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Abstract

A rapid increase of new nanomaterial products poses new challenges for their risk 

assessment. Current traditional methods for estimating potential adverse health effect of 

nanomaterials (NMs) are complex, time consuming and expensive. In order to develop new 

prediction tests for nanotoxicity evaluation, a systems biology approach and data from high-

throughput omics experiments can be used. We present a computational approach that 

combines reverse engineering techniques, network analysis and pathway enrichment 

analysis for inferring the transcriptional regulation landscape and its functional 

interpretation. To illustrate this approach, we used published transcriptomic data derived 

from mice lung tissue exposed to carbon nanotubes (NM-401 and NRCWE-26). Because 

fibrosis is the most common adverse effect of these NMs, we included in our analysis the 

data for bleomycin (BLM) treatment, which is a well-known fibrosis inducer. We inferred 

gene regulatory networks for each NM and BLM to capture functional hierarchical 

regulatory structures between genes and their regulators. Despite the different nature of the 

lung injury caused by nanoparticles and BLM, we identified several conserved core 

regulators for all agents. We reason that these regulators can be considered as early 

predictors of toxic responses after NMs exposure. This integrative approach, which refines 

traditional methods of transcriptomic analysis, can be useful for prioritization of potential 

core regulators and generation of new hypothesis about mechanisms of nanoparticles 

toxicity.

Keywords: Nanoparticles, Carbon nanotubes, Bleomycin, Gene regulatory network, Gene 

regulation, Fibrosis
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Introduction

Nanomaterials (NMs) have gained increased attention in the last 30 years due to their 

unique properties, exploited in various industrial and commercial products. NMs are widely 

used in electronics, cosmetics and biomedical applications, such as drug delivery (De 

Volder et al., 2013). However, inhalation of certain NMs causes adverse health effects, 

such as chronic inflammation, pulmonary fibrosis, carcinogenesis and other undesirable 

effects (Dong and Ma, 2015). Among these NMs, carbon nanotubes (CNT) were 

extensively investigated in the health-related context in recent years. Toxicological effects 

linked to CNT exposure include inflammation, fibrosis, DNA genotoxicity and tumorigenesis 

(Dong and Ma, 2015). The biological response to CNT exposure has many similarities with 

the responses observed for bleomycin (BLM) treatment, which is widely used as a classic 

model of inducing lung fibrosis (Peng et al., 2013).

Although many studies have investigated mechanisms and signaling pathways of CNTs 

and BLM toxicity (Nikota et al., 2016; Peng et al., 2013; Poulsen et al., 2015), the global 

transcription regulation program altered in response to these agents is mainly unknown. 

This lack of knowledge hinders the development of accurate prediction tests for nanotoxicity 

evaluation. Currently, about a hundred of transcriptomics data sets for NMs have been 

included in GEO database. These omics data sets present expression values for thousands 

of transcripts altered in response to NM treatment. Current approaches for the analysis of 

gene expression responses to NMs include identification of differentially expressed genes 

(DEGs), subsequent enrichment analysis of signaling pathways and the use of GO terms 

for functional interpretation of these findings. This type of analysis can provide information 

about distinct genes and enriched functional groups, but a collective, systems-level 

response to NMs remains hidden. Novel and complementary approaches can move forward 

the nanotoxicology field by capturing mutual variation in gene expression at the systems 
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level. Previous studies have demonstrated the power of reverse engineering techniques to 

achieve this aim. Such techniques were used to identify molecular biomarkers and drug 

targets in cancer and other diseases (Chen et al., 2014), the deduction of adverse outcome 

pathways (AOPs) for chemicals from high-throughput transcriptomic data sets (Perkins et 

al., 2011; Villeneuve et al., 2014), the functional interpretation of responsive modules from 

gene expression data sets (Marwah et al., 2018), and the characterization of macrophage 

responses to pathogen stimuli (McDermott et al., 2011).

Another knowledge gap in the nanotoxicology field is related to functional roles of 

transcription factors (TFs), which shape the global transcription response. Far too little 

attention in omics analysis has been paid to this type of genes, although TFs determine the 

landscape of toxicological response (Andersen et al., 2013; Chepelev et al., 2015; Souza et 

al., 2017). Furthermore, some TFs are considered as early indicators of stress-induced 

changes (Jennings et al., 2013).

The aim of this paper is to provide a computational approach for inferring the transcriptional 

regulation landscape and its functional interpretation, using network maps of gene 

regulation by TFs known as gene regulatory networks (GRNs). GRNs provide important 

information about critical TFs that guide gene expression and their potential targets. In this 

study we inferred GRNs from transcriptomic data derived from mice lung tissue exposed to 

long and short carbon nanotubes (NM-401and NRCWE-26, respectively) and BLM. Based 

on these GRNs, we identified common potential core regulators of fibrosis-associated 

processes for all agents. We present a computational approach for the functional 

characterization of stress-response modules in these networks and prioritization of key 

mediators associated with specific biological processes or disease progression. 
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Materials and Methods

Datasets

Two types of multi-walled CNT were included in the analysis, NM-401 (4048±366 nm in 

length) and NRCWE-26 (847±102 nm in length). Both CNTs induced transcriptional and 

histological pulmonary fibrotic changes, but NM-401 triggered it with more pronounced 

effects compared to NRCWE-26 (Poulsen et al., 2015). For comparison, we included data 

for bleomycin (BLM) treatment, that is widely used as a classic model of exogenously 

induced lung fibrosis (Peng et al., 2013). 

