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Abstract— Due to no supervision of a therapist in home
based exercise programs, inertial sensor based feedback systems
which can accurately assess movement repetitions are urgently
required. The synchronicity and the degrees of freedom both
show that one movement might resemble another movement
signal which is mixed in with another not precisely defined
movement. Therefore, the data and feature selections are
important for movement analysis. This paper explores the data
and feature selection for the limb movement analysis of reha-
bilitation exercises. The results highlight that the classification
accuracy is very sensitive to the mount location of the sensors.
The results show that the use of 2 or 3 sensor units, the
combination of acceleration and gyroscope data, and the feature
sets combined by the statistical feature set with another type of
feature, can significantly improve the classification accuracy
rates. The results illustrate that acceleration data is more
effective than gyroscope data for most of the movement analysis.

I. INTRODUCTION

Exercise therapy plays an important role in physical
rehabilitation, allowing a patient to develop, maintain and
restore body movement and function after injury or surgery.
Typically a physical therapy session includes an assessment
of the patient, followed by the performance of physical
exercises as prescribed by a physical therapist/rehabilitation
specialist, based on severity of condition and the symptoms
involved. With the worlds increasing population, and the
increasing prevalence of chronic lower limb musculoskeletal
conditions such as arthritis [2], it is becoming more and
more difficult to meet the demands for physical therapy. Thus
home-based exercise therapy has been considered to meet
these demands.

Recently, inertial sensor based technologies have emerged
as one of the dominant approaches to aid home exercise
therapy. Inertial sensors combined with software that can
be worn throughout a training session are used to analyse
the motions and send feedback to patients [10]. Due to no
supervision by any therapist in home based exercise pro-
grams, the techniques which can accurate assess movement
repetitions and fast provide the feedback to patients are
urgently required.

The classification of human movements is extremely chal-
lenging due to the following 4 main factors: 1) synchronic-
ity of movements, 2) degrees of freedom (DoF) for each
movement [12], 3) variability of different repetitions of the
same exercise by the same subject and 4) variability of
different subjects (e.g. age, gender, height, and weight) [6].

The synchronicity and the DoF can make the analysis process
complex. The synchronicity and the degrees of freedom both
show that one movement might resemble another movement
signal which is mixed in with another not precisely defined
movement. Therefore, a number of DoFs from the different
sensors have to be considered to analyse the movements in
exercises. Also the effective attributes (called features) have
to be considered to address movements from those DoFs.
So the data and feature selection in the analyse process
are very important for the system performances in terms of
assessment accuracy, computational overhead and memory
usage.

Many studies have focused on the inertial sensor based
movement classification for rehabilitation exercise [7], [9].
In the previous work, most of the researchers used the
accelerators and gyroscopes information to extract time
and frequency domain features, then used machine learning
algorithms to analyse the movements [3], [13], [4]. Based
on a number of body-worn tri-axial accelerometers, Taylor
[13] extracted the mean, minimum and maximum as features,
then he used a multi-classifier to assess exercise quality. In
[4], [8], time/frequency domain features (e.g, skew, wavelet
coefficients, mean, variances) were extracted, based on the
acceleration and gyroscope data. Zhang [14] only used
acceleration data to extract the peak values as features to
assess the movements.

Most of the previous works does not provide the detail of
the comparison between acceleration and gyroscopes data,
and does not evaluate the features and their combination
for the movement analysis of rehabilitation exercises. This
paper evaluates the effect of DoF data, and evaluates different
types of features and their combination for the movement
analysis of rehabilitation exercises. Results provide useful
information about the clinical application of wearable inertial
sensors for rehabilitation exercises.

II. METHODOLOGY

A. Dataset Collection

The clinical dataset used in this paper is a record set
of seven different lower limb rehabilitation exercises of 69
participants. The protocol of these exercises was approved by
the Human Research Ethics Committee in University College
Dublin.

The seven exercises are the heel slide (HS), the standing
hip abduction (SHA), the standing hip extension (SHE), the



standing hip flexion (SHF), the inner range quadriceps (IRQ),
seated active knee extension (SAKE) and the straight leg
raise (SLR) exercises. Participants performed ten repetitions
of each of the seven studied lower limb exercises. Three of
these exercises were performed in a standing position (SHA,
SHE and SHF), one exercise was performed in a seated
position on a standardised chair (SAKE), and three exercises
were performed while lying supine on a plinth (HS, SLR and
IRQ). According to the extended deviations of movements,
the movement trials can be categorised into a number of
classes (See the Table I). The detail of these exercises can
be found in [4].

