduling algorithm. In terms of
the round-robin sub-setting algorithm proposed herein, it is
different from coverage based sub-setting algorithms [15]
[16] [17] in that it uses a data similarity metric rather than
physical distance to measure correlation when forming

subsets. The benefit of doing this is explained in section
2.

The remainder of this paper consists of five sections.
Section 2 describes related work. This is followed by an
explanation of the problem in Section 3. In Section 4,
the proposed algorithm is described. In Section 5, the
experimental method is described. In Section 6, the results
and their implications are provided. Finally, the paper ends
with conclusions.

2. RELATED WORK

Two network topologies are commonly used for WSN
applications: two-tier and multi-hop. Figures 1 and 2

  
 Sensor Node 

Master Node 

Sink 

Figure 1. Two-tier Network

     Sensor Node 

Sink 

Figure 2. Multi-hop Network

shows an example of a two-tier network and a multi-hop
network. In the two-tier case, all battery powered nodes
have direct communication links with mains powered
nodes (master node) which can communicate data to
the sink. In the multi-hop case, only the sink is mains
powered and all communication must be routed to it
via battery powered nodes. In the two-tier case, power
consumption per node is proportional to the number of
measurements per unit time. In the multi-hop case, power
consumption per node is, in the conventional case, not
proportional to the number of measurements per unit
time, since the routing nodes must be on all of the time.
However, in recent research, a number of authors have
proposed cross-layer network protocols in which network
availability is optimized so that it closely matches the
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application data transmission requirements [18] [19]. This
approach, assumed herein, significantly reduces energy
consumption and means that the power consumption per
node is proportional to the number of measurements per
unit time in the multi-hop case as well.

The scheduling algorithm proposed herein is targeted
at environmental monitoring applications in which all of
the data is immediately sent back to the sink. Since all of
the data is sent to the sink for data gathering purposes,
it makes sense to use this data for centralized scheduling
as well. This obviates the need for energy inefficient
intra-node schedule negotiation and allows for exploitation
of multi-hop data correlations. In addition, much more
computationally complex scheduling algorithms can be
used at the sink than can be performed on the nodes, further
improving performance.

Reducing the amount of data gathered in a WSN can
be done by sub-sampling or sub-setting. Sub-sampling is
the process of making measurements less frequently, e.g.
a sub-sampling ratio of 2 would increase node sampling
periods from 1 minute to 2 minutes. Round robin sub-
setting is the process of using only a proportion of the
nodes at any one time in a round robin fashion, e.g. a
sub-setting ratio of 2 would mean that half the nodes are
sampled in even numbered minutes (1, 3, 5,..) and the
other half are sampled in odd numbered minutes (0, 2,
4,..). Both of the examples halve the energy consumption
of the network but. The level of accuracy in imputing
missing data varies depending on how strong the data is
temporally or spatially correlated. The algorithm proposed
in this work uses both sub-sampling and round robin sub-
setting.

A number of publications have dealt with sub-sampling
[20] [21] [22]. In all cases, measurements are suppressed,
i.e. not transmitted, if there can be accurately predicted
based on previous measurements. The suppression can
either be a priori, before the measurement is taken, or
post prior, after the measurement is taken. As will be
seen, depending on the data set, sometimes sub-setting
outperform sub-sampling and sometimes vice verse. Hence
the proposed approach supports both sub-setting and sub-
sampling.

Several publications have proposed algorithms for sub-
setting. These algorithms can be classified according to
whether the sub-setting decision is made based on the
geographical coverage of the nodes or based on the data
sensed by the nodes. Coverage-based schemes attempt to
schedule nodes such that the entire area of interest is
covered by the fewest sensor nodes [15] [16] [17]. The
difficulty with this approach is that when obstacles are
present within the area being monitored, sensor readings
will not be well correlated with location [23]. In such
cases the predominantly assumed disc shaped sensing
radius no longer hold true. For example, two sensors
may be close together but be on different sides of a
wall. In addition, node location information may not be
readily available. Hence, in this work, we focus on data

similarity-based approaches. Another benefit of using a
data similarity/correlation approach is that it can detect
correlation changes in the environment over a long period
of time. In this paper it is shown that as spatial correlations
change remodeling/retraining has to be done to maintain a
high quality of data gathering service.

A number of methods have been proposed for sub-
setting based on data similarity. These methods can be
grouped according to whether they use a centralized
or distributed approach. In the centralized approach,
the sink determines the sampling schedule whereas in
the distributed approach, the nodes themselves decide
on the sub-sets. The disadvantage of the distributed
approach is that, if subsets are large, initializing and
maintaining them requires a significant amount of inter-
node communication, as in KEN [24]. As a consequence,
Contour Maps and CAG [19] limit the range of sub-sets
to one hop. The disadvantage of this is that long distance
correlations cannot be exploited. Furthermore this sub-
setting algorithms do not use a round robin scheme thus
achieving poor load balancing.