NM-401 is a long and rigid multi-walled CNT, NRCWE-26 is a short and entangled multi-

walled CNT. Both CNTs induce strong pulmonary acute phase and inflammatory response 

that reaches the highest point at day 3 and is maintained at day 28. Both CNTs enhance 

immune cell infiltration in bronchoalveolar lavage fluid (Poulsen et al., 2015). Histological 

analysis shows an interstitial pneumonia pattern with granulomas in lung tissue from mice 

exposed to high doses of NM-401 and NRCWE-26 CNTs at day 28, but more severe 

outcomes are found following NM-401 exposure, which includes granulomas, alveolar 

septal lymphoid infiltration and fibrosis (Poulsen et al., 2015). Transmission Electron 

Microscopy (TEM) showed that curled and agglomerated NRCWE-26 nanoparticles were 

identified in the cytoplasm, inside vesicles on day 3. For NM-401 CNTs, TEM imaging also 

showed their localization in cytoplasm vesicles on day 3. But NM-401 appeared to induce 

some damage effects, including piercing of these vesicles and visible damage of cells, 

which was not observed with NRCWE-26 (Poulsen et al., 2015). The toxic effects of these 

CNTs are related to reactive oxygen species (ROS) production and oxidative stress, but the 

mechanisms are unclear.

The biological response to CNT exposure has many similarities with the responses 
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observed for bleomycin (BLM) treatment (Peng et al., 2013). BLM is a chemotherapeutic 

drug that causes DNA strand breaks via oxidative mechanisms and can induce lung fibrosis 

in animals and in human patients as a severe side effect. A single BLM dose initiates an 

acute inflammatory phase in lung tissue characterized by infiltration of immune cells and 

release of pro-inflammatory cytokines. The fibrotic phase is initiated seven days after BLM 

instillation with increased expression of pro-fibrotic cytokines and increased fibroblast 

proliferation and collagen accumulation (Williamson et al., 2015). However, there are 

differences in endpoint effects of BLM and CNTs. For CNT exposure, genotoxic and pro-

fibrotic responses together with immunomodulation components prevail, leading to chronic 

inflammation, fibrosis and possibly cancer in a long-term period (Rahman et al., 2017). In 

contrast, single dose BLM models generally show attenuation of fibrotic features after 

28 days post-exposure (Dong and Ma, 2016). 

The gene expression profiles were obtained from Gene Expression Omnibus Database 

(https://www.ncbi.nlm.nih.gov/geo/) using the R/Bioconductor package GEOquery (Davis 

and Meltzer, 2007). Table 1 shows the summary characteristics of these data sets. Data for 

all CNTs and BLM were generated using Agilent microarrays and Affymetrix microarrays, 

respectively, in in vivo mice experiments. Three different doses of CNTs (18, 54, 162 μg) 

and three timepoints (1, 3, 28 days) following a single intratracheal instillation were used. 

BLM was administered in one dose, 2U/kg body weight, using a single intratracheal 

instillation method, and the lung tissue was harvested at 7 post-instillation timepoints (1, 2, 

7, 14, 21, 28, 35 days). All experiments were conducted with vehicle controls for each 

timepoint. The total number of analyzed samples in each data sets ranged from 67 to 111, 

which included controls, different doses, times, and replicas.

Gene regulatory network (GRN) inference and analysis
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GRNs were inferred individually for each agent. In order to generate lists of predicted 

interaction scores for TF-gene pairs, we applied an ensemble approach that combined 

results from three different algorithms: (i) the Bayesian variable selection algorithm (BVS) 

that is based on a linear regression model of gene regulation (Santra, 2014), (ii) the mutual 

information algorithm ARACNe-AP (Lachmann et al., 2016), and (iii) the tree-based 

regression algorithm GENIE3 (Huynh-Thu et al., 2010). Each method has benefits and 

disadvantages in their ability to capture mutual variation in gene expression. Moreover, 

there is currently no gold standard for such methods applied to mammals. Importantly, the 

prediction accuracy can be significantly improved by a combination of results from multiple 

statistical methods, especially using diverse type of methodologies (Marbach et al., 2012). 

Therefore, in our analysis, we have chosen algorithms from different categories, which 

showed better prediction performance in Marbach’s study, namely regression, mutual 

information and tree-based approaches. The steps of our pipeline were applied separately 

to each data set, as described below. 

1. First, the expression values for multiple probes representing the same gene were 

averaged. The final data set was stored as a gene expression matrix where rows 

represented genes and columns represented samples (different conditions).