In the dataset, 69 participants performed the lower limb
exercises, including 38 males and 31 females. The ranges
of participant’s age, height and weight are 43.5±23.5 years,
1.715±0.195m and 77±47.0 kg, respectively.

The devices used for data collection were three inertial
sensor units (Wireless 9DoF IMU Sensor, Shimmer, Dublin,
Ireland). They were mounted on the thigh (T), shin (S),
and the foot (F) of a participant to gather signal data.
The orientation and positioning of each sensor were kept
consistent across all measurement sessions. With a dimen-
sion of 5.3cm× 3.2cm × 1.5cm and weight of 15 grams,
these inertial sensors are unobtrusive, permitting unhindered
subject movement.

Each of the employed sensors contained both a tri-axial
accelerometer and a tri-axial gyroscope sampling at 100 Hz.
The Shimmer 9DoF Calibration Application v1.0 was used
to calibrate the accelerometer and gyroscope sensors of each
sensor unit prior to the start of data collection. The Multi
Shimmer Sync application for Windows was used to capture
synchronised inertial sensor data over Bluetooth from the
three sensors during each of the exercises. The raw inertial
sensor data captured were saved onto a hard-drive.

TABLE I: The classes of movements

Exercises Classes
HS Normal

Excessive Hip External Rotation
SLR Normal

Excessive Knee Flexion
Excessive Ankle Plantarflexion

IRQ Normal
Excessive Plantarflexion

Excessive Hip Flexion (Thigh Lifts)
SAKE Normal

Reduced Knee Extension ROM
SHA Normal

Trunk Lateral Flexion (To Contralateral side)
Excessive Hip Flexion

SHF Normal
Excessive Trunk Flexion

SHE Normal
Trunk Forward Flexion

Excessive Knee Flexion”

B. Methods

The movement analysis system in this paper for rehabili-
tation exercises consists of the preprocessing, segmentation,
feature extraction and classification processes. They are
described in the following.

1) Preprocessing: When obtaining kinematics data from
the sensors, the preprocessing process reduces the undesired
noise (referring to drift and high frequency components) and
generates acceleration magnitude, pitch and roll information.
The high frequency noise is the elastic vibration in the
fasteners used to mount the markers to the limb. The drift
noise is the long term variation of baselines. The high
frequency noise can be reduced by passing a specified order
low-pass Butterworth with the normalised cutoff frequency
for kinematics data. Because the initial signal which indicates
that no movement occurs, we subtract its dimensional values
from velocity and displacement data. Beside the six distinct
DoFs (namely acceleration X, Y and Z, and gyroscope X,
Y and Z), three additional DoFs were calculated; namely
overall acceleration magnitude, pitch and roll. 9 distinct
DoFs were available all together for one sensor.

The 5th and 4th orders of Butterworth filters with -1 dB
ripple were used to reduce the noise in the acceleration and
oriented data respectively. The lower cutoff frequency of low-
pass Butterworth filters for x-axial, y-axial, z-axial gyroscope
data from the sensor mounted on any place is 1

0.04 Hz. The
lower cutoff frequencies of low-pass Butterworth filters for
x-axial, y-axial, z-axial acceleration data are: 1

0.04 Hz and
1

0.02 Hz for the thigh and shin/foot respectively.
2) Segmentation: After reducing the noise, the analysis

system employs the fast template matching segmentation
algorithm to identify each movement repetition trial in the
time series data of a sensor. The segmentation algorithm first
extracts the zero velocity points as the candidate segment
points, based on the different DoFs. Then the algorithm
classifies and combines the segments in such a way to detect
the trunks of movements. Simultaneously, the segmentation
algorithm adapts the classifier (Very Fast Decision Tree [11])
by recently obtained segment samples to accommodate the
new environment. Finally, the segmentation algorithm finds
the movement edges by comparing the velocity magnitudes
of movement trunks to the ones of the trunks neighbours.