Herein we compare the proposed approach with the
algorithm (which is named GUPTA in this paper)
described in [18]. The GUPTA algorithm uses a data
driven approach and two-tier and multi-hop versions are
described. Unlike the algorithm proposed herein, the
GUPTA method does not consider temporal correlations,
adaptive scheduling, load balancing or slotted scheduling.
In the multi-hop version the GUPTA algorithm is semi-
distributed because even though nodes make individual
decisions whether to join a subset, it requires a centralized
data gathering phase in order for all the nodes to gather
training data from its neighbors.

In order to achieve load balancing for two tier
networks two systems have been previously proposed
which incorporate round robin sub-setting [25] and [26].
The system proposed in [25] converges slowly, forming
multiple clusters before finding a satisfactory solution.
This means that the system produces a significantly higher
number of schedules thus making it difficult to maintain.
The system described in [26] was developed by the authors
of this paper as a prototype. The version described in this
paper has a number of improvements. In addition to that
we propose a novel network optimized load balanced sub-
setting for multi-hop networks.

Two systems have been previously described which use
both sub-setting and sub-sampling - KEN [24] and Contour
Maps [27]. Unlike the proposal described herein this
algorithms do not perform any network level optimization,
in the sense that nodes will still have to switch on their
radios periodically to listen for packets as well as to
relay packets even when they have no readings to send.
Furthermore round robin sub-setting is not used.

Combining statistical WSN data models with proba-
bilistic queries to improve the cost-effectiveness of WSN
queries was investigated in the BBQ system [28]. However,
BBQ focuses on multiple one-shot queries over the current
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state of the network, rather than continuous data gathering.
In [29] SeReNe a scheduling algorithm for answering
queries is proposed. Similar to BBQ and the proposed
method herein it first gathers historical sensor readings.
Through clustering SeReNe builds a subset of Represen-
tative Nodes to answer queries. The disadvantage of that is
that for long term queries SeReNe does not employ a round
robin scheme to achieve load balancing. In [30] the authors
of SeReNe make a brief discussion on possible ways of
adapting the model over a long period of time but this was
not evaluated. KEN uses data models as well to answer
queries. KEN and SeReNe are similar in the sense that
they are push based methods whereas BBQ is a pull based
method. Herein, the user sets a probabilistic accuracy
target a priori and possible schedules are assessed with
respect to the target prior to their application.

A comparison of the various data similarity based
scheduling algorithms that have been proposed is provided
in Table I. The algorithm proposed herein is the first to
support schedule adaptation and round-robin sub-setting.

3. PROBLEM STATEMENT

The goal of the scheduling algorithm is to determine
the network sampling schedule which minimizes network
communication for the worst case node while ensuring
that application level accuracy requirements are met. The
reason for minimizing communication of the worst case
node is to maintain load balancing thus enabling the
network to continuously gather data from all nodes within
the network continuously for a longer period of time.
Even though sensor data of dead nodes can still be
spatially imputed, because the node is dead, validation and
retraining of the spatial correlation cannot be done when
needed.

The user defines the accuracy requirement by setting a
limit on the average probability (Plim) of errors greater
than a specified threshold (Elim). For example, the user
might require that 95% of reported measurements have a
error of less than 0.5oC. In the case of measured values the
error e is equal to zero. In the case of imputed values, the
error may be greater than zero. The goal of the algorithm
is then to determine the schedule Sch which minimizes the
number of packets Np transmitted by the worst case node
such that the probability p(e) of errors less than Elim is
greater than Plim.

Sch : min(Np)s.t.p(e < Elim) > Plim (1)

As stated previously, data correlations can be exploited
in order to impute the missing values. In most previous
work, these correlations are assumed to be static. Fig. 3
shows the variation of temperature at three nodes over
a day in a real-world dataset. Clearly the rate of change
and inter-node data correlations are dependent on the time
of day. Thus scheduling algorithm should account of the
fact that data correlations drift during the day and, for

best performance, should use different sub-schedules at
different times of the day. In addition, over long periods
of time the temporal and spatial correlations which exist
in the data vary. Thus, imputation becomes less accurate.
This deterioration in performance should be detected and
the models re-trained.

024
6810
1214

0 2 4 6 8 10 12 14 16 18 20 22
Temperature o
C

Time of Day

Node 22Node 12Node 23

Figure 3. Data Relationship of Three Nodes (Temperature-
LUCE deployment)

When sub-setting, it is desirable the subsets are disjoint
and operate in a round robin fashion so that the network
is load balanced. Disjoint subsets are subsets such that
for any two subsets Ci and Cj , Ci ∩ Cj = ϕ, i.e.
every node belongs to only one subset. In the two-tier
case, determining disjoint subsets which provide accurate
imputation of environmental conditions at all nodes is non-
trivial. In the multi-hop case, the problem is more complex
since every disjoint set must provide a representative node
to represent each correlated region while also ensuring
connectivity between all the nodes in the subset and the
sink. For the example, the three disjoint subsets in Figure
4 allow both load balanced sub-setting and continuous
connectivity while having each correlated region being
represented by a node.