2. Next, DEGs were identified. The analysis was performed using the limma package in 

R/Bioconductor (Ritchie et al., 2015). The list of genes was considered as 

significantly differentially expressed if the absolute values of the expression changes 

were equal to or greater than certain cut-off, namely 1.5-fold for CNT or BLM and 

1.3-fold for CB treatments compared to non-treated controls for each experimental 

condition. To decrease the risk of a Type I error (false positive results) during 

multiple comparison tests, the Benjamini Hochberg (BH) correction procedure was 
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applied. Genes were considered as differentially expressed if BH-adjusted p-values 

were less than or equal to 0.05.

3. Non-differentially expressed genes were excluded from the gene expression matrix. 

The list of gene regulators (TFs) was obtained from the AnimalTFDB 3.0 database 

(Hu et al., 2019) and mapped to the list of genes in the expression matrix.

4. The above set is then used to infer a list of predicted interaction score for TF - gene 

pairs. Bayesian variable selection and GENIE3 algorithms were run with 

recommended default parameters (Huynh-Thu et al., 2010; Santra, 2014). The 

ARACNe-AP algorithm was run with three key steps: MI threshold estimation, 

bootstrapping/MI network reconstruction, building consensus network (only 

significant interactions are filtered, p ≤  0.05, BH corrected).

5. Next, for improving prediction accuracy, we integrated the results of all three 

algorithms by unweighted Borda count ranking, as described by Marbach et al 

(Marbach et al., 2012) in the supplementary materials to their paper. Briefly, 

interaction scores predicted by each algorithm were ranked for all gene pairs. 

Subsequently, for each gene pair the integrated rank was calculated as the average 

of the individual interaction scores over three algorithms.

6. To identify an optimal threshold cutoff for selecting ranked gene pairs with high 

mutual dependencies and discard unlikely interactions, we used a gene ontology 

(GO) semantic similarity approach that estimates the function similarity for gene 

pairs based on GO graph structure (Yu et al., 2010). The list of TFs and their 

potential targets were sorted by a descending order of interaction scores, and a GO 

similarity score was calculated for each gene pair using the GOSemSim 

R/Bioconductor package (Yu et al., 2010). The semantic similarity of two GO terms 

was measured using the Wang method (Yu et al., 2010), using biological process 
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ontologies for this analysis. Then, the list containing the calculated GO score for 

each gene pair was subdivided into bins with the bin width equal to 100 rows, and 

the median score values were calculated. Next, these values were fitted by a 4th-

order polynomial dependence on this median score. Then, the median of all median 

score values and their standard deviation were calculated. Taking this median score 

value plus the standard deviation divided by 2, the intersection of the fitted 4th-order 

polynomial curve was found that defined the optimal threshold cutoff (Borate et al., 

2009). We calculated the threshold cutoff for each ranked list of TFs and their 

potential targets and chose the minimum value. Subsequently, based on the 

identified common minimum threshold, the top TF-gene pairs were selected in each 

list for subsequent analysis.

7. These gene pairs formed a network, where nodes represent genes and edges 

denote interactions between them. Network visualization and analysis were 

performed using the open source software platform Cytoscape version 3.4.0 

(Shannon et al., 2003). Topological parameters of the network were estimated using 

the NetworkAnalyzer plugin available within the Cytoscape software. To identify 

network modules, we applied the Girvan-Newman algorithm, named as Glay 

clustering method in the clusterMaker Cytoscape plugin (Girvan and Newman, 2002; 

Su et al., 2010). The Polychrome R package (https://cran.r-

project.org/web/packages/Polychrome/index.html) was used for generating a 36 

colors palette, which was used for color visualization of different network modules. 

8. The identified gene modules of inferred networks were then annotated based on the 

KEGG database (Kanehisa et al., 2017), using the over-representation method and 

the gProfileR R package (Reimand et al., 2016). The analysis was performed for 

each condition (time points; doses) separately. A fold change cut-off of 1.5 for DEGs 
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was used in this analysis. A threshold for the minimum number of genes per module 

was 50. The heatmaps representing fold-changes of DEGs for the network modules 

were generated using the Pheatmap R package (https://cran.r-

project.org/web/packages/pheatmap/index.html). The fold-change values of DEGs 

used in the heatmaps were transformed using the floor and ceiling transformation. 

Namely, the values of the matrix elements that were above “2” were replaced with 

“2”, all values in the matrix below “-2” were replaced with “- 2”.

9. Finally, in order to prioritize gene regulators which are associated with fibrosis, we 

used the inferred network and identified TFs with the largest numbers of connections 

with fibrosis markers. We considered as fibrosis markers the genes associated with 

pulmonary fibrosis in the Comparative Toxicogenomics Database (Davis et al., 

2017). Then, we found TFs that are directly connected with these genes. Each TF 

from this list was characterized using the number of connections with fibrosis 

markers for each condition (time points; doses), provided that these markers were 

differentially expressed. 

Data processing and statistical analysis were performed with R version 3.5.2 (https://www.r-

project.org/) and RStudio version 1.1.383 (https://www.rstudio.com). For inferring GRNs 

using the ARACNE-AP algorithm, we used the JAVA executable command-line tool 

(https://github.com/califano-lab/ARACNe-AP). The Bayesian variable selection algorithm 

was run in a Matlab environment Version 6 (Mathworks).