3) Feature Extraction: Once a movement repetition is
obtained, the system extracts a number of features for each
DoF. These features are the statistical features, information-
theoretic features, frequency features and time-frequency fea-
tures. The 10 statistical features include the mean, standard
deviation, skewness, kurtosis, maximum, minimum, range,
25th percentile, 75th percentile and cross-correlation. The
frequency features are the 16 coefficients of the fast Fourier
transform. The time-frequency features are the 32 wavelet
coefficients using the Daubechies 6 mother wavelet with level
5. The information-theoretic features are the Lempel-Ziv
complexity, cross-entropy and entropy rates. The procedure
of information-theoretic feature extraction for each DoF is :
1) use the sliding window segmentation algorithm [5] with
a threshold error to segment the signal series into a number
of segments, 2) use the K-means algorithm to cluster the
segments in such a way to discretise the data, and 3) use
the cluster output (discrete data) to extract the information-
theoretic features. Thus, 58 features were extracted for each
of nine available DoFs, and 58×9 features were obtained for



per sensor unit.
4) Classification: After obtaining the features of an ob-

servation movement trial, the classification is carried out
by two main steps: 1) classify this observation (as normal
or defect movement, and 2) if the observation is identified
as a defect trial, predict what kind of defect movement it
is. As mentioned above, this paper mainly focuses on data
and feature selection for repetition movement classification
of rehabilitation exercises. Therefore, we first use the ac-
celeration data, gyroscope data and their combination to
extract features and classify the movement trials. Secondly,
we use a number of different feature combination subsets
to classify the movements. Simultaneously, three types of
sensor combinations were used to classify the movements,
including one single sensor mounted on different locations,
the combination of two sensors mounted on different loca-
tions and the combination of three sensors.

For each feature set, the movement classifications included
1) the classification between normal and defect movements,
and 2) the classification of defect movements if the move-
ments were classified as the defects. Logistic Regressions
(LR), Decision Trees C4.5 (DT), Multilayer Perceptron
Neural Networks (MLP), Support Vector Machines (SVM),
Random Forest (RF) and Adaboost modelling algorithms
were applied to classify the movements of rehabilitation
exercises. The 5-fold cross-validation was used to evaluate
each classification model.

TABLE II: The effect of mount locations of sensors for each
exercise, the best locations are highlighted when using all of
features

1 sernsor 2 sernsors 3 sernsors
Cl. Exe. Loc. ACC TP TN AUC Loc. Accu. TP TN AUC Loc. ACC TP TN AUC

N
o
rm

a
l

V
S

.
D

e
fe

c
t

H
S

F 90.27 88.51 92.06 93.74 SF 96.12 94.98 97.27 97.47
S 94 92.44 95.59 96.39 TF 94.03 92.42 95.68 95.36 TSF 97.06 97.15 95.84 98.31
T 90.62 89.14 92.13 92.98 TS 94.8 93.5 96.13 95.79

IR
Q

S 68.62 37.76 83.63 69.22 SF 83.03 69.19 89.77 83.82
F 76.86 55.44 87.27 78.56 TF 86.21 76.42 90.98 87.05 TSF 87.91 89.35 81.62 90.97
T 66.56 42.27 78.37 67.19 TS 78.74 60.93 87.4 78.46

S
A

K
E

F 81.17 81.02 81.32 86.15 TF 87.26 83.92 90.64 90.07
S 84.72 86.53 82.9 91.13 SF 89.78 88.93 90.65 92.77 TSF 91.53 93.88 91.16 91.92
T 70.01 67.62 72.43 75.4 TS 87.9 89.57 86.23 90.63

S
H

A

F 70.21 44.41 83.27 72.5 SF 79.48 64.56 87.03 81.24
S 73.96 52.89 84.63 77.46 TF 79.11 62.56 87.49 80.57 TSF 82.35 84.55 72.09 87.55
T 72.21 50.77 83.07 74.68 TS 79.96 64.96 87.55 81.29

S
H

E

F 72.4 49.56 84.08 73.98 SF 78.2 60.27 87.37 78.72
S 73.61 52.11 84.61 76.42 TF 81.91 66.55 89.77 82.82 TSF 83.02 84.13 72.06 88.62
T 71.57 44.25 85.55 72.03 TS 82.27 69.38 88.87 83.06

S
H

F
F 60.67 59.16 62.18 64.47 TF 73.57 73.81 73.34 76.32
S 61.46 58.47 64.42 64.91 SF 74 71.83 76.14 76.78 TSF 78.98 82.07 79.38 78.59
T 59.99 58.61 61.36 62.73 TS 73.54 72.06 75.02 76.17