 Sink Node Dominating Subset Three Disjoint Subsets 
Figure 4. Disjoint Sub-setting Example

Figure 5 shows the performance of sub-setting
method and sub-sampling with 75% of the data being
predicted. Both methods are explained in detail in the
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Table I. Previous algorithms, main features.

Algorithm Reference Two-tier Multihop Centralized Round Robin Sub-sampling Adaptive
/Distributed Sub-setting Scheduling

CAG [19] x X Distributed x X x
GUPTA [18] x X Semi-Distributed x x x

KEN [24] x X Distributed x X x
SeReNe [29] x X Centralized x x x

RRC [25] X x Centralized X x x
SS-MH/SS-2T Proposed Method X X Centralized X X X

00.20.40.60.811.2
1 3 5 7 9 11 13 15 17 19 21 23Average  Error (oC) Time of Day (24 hours) Sub-SettingSub-Sampling

Figure 5. Performance of Sub-setting and Sub-sampling
Averaged Over 105 Days

following section. The figure shows that both algorithms
perform well in the morning and at night. During the
afternoon, both algorithms experience a significant loss in
performance. Thus, on average, even if the accuracy of the
method meets the user’s requirements initially it does not
mean that the requirements are met throughout the day.
To ensure user requirements are met, the amount of data
being predicted during the afternoon has to be decreased.
This can be done by reducing the sub-sampling/sub-setting
ratio.

4. PROPOSED ALGORITHM

In this section we explain the proposed Slotted-Scheduling
algorithm with variants for two-tier (SS-2T) and multi-hop
(SS-MH) networks. The following sub-sections provide
an overview of the algorithm; explain how schedules
are defined; describe how data imputation is performed;
explain node to subset allocation for round-robin sub-
setting in both two-tier and multi-hop networks; explain
the schedule selection process and detail the schedule
update method.

4.1. Overview

Initially, the Slotted-Scheduler gathers training and
evaluation data and, in the multi-hop case, connectivity
information from the network. During training and
evaluation data collection, all nodes collect data at the
user-specified maximum collection rate and transmit this

 

Trai
ning 

Eva
luat
ion 

Est. 
Connect

ivity 

Time 
Slot 1 

Time 
Slot 2 

Time 
Slot 3 

Time 
Slot 4 

Time Slot 2 (Sub-sampling) 

Sink Sink 

Sink Sink 

Schedule 

Time Slot 1 (Sub-setting) 

Time Slot 3 (All Active) Time Slot 4 (Sub-setting) 

time 

Active Node Inactive Node Sub-sampling Node 

Figure 6. Slotted-Scheduler Timeline and Network Activity

data back to the sink. At the sink, the training data is
analyzed, on a slot-by-slot basis, to build models for
data imputation. The data from the evaluation phase is
then used to assess the performance of various candidate
scheduling strategies, i.e. various ratios of sub-setting and
sub-sampling. The sub-schedule which meets the user’s
accuracy requirements and minimizes energy consumption
is selected for application to the network in that slot during
the operational phase.The selected data collection schedule
is transmitted from the sink to the nodes. The network
then enters the operational mode and data is collected
according to the schedule. Data collected is monitored
in order to detect changes in temporal/spatial correlation.
If changes are detected, the network re-enter the training
and evaluation phases in order to update the models and
schedule.

Figure 6 illustrates how the Slotted-Scheduling algo-
rithm operates. The figure shows a 4 slot schedule with
sub-setting, sub-sampling, full rate collection and sub-
setting in the first, second, third and fourth slots, respec-
tively. The figure also shows the temporal sequencing
of the establishment, training, evaluation and operational
phases. The operational phase is divided into a series of
slots which repeats.
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4.2. Schedule Description

The schedule is based on the user-specified default data
collection period. This is the maximum rate at which data
can be collected, i.e. with no sub-sampling or no-sub-
setting applied. The schedule is divided into a number of
slots, or time periods, which span the day. A different sub-
schedule can be specified for each slot. This allows the
scheduler to adjust the data collection rate depending on
time of day. For example, in a schedule with eight slots,
each slot would last for four hours: slot 0 from midnight
to 4 a.m., slot 1 from 4 a.m. to 8 a.m. and so on. Within
each slot, the node sampling sub-schedule is specified as
the sampling rate at which the node samples relative to
the default collection rate. For example, a sub-sampling
rate of 100% means that a node collects data at the default
collection rate. The node sampling offset is used to indicate
which data collection round the node starts to sample
relative to the start of the operational phase.