Results

Inferring gene regulatory networks

Gene regulatory networks (GRNs) provide useful insights into transcriptional regulatory 

D
ow

nloaded from
 https://academ

ic.oup.com
/toxsci/advance-article-abstract/doi/10.1093/toxsci/kfz151/5528260 by U

niversity C
ollege D

ublin user on 12 July 2019

https://www.rstudio.com


10

mechanisms. GRNs have hierarchical structures where a few highly interconnected genes, 

usually TFs, are the hubs that account for most interactions. GRNs inferred from the 

expression data can suggest which TFs are responsible for the changes in gene expression 

observed following the exposure to CNTs or other agents. To infer gene regulatory 

networks, we used gene expression matrices for different experimental conditions and 

reverse engineering algorithms. These algorithms included a linear regression model 

(BVS), the mutual information algorithm (ARACNe-AP), and the tree-based regression 

algorithm (GENIE3). As a result, we obtained lists containing predicted interactions score 

for TF - gene pairs. To improve prediction accuracy, we applied an ensemble approach 

based on the Borda count ranking (see Methods), that combines results from these three 

algorithms. A term ‘wisdom of crowds’ was coined for this approach (Marbach et al., 2012). 

The GRNs were reconstructed for each agent separately. An overview schematic of our 

analysis pipeline is presented in Figure 1 and technical characteristics for each step are 

shown in Table 2. 

The TF – gene interaction score results can help us establish the relationships in GRNs. 

However, to select the most critical, top relationships, we have to estimate a cut-off 

threshold. We used the approach based on gene ontology (GO) semantic similarity 

measurement (Pesquita, 2017), which calculates the closeness between two genes based 

on the graph structure of gene ontology database terms (see Methods section for more 

details). Using this approach, we calculated optimal thresholds for each list of TFs and their 

potential targets (Figure 2 and Table 2). The identified thresholds were 7700 TF – gene 

pairs for the NM-401 list, 5700 for the NRCWE-26 list and 6500 for the BLM list. The 5700 

value was chosen as a common optimal threshold for all interaction lists. Using this value, 

top TF-gene pairs were selected for subsequent analysis. We then built a network for these 

gene pairs where nodes represented genes and edges denoted interactions between them. 
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The main characteristics of these networks are presented in Table 2. The network diameter 

(maximum distance between nodes) and the characteristic path length in the BLM network 

was greater than in the CNT networks. Nonetheless, the clustering coefficients and average 

number of neighbors were generally similar for CNTs and BLM, indicating that all GRNs are 

well-connected, small world networks (Table 2). The visualization of these networks is 

shown in Figure 3, and the Cytoscape session file can be found in the Supplementary file 1. 

Next, in order to prioritize gene regulators for each network, we ranked TFs based on their 

connection numbers (Table 3). TFs with the largest numbers of connections are referred to 

as TFs hubs. These topological features are widely used in the analysis of GRNs, and TF 

hubs are deemed important in the cellular regulatory programs (Basso et al., 2005; 

Langfelder et al., 2013). Table 3 shows the TFs with the highest connectivity in all networks, 

such as E2f8, Litaf, Foxm1, Mxd3, Myc and Irf7. 

Analysis of biological functions of genes in GRN modules

A feature of GRNs is colocalization of the genes, which are involved in similar biological 

processes, in the same network modules (van Dam et al., 2018). We used this feature for a 

subsequent analysis of biological processes controlled by TFs. To identify network 

modules, we used the Girvan-Newman algorithm (Girvan and Newman, 2002). Considering 

modules containing 50 or more genes, this method revealed 12, 13 and 7 modules in the 

NM-401, NRCWE-26 and BLM networks, respectively. Figure 3 shows these modular 

structures for the inferred networks. To capture the dynamic complexity of transcriptional 

responses, heatmaps for upregulated and downregulated DEGs were plotted for each 

network module (Figure 3).

To identify the signaling pathways and functional processes which were altered in each 

network module following instillation of CNTs and BLM, we applied functional annotation 
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analysis using the KEGG database (Supplementary file 2). This analysis was performed for 

each condition (the time point and dose) separately. To capture major altered signaling 

pathways, we selected enriched pathways using the BH corrected p-value (Figure 4). As 

these Tables demonstrate, instillation of CNTs and BLM affected various physiological and 

pathological processes, such as (i) the immunomodulatory response (innate and adaptive), 

in particular, pathways activated by cytosolic pattern recognition receptors (PRRs), (ii) 

response to DNA damage/integrity, and (iii) cell death and senescence pathways, 

suggesting the involvement of these processes in the adverse effects observed upon CNTs 

and BLM instillation.

The inflammatory immune response is strongly stimulated by CNTs and BLM instillation. 

Several network modules identified above include the pathways involved in this response. 