S
L

R

S 69.87 47 81.53 72.78 SF 88.07 82.04 91.15 89.91
F 85.75 75.83 90.81 89.03 TF 89.25 84.74 91.56 91.36 TSF 91.5 93.55 88.67 92.94
T 61.49 21.49 81.87 54.6 TS 80.02 67.82 86.24 80.99

D
e
fe

c
t

IR
Q

F 75.6 76.4 74.81 80.77 SF 84.29 86.29 82.28 87.77
S 78.34 81.36 75.31 85.23 TF 91.82 93.02 90.62 93.55 TSF 93.53 95.23 94.4 92.68
T 90.58 90.93 90.24 94.24 TS 93.88 94.45 93.31 95.11

S
H

A

F 90.69 90.39 91.01 94.44 SF 94.97 94.38 95.58 96.84
S 90.69 89.71 91.71 94.46 TF 96.26 96.1 96.43 97.33 TSF 97.92 98.48 98.22 97.63
T 94.09 94.43 93.76 96.21 TS 96.18 96.49 95.88 97.24

S
H

E

F 73.29 74.73 71.88 79.87 SF 84.62 83.69 85.56 88.54
S 83.55 81.78 85.31 89.22 TF 92.26 92.88 91.65 94.41 TSF 94.22 95.73 94.82 93.63
T 85.13 86.84 83.45 90.23 TS 94.02 95.11 92.94 95.42

S
L

R

F 71.89 71.5 72.28 78 SF 84.23 80.6 87.85 87.18
S 79.2 77.68 80.71 84.69 TF 89.61 89.8 89.44 92.49 TSF 92.89 95.73 92.38 93.41
T 71.77 74.28 69.29 78.08 TS 93.01 93.54 92.49 95.14

III. RESULTS AND DISCUSSION

This paper uses the overall accuracy, true positive rate
(or sensitivity), true negative rate (or specificity) and the
area under curve to evaluate the classification models. The
overall accuracy rate (ACC) is the proportion of correctly

classified samples in the testing data. The true positive rate
(TP) is the proportion of positive samples that were correctly
classified. The true negative rate (TN) is the proportion of
negative samples that were classified correctly. The area
under curve (AUC) is an abbreviation for the area under
the ROC (receiver operating characteristic) curve, based on
the minor class. The detail of these terms can be found in
[1].

The classification results of the paper are presented by
Tables III, II and IV. In these tables, the classification rates
are ACC, TP, TN and AUC, each of which is the average of
the relative 6 classification rates obtained by the 6 classifiers
(LR, DT, MLP, SVM, RF and Adaboost). Tables III and II
show:

• the significant locations where the sensors should be
placed to improve the accuracy for each exercise.

• when using 1 sensor for an exercise, the classification
rates are very changeable. When a sensor was mounted
on a specified location, the effect of acceleration signal
is higher than the gyroscope , their combination is the
most effective, for most of the exercises. For the same
exercise, generally, the classification rates obtained by
combining multi-sensor units are much higher than the
ones obtained by a single sensor unit.

• comparing the use of sensor unit combination, the clas-
sification obtained by using three-sensor units are the
most stable. However, if the two sensors can be properly
mounted at the significant locations, the approximate
classification rates can be obtained as well. But the
computational overhead of using more sensors also
increases greatly.

• when 1 sensor unit was or 2-sensor units were used,
the classification rates are sensitive to the locations
where the sensors were placed and the signal selection
for movement analysis. For example, when the two
sensors were mounted on the thigh and foot and the
combination signal of acceleration and gyroscope were
used to classify the SLR movements, the classification
rates are higher than other combinations (they can be
20% higher than the lowest ones).

Based on the combination of acceleration and gyroscope
data from a number of sensor units, we obtained the
classification rates for each type of feature sets of each
exercise. Table IV summaries the results of defect and normal
movement classification and the results of defect movement
classification for each exercise. Table IV shows that:

• for the same exercise and the same signal data, the
classification rates obtained by the information-theoretic
feature set are the worst in these feature sets. That is,
the information-theoretic features are less effective for
the movement classification than others.