A node schedule consists of:

• node id
• eight bits indicating default data collection period

(in minutes)
• eight bits indicating slot length
• for each slot:

three bits indicating the sampling rate
five bits indicating the sampling offset

The duration of a slot equals the slot length multiplied
by the default data collection period. There are eight
different sampling rates which can be used with the
maximum being 100% and the minimum 12.5%.

For a twenty four slot schedule, a single node’s schedule
(excluding node id) is 26 bytes. In TinyOS (which has
a default data packet payload of 28 bytes [31]) the cost
of sending the schedules from the sink to the nodes is
roughly equivalent in terms of energy consumption to
sending one data measurement from all of the nodes to
the sink. Piggybacking and compression schemes can be
used to reduce this overhead. Data collection timing can
be maintained using node wake-up synchronization [32].

Herein, we refer to data which is scheduled for
collection as collected data and data which is not scheduled
for collection as non-collected data. Non-collected data
must be imputed based on collected data.

4.3. Data Imputation

In the case of sub-sampling, imputation is performed using
Linear Prediction (LP). The Linear Predictor determines
the coefficients of a forward linear predictor by minimizing
the prediction error in the least squares sense based on
the training data. During the operational phase, LP is used
to estimate the non-collected data as a weighted sum of
previous measurements obtained at the same node

xi(i, t) = a(i, 1)xo(i, t− r)− a(2)xo(i, t− 2r)− . . .

−a(p)xo(i, t− pr)

(2)

where xi(i, t) is the current imputed sample at node i
at time t, xo(i, t− r) is the observed (measured) data at
node I at time t− r, a(i) are the coefficients of the linear
predictor, r is the sub-sampling ratio and p is the length of
the predictor.

In the case of sub-setting, only one subset of the network
is collected in each data collection round. Given that
subset Ci is the operating subset consisting of the nodes
s1, s2, ..sL then the predicted value of a node is

Xp =

L∑
l=1

αlsl (3)

Given that the training data for a single node and the
remaining nodes is o and O respectively than the weighted
coefficients are

[α1, α2, ...., αL]
T = (OTO)−1OT o (4)

4.4. Round-Robin Sub-setting

To achieve load balancing, every node in the network
is allocated to a sub-set and the number of nodes per
subset is constant. The key to accuracy is in allocating
the nodes such that every sub-set contains a set of nodes
which accurately represent environmental conditions over
the whole network. Novel algorithms have been developed
to solve the node allocation problem for sub-setting in two-
tier and multi-hop networks.

4.4.1. Two-Tier Networks
In the two-tier case, node to sub-set allocation

is achieved by node clustering, followed by sub-set
allocation, and allocation optimization.

Initially, nodes are clustered based on data similarity.
Nodes are clustered using a Normalized Cut (N-cut)
clustering algorithm [33] based on an entropy S metric.
In this way, nodes with strong data relationships are put in
the same cluster.

S(i, j) = ln(
√

(2πe)2 | Σ |) (5)

where Σ is the covariance matrix of data obtained from
nodes i and j.

After clustering, node allocation is performed. The first
node subset is formed by selecting one representative
node from each cluster. In this way, the subset consists of
nodes which represent the measurements in each cluster.
The representative node is chosen as the node with the
minimum total entropy Smin within the cluster.

Smin = min(S(i, j)), ∀i ∈ {1, ..., Nc − 1}
,∀j ∈ {1, ..., Nc − 1}, i ̸= j

(6)

where Nc are the nodes within the cluster, i is the current
node id and j is the id of the other node.

The second subset is found by excluding the already
allocated nodes from the set of available nodes and
repeating the representative node selection step. This

6
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X =All sensor nodes
i = 1
while X!=∅ do

Cluster nodes
Pick representative node from each cluster
Ci=Chosen representative nodes
X=X-Ci

i++
end
n =number of runs for Genetic Algorithm
while count!=n do

Pick two random subsets Cp and Cq

Stotal = SavgCp
+ SavgCq

Cpold=Cp

Cqold=Cq

Swap a random node from Cp and Cq

Stotalnew = SavgCp
+ SavgCq

if Stotal > Stotalnew then
Cp=Cpold

Cq=Cqold

end
count++

end
Algorithm 1: Pseudocode for two-tier round-robin sub-
set allocation

process is repeated until all of the nodes in the network
are allocated to a subset.

The sequential subset allocation process can lead to
poor results as the subsets allocated later in the process
tend not to perform as well as those allocated earlier in
the process. To address this, a Genetic Algorithm (GA) is
applied to optimized the node allocation. First, two subsets
are picked at random. Second, one node is chosen from
each subset and they are swapped. Third, if the swap causes
the sum of the entropy of the two subsets to increase then
the swap is made permanent, otherwise the subsets revert
back to their original states. The full sub-setting algorithm
is described in Algorithm 1.