The GRNs corresponding to each agent show that DEGs participating in the inflammatory 

response belong to modules of two different types: (1) early immune response, and (2) 

activation of cytosolic pattern recognition receptors (PRRs). Genes that comprised the first 

type of module were altered on day 1 and maintained altered expression on day 3 in 

response to NM-401 (module 2 and 11) and NRCWE-26 (module 2), while in the BLM 

network, these genes were induced on day 1 and showed maximal expression on days 7-

14 (module 2 in the BLM network). For all modules of the first type, the effects increased 

with the CNT doses. These modules contain genes from inflammatory-related pathways, 

including IL-17 signaling and cytokine-cytokine receptor interaction (in the NM-401 and 

BLM networks), TNF signaling (in the NM-401 network), and NF-kappa B signaling (in the 

NRCWE-26 network).

The second type of modules for inflammatory immune response contained the genes, 

which were associated with anti-viral activity or activation of cytosolic pattern recognition 

receptors (modules 14, 11 and 19 in the NM-401, NRCWE-26 and BLM networks, 
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respectively). The temporal changes of gene expression varied in different networks. The 

genes from module 14 in the NM-401 network were mainly altered on day 3 in response to 

middle and high doses of NM-401. Module 11 in the NRCWE-26 network contained genes, 

the expression of which was changed on day 3 and at a later time point (day 28) in 

response to low and middle doses of NRCWE-26, while the high dose of the CNT triggered 

expression changes only on day 3. Noteworthy, the response to NRCWE-26 CNT in this 

module was dose dependent, but in contrast with the first type of modules, the effect was 

more pronounced at the low and middle doses than at the high dose of this CNT. Module 

19 in the BLM network included genes, the expression of which was altered on day 1 and 

reached the highest point on day 2 (Figure 3C, 4C).

The immune response was accompanied by initiation of DNA damage processes (modules 

6, 9 and 3 in the NM-401, NRCWE-26 and BLM networks, respectively). DEGs in these 

modules were mainly altered on day 3 (CNT networks) and on days 2-21 (BLM network). 

These DEGs contained genes from cell cycle, homologous recombination and DNA 

replication. The necroptosis pathway was identified only in the CNT network module. DNA 

damage associated effects were dose dependent, and the response increased with 

increasing dose of agents, while components of the necroptosis signaling pathway were 

triggered mainly by low doses of CNTs. 

At late time points, expression of many genes did not return to normal levels. Module 9 in 

the NM-401 network consisted of sufficiently high numbers of up- and down-regulated 

DEGs (see Figure 3A). Among the enriched pathways in this module, we identified the 

lysosome and phagosome signaling pathways, which were altered on day 3 and were 

active up to the day 28. BLM also altered the lysosome pathway, but mainly on day 7 

(module 5) with subsequent attenuation of the effect. In addition, at late time points, the 

BLM network included two modules (modules 6 and 1) with a high number of inhibited 
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genes (see heatmap in Figure 3C). KEGG pathway enrichment analysis of DEGs from 

module 6 identified the natural killer cytotoxicity pathway, while module 1 included DEGs 

from the pathways, which are associated with the regulation and function of muscle cells 

(Figure 4C). Actin and myosin family of genes were mapped to these pathways (see 

Supplementary file 2).

Prioritization of gene regulators of fibrosis

In order to prioritize gene regulators (TFs) associated with activation of fibrotic processes, 

we next focused on a specific part of each GRN that included pulmonary fibrosis markers 

and directly linked TFs. As fibrosis markers, we used 94 pulmonary fibrosis-associated 

genes derived from the Comparative Toxicogenomics Database (Davis et al., 2017), which 

contains manually curated gene–chemicals/nanoparticles–disease associations. This gene 

set includes several matrix metallopeptidases and their inhibitors, interleukins, chemokines, 

ECM regulators, and other genes which are involved in parenchymal injury of the lung (this 

list of genes is provided in Supplementary file 3). We considered these 94 genes as targets 

and found their regulators using the inferred GRNs for NM-401, NRCWE-26 and BLM. Each 

TF was characterized using the number of direct connections (connectivity) with fibrosis 

markers for each condition (time points/doses), provided that the target gene (fibrosis 

marker) was differentially expressed. A list of identified TFs with their network modules and 

connectivity values for different conditions are presented in the Supplementary file 5. 

Hierarchical clustering of TFs based on these connectivity values was used to generate a 

heatmap (see Figure 5). The heatmap columns can be separated into three main groups: 

(1) BLM treatment responses, (2) responses to the high dose of NM-401 on day 3, and (3) 

other responses to NM-401 treatment and responses to NRCWE-26. TFs that form 

heatmap rows clustered into two main groups, namely the BLM cluster and the CNT cluster. 
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The BLM cluster contains the TFs Litaf, Mafb and Batf3. Litaf regulates the expression of 

cytokines, pro-inflammatory and pro-fibrogenic genes (Ceccarelli et al., 2015; Tang et al., 

2005, 2011). Transcription of Litaf can be induced by the tumor suppressor p53 (Myokai et 

al., 1999) and Toll-Like receptors (TLR 2/4) (Tang et al., 2006). In the CNT networks, Litaf 

is directly connected with Cd14 and Myd88 genes (see Supplementary file 6), which 

encode toll-like receptor interacting proteins. Mafb has connections with fibrosis markers in 

all networks, but connectivity intensities were more prominent in the NM-401 and BLM 