• the effects of using frequency feature set “Fourier
transform coefficients” are approximately equal for the
classification. One of reason might be that the properties
and principles of Fourier transform and the Wavelet
transform are quite similar.



• the statistical feature set is more effective than the
information-theoretic feature set, time-frequency feature
set and frequency feature set. But if the statistical
feature set is combined with another feature set, the
classification rates can be significantly improved.

• the use of 2 or 3 sensor units to classify the movements
is more effective than the use of one sensor unit, when
the same features were used.

TABLE III: The classification rates of each exercise, using
acceleration, gyroscope and their combination

Cl. Exe. Data Accuracy TP TN AUC

NormalVS.Defectmovements

HS

AG 95.86 94.5 97.25 96.87
A 95.83 94.59 97.1 96.79
G 90.68 88.89 92.51 93.49

IRQ

AG 81.7 67.47 88.63 82.7
A 81.74 66.26 89.27 82.32
G 76.51 57.77 85.62 77.44

SAKE

AG 87.07 86.33 87.83 90.94
A 88.25 89.54 86.95 90.75
G 81.15 79.45 82.87 85.63

SHA

AG 78.73 64.96 85.7 81.8
A 77.02 54.9 88.21 77.35
G 76.2 59.71 84.55 78.23

SHE

AG 79.37 63.39 87.54 80.95
A 78.77 60.43 88.15 79.59
G 76.81 58.83 86 77.84

SHF

AG 73.37 73.45 73.3 76.54
A 73.55 72.14 74.95 76.22
G 62.28 60.01 64.52 65.49

SLR

AG 84.5 73.52 90.1 85.67
A 85.02 73.27 91.02 85.14
G 77.77 63.75 84.93 80.12

Defectmovements

IRQ

AG 88.79 89.16 88.44 92.26
A 88.64 90.65 86.62 91.22
G 86.94 88.35 85.52 90.02

SHA

AG 96.26 96.74 95.78 97.79
A 92.23 91.35 93.14 94.57
G 96.09 96.46 95.73 97.67

SHE

AG 88.95 90.76 87.16 92.34
A 88.89 88 89.78 91.64
G 86.71 87.25 86.19 90.33

SLR

AG 85.87 86.3 85.46 89.89
A 86.64 86.5 86.77 90.02
G 82.89 81.46 84.33 86.81

TABLE IV: The classification rates, using different feature
sets

Classif: normal VS defect defect Movement Classif.
n. Sensors features ACC TP TN AUC ACC TP TN AUC

1

fft+info 72.87 57.13 81.48 74.79 82.35 83.49 81.22 87.06
info 68.26 45.9 79.55 68.37 71.57 75.67 67.36 76.7
stat 75.73 61.89 83.32 77.99 84.28 84.19 84.37 88.57

stat+fft 75.03 61.63 82.25 77.43 83.5 85.21 81.8 88.26
stat+info 75.76 62.26 83.11 78.03 84.11 84.56 83.67 88.58
stat+wf 75.45 61.09 82.93 77.78 83.68 84.26 83.11 88.49

fft 72.73 57.42 81.03 74.53 82.08 82.12 82.05 86.5
wf 71.86 54.85 80.54 73.84 79.83 80 79.65 84.71

2

fft+info 78.8 68.2 84.46 80.6 89.81 90.23 89.38 92.79
info 71.17 51.35 80.93 71.63 75.07 77.34 72.72 79.37
stat 86.74 78.74 90.97 87.97 92.65 92.47 92.84 94.5

stat+fft 86.42 79.56 90.1 87.91 92.57 92.72 92.42 94.48
stat+info 86.65 78.72 90.94 88.06 92.51 92.51 92.53 94.43
stat+wf 86.21 78.4 90.33 87.48 92.64 92.37 92.91 94.45

fft 78.53 68.28 83.88 80.4 89.86 90.24 89.49 92.79
wf 76.6 64.36 82.77 78.6 88.14 87.09 89.19 90.81

3
fft+info 81.66 73.02 86.39 83.78 92.51 93.11 91.93 94.77

info 72.88 55.55 81.35 73.38 77.39 80.23 74.5 81.13
stat 88.08 82.45 91.06 89.42 95.51 95.94 95.08 96.82

stat+fft 87.63 82.5 90.38 89.52 94.67 95.19 94.17 96.25
stat+info 87.99 82.14 91.15 89.55 95.3 95.91 94.7 96.68
stat+wf 87.59 82.13 90.39 89.1 95.23 95.55 94.91 96.87

fft 81.25 73.08 85.62 83.35 92.74 93.37 92.11 95.04
wf 79.22 69.29 84.15 80.89 92.15 92.92 91.37 94.16