Subset allocations and models are generated in this way
for a range of sub-setting ratios. The allocations are saved
for later evaluation, see subsection 4.5.

4.4.2. Multi-Hop Networks
In the multi-hop cases, allocation of nodes to sub-sets is

performed in a different way. This is because, in multi-hop
networks, all sub-sets must provide connectivity between
all nodes in the subset and the sink. The algorithm works
by growing the maximum number of subsets from the sink
based on connectivity information and data similarity.

Using a distance criteria the algorithm determines which
nodes are one hop away from the sink. Nodes which
are one hop from the sink each form the root of a
new subset. Thus the number of new subsets found is
directly proportional to the distance criteria. A larger
distance criteria will yield a larger number of subsets. The

X=All sensor nodes
TL=Tranmission Range Limit
C subsets are formed one for each node xn within the
TL of the sink
Nc=number of subsets (equivalent to number of 1 hop
nodes from the sink)
i = 1
X = X − C
while X!=∅ do

if i > Nc then
i = 1

end
Pick node xn which is 1 hop from Ci and has
highest average Entropy with Ci

Ci = Ci + x
X = X − xn

i++
end
Save C
while Nc > 2 do

Combine each subset based on Entropy
Nc=new number of subsets
Save C

end
Algorithm 2: Pseudocode for multi-hop round-robin sub-
set allocation

subsets are grown by selecting the nodes according to the
following criteria:

• are 1 hop away from a node currently in the subset
• has the highest difference in average entropy

between the nodes within the subset

The subsets are grown in a round robin fashion. If a subset
cannot be grown then the method continues growing the
other subsets. Once this maximum number of subsets have
been formed, the method then combines subsets in order
to form larger subsets which are better spread over the
network. The average difference in entropy between all
subset pairs is found. Subsets with the greatest difference
are combined. This step is repeated until all subsets have
been combined. At each step, the subset allocation is saved
for later evaluation, as described in the next sub-section.

4.5. Selecting the Best Schedule

The performance of all possible sub-sampling and sub-
setting strategies is assessed for each slot. The sub-
sampling or sub-setting sub-schedule giving the best
performance is selected for application to the network
in that slot during the operational phase. The various
sub-scheduling options are assessed using the evaluation
data. In each case, the non-collected data is imputed and
the result compared to the measured data to give the
imputation error e

e(i, t) = abs(xi(i, t)− xo(i, t)) (7)

7
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The standard deviation of the error σ calculated
over the whole network during the evaluation period
is calculated. This is compared to the error target
specified by the user. The target standard deviation
of the error is calculated by projecting the target
error limits (percentage of errors greater than threshold)
onto a Gaussian probability distribution and finding the
equivalent standard deviation σlim. Sub-schedules which
lead to error standard deviations in excess of the target σ >
σlim are rejected. Since the schedules are load balanced by
construction, the energy consumption of routing is equal
in all cases. Thus, the energy consumption is proportional
to the number of collected measurements. Therefore,
the remaining sub-schedule with the least number of
measurements is selected for application to the network.
The final schedule is determined by concatenation of the
selected sub-schedules. If appropriate, the schedule can be
compacted by merging consecutive sub-schedules that are
the same, provided that the slot lengths remain equal.

4.6. Schedule Update

During the operational phase, the algorithm monitors the
accuracy of the spatial and temporal data imputation
models. This allows the system to determine if the
data characteristics have drifted since the models were
last trained. This is done by comparing the prediction
accuracy seen when the training and evaluation data is used
compared to the prediction accuracy seen with the current
received sample.

In the case of the temporal model, the model is tested
by predicting the current received sample and testing it
with the last received sample (which is y samples away).
This prediction is done using using equation 2. The error
is found between the current received sample and the
predicted sample. Next using only evaluation data, the
data from the same time slot is predicted with data which
is y samples away . A comparison is done between the
error found using the current received sample and the error
found using the evaluation data. A node is marked when
the error difference is above a threshold limit. When the
percentage of marked nodes is above Tlim for a duration
of Dlim days then retraining is triggered.

For the spatial model, it is first tested using the current
samples received from the nodes of the current operational
subset Ci. Using equation 3 each received sample is
imputed using the other received samples at that particular
time slot. The error between the predicted value and the
actual value for each sample is found. The error results
are than compared with the results when the same test
is repeated on the evaluation data using the same time
slot and the same subset of nodes Ci. A node is marked
when the difference between the prediction error (using
current received samples) and the prediction error (using
evaluation data) are above a certain threshold. Similar to
the temporal model test when the limits of Tlim and Dlim

are broken retraining is commenced.

5. EXPERIMENTAL METHOD

The algorithm described in the previous section was
implemented on Matlab and tested on two datasets taken
from the Lausanne Urban Canopy Experiment (LUCE)
[34]. Table II provides a summary of the datasets.