GRNs (Figure 5). In all GRNs, Mafb is directly connected with Fcgamma receptor (FCGR) 

coding genes, including Fcgr3 and Fcgr2b genes (see Supplementary file 6). Published 

data show, that Mafb can enhance phagocytic activity of macrophages by stimulating Fcgr3 

(Nemoto et al., 2017) and has a key role in the activation of anti-inflammatory macrophage 

profile by inducing M1/M2 macrophage polarization, which is important for fibrosis 

development (Cuevas et al., 2017; Kim, 2017). The other TF, Batf3, which has a high 

number of connections with fibrosis markers in the NM-401 and BLM networks, is involved 

in the formation of CD103+ and CD8+ dendritic cells that may facilitate lung fibrosis 

(Bantsimba-Malanda et al., 2010; Kopf et al., 2015). In line with this result, liver fibrosis is 

attenuated in Batf3 −/− knockout mice (Chen et al., 2017). 

The CNT cluster is partitioned into two subclusters (see Figure 5), which denote TFs with 

high connectivity for (1) both CNTs and (2) specific to NM-401. The TFs, Arid5a, Myc and 

Nme2 expose a high number of connections with fibrosis markers in the CNT networks. 

Arid5a also has a high number of connections with fibrosis markers in the CNT networks 

(see Figure 5). Arid5a controls IL6 mRNA stability and protects IL6 mRNA from regnase-1-

mediated degradation (Masuda et al., 2013). Importantly, Arid5a is regulated by the NF-κB 

and MAPK signaling pathways, which in turn are activated by Toll-like receptor 4 (Nyati et 

al., 2017). In the NM-401 GRN, Arid5a and Myc colocalized in the same module. Myc was 
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identified in the top 10 TF hubs with the highest number of connections in all CNT networks 

(Table 3), indicating that Myc plays a critical role in responses to CNT treatment. In 

contrast, in the BLM network Myc was not linked with fibrosis markers. Myc activity is 

essential for cell cycle progression, apoptosis and other biological processes. Myc has 

cross-regulatory interactions with cytokines, including IL1, IL2, IL4, IL6, IL8, IL10, and TNF-

α (Liu et al., 2015). Interestingly, another TF from this cluster is Nme2, which controls Myc 

transcription (Yao et al., 2014).

The TFs Srebf2, Thrb, Atf3, Hif1a, Thyn1 and Mxd1, are presented in the NM-401-specific 

subcluster. The connectivity of Srebf2, also known as Srebp2, rose as the NM-401 dose 

increased. Srebf2 induces the expression of genes that are involved in cholesterol and fatty 

acid synthesis, cholesterol transport (Fessler, 2017; Madison, 2016), and the formation of 

lipid-laden macrophages (foam cells) (Li et al., 2013), which are associated with lung 

fibrosis (Romero et al., 2015). Thrb regulates biological functions of thyroid hormone, which 

can be involved in induction of oxidative stress and inflammation (Mancini et al., 2016). Atf3 

is involved in TLR2/4 downstream signaling and plays essential roles in the regulation of 

stress-induced responses by inhibiting IL6, TNF-α and other cytokines expressions, in 

apoptosis regulation (Kondo et al., 2012; Thompson et al., 2009). Hif1a is an oxidative 

stress sensitive TF that may initiate fibrosis by facilitating epithelial- mesenchymal transition 

(Cummins et al., 2016; Xiong and Liu, 2017). Thyn1, also known as Thy28, is an apoptosis-

associated gene (Toyota et al., 2012).

Another TF with high number of connections in the NM-401 network was Mxd1, also known 

as Mad. This TF is closely involved in the cell regulation by MYC (Lüscher and Vervoorts, 

2012). Heterodimerization of MYC and MAX is necessary for activation of MYC target 

genes. The protein MAD, which is encoded by the Mxd1 gene, competes with MYC for 

binding to MAX and thereby inhibits MYC activity (Lüscher and Vervoorts, 2012). Analysis 
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of the log fold change (logFC) values for Myc, Max, Mxd1 and cytokines showed that the 

expression changes of the most upregulated cytokines (IL6, IL1b, Cxcl10 and Ccl12) were 

accompanied by the concurrent upregulation of Myc and Mxd1 genes on day 3 in response 

to high NM-401 doses (Supplementary file 4).