IV. CONCLUSION AND FUTURE WORKS

In this paper, we evaluated 1) the effect of the acceleration
data, gyroscope data and their combination, 2) evaluated the
use of sensor unit combination, and 3) evaluated different
types of features and their different combinations for the
limb movement analysis of rehabilitation exercises. The
experimental results have demonstrated the use of 2 or 3
sensor units, the combination of acceleration and gyroscope
signal, and the feature sets combined by statistical features

with another type of feature can significantly improve the
classification accuracy. Therefore, we suggest that the signif-
icant data and features mentioned above should be selected
for the limb movement analysis of rehabilitation exercises
when using wearable inertial sensors.

The future work will include conducting more experiments
with a larger set of testing data from more patients and
reducing the feature dimensions to improve the classification
accuracy. In addition, the movement segmentation will be
studied to improve the performance of movement classifica-
tion for rehabilitation exercises.

REFERENCES

[1] https://en.wikipedia.org/wiki/receiver−operating−characteristic, .
[2] Boulton Andrew, JM Loretta, Vileikyte Gunnel, Ragnarson-Tennvall,

and Jan Apelqvist. The global burden of diabetic foot disease. Lancet,
366(9498):1719–1724, 2005.

[3] Harrison Philip Crowell and Irene S. Davis. Gait retraining to reduce
lower extremity loading in runners. Clinical Biomechanics, 26(1):78–
83, 2011.

[4] O. Giggins, K.T. Sweeney, and B. Caulfield. The use of inertial sensors
for the classification of rehabilitation exercises. In EMBC 2014, pages
2965–2968, Aug 2014.

[5] Shatkay Hagit and Stanley B. Zdonik. Approximate queries and
representations for large data sequences. In Data Engineering, 1996.
Proceedings of the Twelfth International Conference on, pages 536–
545. IEEE, 1996.

[6] Jeffrey M. Hausdorff, Dean A. Rios, and Helen K. Edelberg. Gait
variability and fall risk in community-living older adults: a 1-year
prospective study. Archives of physical medicine and rehabilitation,
82(8):1050–1056, 2001.

[7] Robert A. Hintermeister, Gregory W. Lange, Jeanne M. Schultheis,
Michael J. Bey, and Richard J. Hawkins. Electromyographic activity
and applied load during shoulder rehabilitation exercises using elastic
resistance. The American Journal of Sports Medicine, 26(2):210–220,
1998.

[8] R. Houmanfar, M. Karg, and D. Kulic. Movement analysis of reha-
bilitation exercises: Distance metrics for measuring patient progress.
IEEE Systems Journal, PP(99):1–12, 2014.

[9] Yack H. John, Collins Cynthia E, and Whieldon Terry J. Comparison
of closed and open kinetic chain exercise in the anterior cruciate
ligament-deficient knee. The American journal of sports medicine,
21(1):49–54, 1993.

[10] Leslie R. Martin, Summer L. Williams, Kelly B. Haskard, and
M Robin DiMatteo. The challenge of patient adherence. Therapeutics
and clinical risk management, 1(3):189, 2005.

[11] Domingos Pedro and Hulten Geoff. Mining high-speed data streams.
In Proceedings of the Sixth ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages 71–80, New York,
NY, USA, 2000. ACM.

[12] Zhai Shumin and Milgram Paul. Quantifying coordination in multiple
dof movement and its application to evaluating 6 dof input devices.
In Pro. of the SIGCHI conference on Human factors in computing
systems, pages 320–327, 1998.

[13] P.E. Taylor, G.J.M. Almeida, T. Kanade, and J.K. Hodgins. Classifying
human motion quality for knee osteoarthritis using accelerometers. In
EMBC, International Conference of the IEEE, pages 339–343, Aug
2010.

[14] Zhe Zhang, Qiang Fang, Liuping Wang, and P. Barrett. Template
matching based motion classification for unsupervised post-stroke
rehabilitation. In International Symposium on Bioelectronics and
Bioinformatics, pages 199–202, Nov 2011.