Results were evaluated in terms of mean imputation
error (see Eq. 7), percentage of non-collected data,
variation of the number of operational nodes with time,
and network lifetime. Mean imputation error is the mean
error of the imputed non-collected data. The percentage of
non-collected data (PND) is related to the amount of data
transmitted and thus to the lifetime of the network. The
percentage of data collected and transmitted to the sink
is 100%− PND. We compare the results for different
systems in terms of two definitions of lifetime. The first
definition of lifetime is L100% which is the length of time
for which all nodes are alive. The reason for choosing
this metric is because when the first node dies, this node
can no longer be used for retraining. Thus if the node’s
data correlation with other nodes change this cannot be
corrected thus rendering the imputed readings from the
other nodes void. The second definition of Lifetime is
L50% which is the length of time for which 50% or more
of the nodes remain alive .

Scheduling algorithms such as [32], [35] reduce idle
listening significantly through the proper use of schedules.
Such algorithms make power consumption of sensor nodes
closely proportional to the number of transmitted packets.
For each simulation done each sensor node is initialized
with a limited number of battery power. Every transmitted
packet is set to consume 1 unit of battery power. We
assume the network allows piggybacking thus ensuring
that even in the multihop case only a single packet is
transmitted by each node during each sampling cycle.
Similar assumptions were made in [18].

The performance of the proposed algorithm is compared
to that of the Default Network and to the GUPTA
algorithm. In the Default Network, every node collects data
every collection round, i.e. all data is collected.

There are two variants of the GUPTA algorithm used
herein. GUPTA-2T for two tier networks and GUPTA-
MH for multi-hop networks. For the GUPTA algorithm,
initially when the correlation structure is unknown, all the
network nodes are periodically involved in transmitting
data to the data-gathering node using a communication
tree. Using this setup, each node then collects data from its
d-hop neighbors using a piggyback scheme. In GUPTA-
MH simulations, each node collects 3-hop neighborhood
information.

GUPTA-2T algorithm proposed in [18] is used on a
multihop network. In [18] during each iteration the number
of nodes which can join the Connected Correlation-
Dominating Set (CCDS) are bounded by the number of
hops. As the GUPTA-2T algorithm used herein is used
on a two-tier network the algorithm is no longer bounded
by hop count. The benefit of this is that there is a wider
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Table II. Datasets

Name Date Sampling Duration Number Percentage Area
Period (Days) of of

Nodes Missing
Data

RH LUCE 1/12/2006 15 112 52 9.79% 106600m2

(Relative Minutes
Humidity)
ST LUCE 1/12/2006 15 112 52 7.86% 106600m2

(Surface Minutes
Temperature)

selection of nodes which can be added to the operating
dominating set.

The GUPTA-2T algorithm works by adding nodes
which will give the most benefit to the dominating
set. This is continuously done till there is no more
benefit in adding nodes. Given that IM is the group
of nodes which can be inferred by M and newIM
the nodes which can be inferred by M ∪ si (si is any
node not belonging to M ) then the benefit function is
B(M ∪ si,M) = newIM − IM . The purpose of the
benefit function is to maximize the number of inferred
nodes thus maximizing the number of sleeping nodes.

Input: A sensor network with a correlation graph
Output: A correlated dominating set M
BEGIN M = node si with largest IM
while B(newM,M > 0 do

Pick Si for which B(M ∪ Si,M) is maximum
end

Algorithm 3: GUPTA Centralized Algorithm

For GUPTA-MH, a node s with priority p(s) is marked
deleted if the following conditions are satisfied

• The node s has not been mark selected
• The connectivity of the communication subgraph is

not affected by the deletion of the node s
• There is a correlation edge in the correlation graph

such that every node in the set S is either marked
selected or has a priority more than p(s).

The score p(s) is the sum of the number of nodes which
are correlated with the node s. The more nodes which can
be predicted by s the higher p(s) will be.

The number of messages sent during training is not
considered in the results as both algorithms require a
training phase. For the GUPTA algorithm the first 14
days are used to build the model. In the case of the
proposed algorithm the first 7 days were used to build the
spatial/temporal model (training) while the subsequent 7
days were used to assess the performance of various sub-
setting and sub-sampling ratios (evaluation). It is assumed
that the underlying network is able to handle packet loss.
In the multi-hop case, two nodes are assumed to have
connectivity if they are less than 135 meters apart.

In the case of adaptive scheduling, two days of data were
used for re-scheduling the nodes. The first day is used for

00.20.40.60.8
11.21.41.61.8
50% 60% 70% 80% 90%Average Prediction 

Error (oC)
Percentage of Predicted DataSAMP SET-2T SS-2T

Figure 7. Variation in mean imputation error with percentage of
non-collected dataMethod Ratio1:71:51:41:31:21:71:51:41:31:2All Nodes 1:1time 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

SET-2T (Sub- setting)SAMP (Sub- sampling)
Figure 8. Schedule for ST LUSE dataset, target error of 1.4oC

in 80% of cases

a training phase while the second for the evaluation phase.
Re-scheduling was triggered if 60% Tlim of nodes are less
than the user specified error threshold for two days (Dlim).
When testing rescheduling nodes with more than 6% of
missing data were deleted from the dataset as this impeded
rescheduling.