Discussion

Approaches that are widely used in nanotoxicology for the analysis of gene expression data 

commonly include the identification of DEGs and subsequent enrichment analysis of 

signaling pathways and GO terms for functional interpretation of these changes. However, 

these methods do not provide information about key regulators, which orchestrate 

transcriptional stress responses to NMs exposure. Here, we used an integrative 

computational approach based on reverse engineering algorithms and microarray mRNA 

data to analyze biological responses associated with NM-induced toxicity. We applied two 

criteria for selecting data sets from GEO data base for our analysis: (1) NMs that induce 

fibrosis; (2) that the number of samples was as large as possible. The second criterion is 

required to enhance performance in predicting the mutual dependencies between genes. In 

addition, to improve prediction accuracy, we restricted candidate regulators to TFs. The 

prediction accuracy can also be improved by a combination of results from multiple statistical 

algorithms, especially using diverse type of methodologies (Marbach et al., 2012). Therefore, 

our approach includes a step with integration of results from different algorithms from diverse 

categories, which showed the best prediction performance in Marbach’s study, namely 

regression, mutual information and tree-based approaches.

We applied this ensemble approach to NM-401, NRCWE-26 and BLM experimental data 

sets, inferred GRNs and performed a two-stage analysis: (1) we examined biological 
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functions of genes in GRN modules; and (2) we prioritized TFs associated with the activation 

of fibrotic processes.

Functional characterization of GRNs identified several altered gene modules that belong to 

stress-responses, such as early immune response, response to DNA damage/integrity, and 

apoptotic pathways (necroptosis, cellular senescence). Interestingly, the virus immune 

response was also among these stress-responses. In particular, the activation of cytosolic 

DNA-sensing receptor and Influenza A pathways were strongly stimulated by CNTs and BLM 

instillation. This effect might be related to CNT- and BLM-induced mitochondrial damage. 

Oxidative stress induced by CNTs or BLM damages the mtDNA in cells (Szczesny et al., 

2018). Damaged mtDNA serves releases into the cytoplasm, which is sensed by cytosolic 

DNA-sensing receptors and triggers the interferon signaling pathway. Moreover, mtDNA 

fragments are excreted by exosomes into the extracellular space and promote an 

inflammatory response in other cells (Boyapati et al., 2017).

Clustering analysis of TFs associated with activation of fibrotic processes showed co-

localization of BLM samples and NM-401 samples for the 3rd day of NM-401 exposure (Figure 

5). We conclude that the 3rd day of NM-401 exposure determines the early switch to the 

fibrosis state. Since NM-401 induced much stronger fibrotic changes compared to NRCWE-

26, we consider the following list of TFs as early predictors of toxic responses after CNT 

exposure: Mafb, Litaf, Batf3, Nme2-Myc-Mxd1, Thyn1, Hif1a, Stat5b, Egr2, Plagl1, Atf3, Etv5, 

Thrb, Srebf2. We included into this list TFs, which have high connectivity values primarily in 

NM-401 GRN (Figure 5).

In conclusion, we have developed an integrative computational approach to prioritize key 

transcription regulators, their associated biological processes and signaling pathways, which 

were altered in response to toxic compounds. We applied omics-based tools using a systems 

biology approach which can have a pivotal role in moving toxicity testing away from in vivo to 
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in vitro and in silico models (Nymark et al., 2018). Our method uses transcriptomics data, 

generates interaction networks that are specific to each toxic agent, and is independent from 

bias in the reference databases for pathway mapping as it infers connections and pathways 

de novo purely based on the data. Inferred networks can be used as a basis for further 

integration with proteomics data that might enhance the power of NMs toxicity prediction 

models (Riebeling et al., 2017). Moreover, this approach and inferred interaction networks 

can be useful for generating toxicity pathways and adverse outcome pathway schemes for 

toxic NMs.
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Tables

Table 1. Data sets from Gene Expression Omnibus Database used in the paper.

NM/

chemical

Data set Publicati

on

Mouse 

strain

Number of 

samples

Post-

exposure 

time point, 

days

Doses Type of 

microarray

NM-401 GSE55286 (Poulsen 

et al. 

2015)

C57BL/6 70 1, 3, 28 18, 54, 

162 μg, 

vehicle 

control

Agilent SurePrint 

G3 Mouse GE 

8x60K Microarray

NRCWE-

26

GSE55286 (Poulsen 

et al. 

2015)

C57BL/6 69 1, 3, 28 18, 54, 

162 μg, 

vehicle 

control

Agilent SurePrint 

G3 Mouse GE 

8x60K Microarray

Bleomycin GSE40151 (Peng et 

al. 2013)

C57BL/6 111 1, 2, 7, 14, 

21, 28, 35

2U/kg, 

vehicle 

control

Affymetrix Mouse 

430 2.0 arrays
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Table 2. General features of the inferred networks. The analysis of network features was 

performed using the NetworkAnalyzer plugin available within the Cytoscape software.

NM-401 NRCWE-26 BLM

Initial gene expression matrix

Number of genes x sample size 24163 x 70 24163 x 69 17358 x 111

Inferring GRNs

Number of genes which were used for inferring 
networks 4768 5063 4771

Number of predicted TF-gene pairs in common 
network 84202 87012 81280

Identified cut-off based on GO similarity, number 
of top rows 7700 5700 6500

Network characteristics for final GRNs

Nodes x edges 3076 x 5587 3045 x 5584 2929 x 5623

Transcription factors 238 244 227

Clustering coefficients 0.073 0.086 0.088

Network diameter 12 11 21

Shortest paths 35601 36576 57598

Characteristic path length 3.641 4.168 6.143

Avg. number of neighbors 3.633 3.668 3.840
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Table 3. Prioritized list of TFs with high number of connections in the networks. The 

outdegree columns show the number of connections for listed TF in each network, the rank columns 

denote the ranks of these TFs based on the number of connections (a rank increases with the 

decrease in the connection number). The last column depicts the average rank of the TF outdegree 

for all networks. TFs are shown according to increasing the average rank values.