6. RESULTS

This section is divided into two subsections covering the
two-tier and multi-hop cases, respectively.
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Figure 9. Performance of scheduling algorithms, ST LUCE
dataset, two-tier network

6.1. Two-tier Network

Firstly the performance of the various sub-setting, sub-
sampling and imputation methods were assessed using
the ST LUCE data set and a two-tier network. Figure
7 shows the variation in mean imputation error with
the percentage of imputed data for various methods.
Three methods were compared - sub-sampling (SAMP),
two-tier sub-setting (SET-2T), and the full Slotted
Scheduler algorithm including both sub-setting and sub-
sampling (SS-2T). Rescheduling was switched off. For low
imputation percentages, sub-sampling performs better than
sub-setting. For high imputation percentages, sub-setting
performs better than sub-sampling. The proposed Slotted
Scheduling algorithm combines the advantages of sub-
setting and sub-sampling and performs best in all cases.

Figure 8 shows the schedule created by the Slotted
Scheduler for an error limit of 1.4oC in 80% of cases. The
figure shows that the choice between sub-setting versus
sub-sampling as well as the ratio varies during the day
depending on the data statistics. Between the times of
00:00 and 09:00 sub-setting is scheduled for use. During
that period, only one seventh of the nodes were scheduled
to sample and transmit at each sampling period for the
majority of the duration. From 09:00 till 17:00 (during the
day), sub-sampling is used with a sampling ratio of 1:2.
From 20:00 onwards, the scheduler reverts back to the use
of sub-setting.

The GUPTA and Slotted Scheduling algorithms were
compared using an error limit of 0.25oC and of 1.2oC in
80% of cases, respectively. Re-scheduling was switched
off. Figure 9(a) shows the mean imputation error of both
methods. In terms of prediction accuracy the Slotted
Scheduler performs 29.5% better. A box plot of the
prediction error is presented in Figure 9(b). The box plot
clearly shows that in terms of the distribution of errors SS-
2T performs better as well. Figure 9(c) shows the number
of operational nodes over the duration of the simulation
for both methods and for the Default Network. The
packet limit was set to 2,150 packets. Using the GUPTA
algorithm, nodes start to die much sooner than when using
the proposed algorithm. Table III shows the in terms of
prediction accuracy as well as lifetime SS-2T outperforms
GUPTA-2T. Figure 9(d) shows how the percentage of
errors that are in excess of the error limit varies across the
time slots. It can be seen that, for the GUPTA algorithm,
the number of errors varies significantly over the slots.
The proposed algorithm performs within the 80% precision
limit (Plim) for all time slots.

Figure 10 compares the performance of SS-2T with re-
scheduling on and off. The initial loss in performance in
both cases (days 10-28) is due to the large amount of
missing data in the dataset. The algorithm signals for re-
scheduling during the 11th day of operation but because
of the lack of data it was not done till day 26. Overall, the
algorithm with re-scheduling switched on gives an average
of 81% prediction errors which are less than the error limit,
while without re-scheduling 65% are less than the error

10
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0%20%40%60%80%100%
1 11 21 31 41 51 61 71 81 91Percentage of Pre

diction Errors Below Error Limit DaySS-2TSS-2T (With Rescheduling Switched On)Precision Limit (80%)
Figure 10. Performance of SS-2T with re-scheduling on and off,

ST LUCE dataset, two-tier network

limit. The version with re-scheduling on requires 58%
more packets than the algorithm without re-scheduling.
Even so, the number of packets transmitted by SS-2T
with re-scheduling on is four times less than the default
network.

Figure 11(a) shows the results of performance
assessment for the two-tier Slotted-Scheduler and the
GUPTA algorithms using the RH LUCE dataset. For the
GUPTA algorithm the error limit was set to 0.75oC. For
the Slotted-Scheduler the error limit and precision limit
were set to 2% and 80% respectively, and re-scheduling
was switched off. In both cases the packet limit was 2,150.
As can be seen, the Slotted-Scheduler provides greater
accuracy: 19% better than GUPTA. Figure 11(b) shows
that the nodes running the GUPTA schedule die faster.
Table III summarizes the results obtained.

Figure 12 compares the performance of the SS-2T with
re-scheduling switched off. With re-scheduling switched
on, the average percentage of prediction errors below the
error limit after day 45 is 80% while for re-scheduling
off it is 75%. In terms of transmitted packets, during
the operational phase, the version with re-scheduling
transmitted 85% more packets than the version without.
The re-scheduled version transmits three times less packets
than the default network.

6.2. Multi-hop Network

Figure 13(a) shows the performance of the multi-hop
algorithms for the ST LUCE dataset. The error limits
for the GUPTA and Slotted Scheduler algorithms are
0.1oC and 0.9oC in 80% of cases, respectively, and re-
scheduling was switched off. The packet limit is 3,700.
The accuracy of the Slotted Scheduler is 38% better
than that of the GUPTA algorithm. In terms of the
distribution of prediction error figure 13(b) shows that
SS-MH performs better than the GUPTA algorithm. The
Slotted-Scheduler also performs better than the GUPTA
algorithm in improving the lifetime in terms of both L100

and L50. Table IV summarizes the performance of the
algorithms for the ST LUCE dataset for these precision
settings and for one other setting. As can be seen, the

00.20.40.60.811.2
SS-2T GUPTA-2TAverage Prediction E

rror (%)
(a) Mean imputation error

0102030405060
1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96Number of Operatio

nal Nodes
Day

SS-2TGUPTA-2TDefault Network
(b) Variation in the number of operational nodes with time

0%20%40%60%80%100%
1 3 5 7 9 11 13 15 17 19 21 23Percentage of P

rediction Errors Below Er
ror Limit

Time of DayGupta-2T, Error Limit=2SS-2T, Error Limit=2, Precision=80%
(c) Variation in the number of errors in excess of the limit with time

Figure 11. Performance of scheduling algorithms, RH LUCE
dataset, two-tier network

0%20%40%60%80%100%
1 11 21 31 41 51 61 71 81 91Percentage of Pre

diction Errors Below Error Limit DaySS-2TSS-2T (With Rescheduling Switched On)Precision Limit (80%)
Figure 12. Performance of SS-2T with re-scheduling on and off,

RH LUCE dataset, two-tier network
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Figure 13. Performance of scheduling algorithms, ST LUCE
dataset, multi-hop network
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Slotted-Scheduler performs within the user specified error
limit.
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Figure 15. Performance of scheduling algorithms, RH LUCE
dataset, multi-hop network
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Figure 16. Performance of SS-MH with re-scheduling on and

off, ST LUCE dataset, multi-hop network
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Figure 14 shows how the accuracy of the sub-sampling
(SAMP), multi-hop sub-setting (SET-MH), multi-hop
Slotted Scheduler (SS-MH) and two-tier Slotted Schedule
(SS-2T, re-scheduling off) varies with the percentage
of imputed data for the ST LUCE dataset. Again, the
performance of Slotted Scheduler performs better than the
sub-setting and sub-sampling algorithm. The performance
of the multi-hop Slotted-Scheduler is similar to that of the
two-tier algorithm, even though the subsets are constrained
in that they must all provide connectivity to the sink for all
nodes.

Figure 16 assesses SS-2T with and without re-
scheduling. Using re-scheduling, the average percentage of
prediction errors less than the threshold increase from 65%
to 84%. This was achieved at the cost of an 83% increase in
the number of packets. As in the two-tier case, even though
the algorithm signaled a retrain on day 11, it was unable
perform the retrain for several days due to the amount of
missing data.

Figures 15(a) and 15(b) show the performance of the
multi-hop algorithms for the RH LUCE dataset. The error
limits are 0.1% for the GUPTA algorithm and 1%C in
80% of cases for the Slotted Scheduler algorithm with
re-scheduling off. The Slotted Scheduler outperforms the
GUPTA algorithm in terms of both accuracy and lifetime.
Accuracy and lifetime summaries are provided in Table
IV for two cases. Figure 17 compares the performance
of the multi-hop sub-sampling, sub-setting and Slotted
Scheduling algorithms with the two-tier Slotted Scheduler.
The previous findings are again confirmed. The findings
are similar to the two-tier case.

6.3. Conclusions

Environmental monitoring applications requires nodes to
continuously transmit data back to the sink. In this paper
we have proposed a method which can use the initial
collected data to find spatial and temporal correlations
within the data. It has been shown that the performance
of these spatial and temporal models varies across
time, between data sets and network densities. Herein a
novel adaptive scheduling algorithm has been proposed.
The algorithm incorporates novel round-robin sub-set
allocation methods for two-tier and multi-hop networks.
When compared to the previously proposed GUPTA
algorithm, the two-tier Slotted Scheduler provides up to
226% longer lifetime and up to 30% greater imputation
accuracy. In a multi-hop network, the Slotted Scheduling
algorithm improves lifetime by up to 553% and can
improve accuracy by up to 38% when compared with the
GUPTA algorithm. It has been shown that re-scheduling
can maintain the performance of the system over a long
duration of time at a low increase in cost in terms of
the number of transmitted packets. Performance results
showed by retraining also show the importance of network
load balancing, as the moment a node dies it can no longer
be retrained.
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