Outdegree RankTFs NM-401 NRCWE-26 BLM NM-401 NRCWE-26 BLM
Average 
rank

E2f8 168 177 138 2 4 10 5.33
Litaf 165 100 217 3 11 2 5.33
Foxm1 116 125 156 7 7 6.5 6.83
Mxd3 93 102 86 12 10 16 12.67
Myc 107 192 54 9 2 30 13.67
Irf7 98 187 44 11 3 39 17.67
Mis18bp1 47 75 167 31.5 16.5 5 17.67
Thyn1 153 36 156 4 43 6.5 17.83
E2f7 36 116 113 40.5 8 12 20.17
Mafb 65 29 207 21.5 55.5 3 26.67
Plek 104 13 88 10 108.5 15 44.5
Batf3 39 7 233 36.5 144 1 60.5
Nme2 208 72 0 1 20 222.5 81.17
Srebf2 141 67 0 5 22 222.5 83.17
Thrb 133 32 0 6 51.5 222.5 93.33
Hes2 111 28 0 8 58.5 222.5 96.33
Hoxb5 35 0 183 42.5 245 4 97.17
Irf8 0 143 27 242.5 6 55 101.17
Mecp2 11 3 147 124 176 8 102.67
Gatad1 20 156 0 81 5 222.5 102.83
Sp110 11 193 0 124 1 222.5 115.83
Maff 12 104 0 118 9 222.5 116.5
Arid3b 0 0 142 242.5 245 9 165.5
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Figures

Figure 1. Workflow schematics for this study. (A) To infer a GRN from transcriptomics data, 

reverse engineering algorithms were applied. We used three different algorithms for GRN inferring 

(BVS, GENIE3 and ARACNE-AP) and then integrated the results of all three algorithms by Borda 

count ranking. Optimal threshold cutoff for selecting ranked gene pairs was calculated using a gene 

ontology (GO) semantic similarity approach. (B) To identify network modules, the GLay community 

clustering algorithm was applied. Heatmaps for DEGs were plotted for each network module. KEGG 

pathway enrichment analysis was performed to identify the biological functions of the genes in the 

modules. (C) To prioritize gene regulators which are associated with fibrosis, we identified TFs 

directly connected with fibrosis markers in the inferred networks. Each TF from this list was 

characterized using the number of connections with fibrosis markers for each condition (time 

points/doses), provided that these markers were differentially expressed. The visualization of this 

scheme is provided in the panel C, where green diamonds represent TFs and red circles denote 

differentially expressed markers. Each identified TF was characterized as a set of connectivity 

values for each condition. To compare the connectivity patterns of alternative treatments and 

different TFs, we applied hierarchical clustering.

Figure 2.  GO similarity scores. A) The NM-401 GRN, B) The NRCWE-26 GRN, and C) The BLM 

GRN. Black dots show the median values of 100 row slots. The blue line is the 4th order polynomial 

regression of GO similarity score values. The bigger value means the higher level of GO similarity. 

A dashed line represents the calculated optimal threshold for selecting ranked gene pairs with high 

mutual dependencies. The threshold was defined using the fitted curve as a row number in which a 

GO similarity score exceeded the median value plus standard deviation divided by 2 (see Materials 

and Methods).

Figure 3. Inferred gene regulatory networks for CNTs and BLM. A) NM-401, B) NRCWE-26, C) 

BLM treatments. Colored nodes represent genes. Groups of nodes with the same color denote 

distinct network modules. TFs are shown in white font and the size of the font is proportional to the 

number of their external connections (outdegree). The KEGG database was used for the functional 
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annotation of altered genes in the modules, the top enriched pathways are shown. The heatmaps 

represent fold-changes of DEGs for the network modules.

Figure 4. KEGG pathway enrichment analysis of DEGs in A) NM-401, B) NRCWE-26 and C) 

BLM network modules. The values in the tables indicate -log10(BH corrected p-value), the red 

color scale denotes the magnitude of the values. The analysis was performed for each condition 

(time point; dose) separately. The following requirements were applied for including the enriched 

KEGG pathways in the tables: (i) if the BH corrected p-value was <0.0005 in any conditions, all 

enriched KEGG pathways were included; (ii) if the BH corrected p-value was <0.005, only the top 5 

enriched pathways were included.

Figure 5. Hierarchical clustering of TFs. Heatmap intensities show the number of connections 

between a TF and its direct gene target in a network. Columns in the heatmap represent samples 

and different conditions, rows denote TFs. A hierarchical clustering algorithm was applied using the 

Euclidian distance measure.
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Figure 5. Hierarchical clustering of TFs. 
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