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Abstract 

Incorporation of fluorine into an organic compound can favourably alter its physicochemical 

properties with respect to biological activity, stability and lipophilicity.  Accordingly, this 

element is found in many pharmaceutical and industrial chemicals.  Organofluorine 

compounds are accepted as substrates by many enzymes, and the interactions of 

microorganisms with these compounds are of relevance to the environment and the fine 

chemicals industry.  One the one hand the microbial transformation of fluorinated compounds 

can lead to the generation of toxic compounds that are of environmental concern, yet similar 

biotransformations can yield difficult-to-synthesise products and intermediates, in particular 

derivatives of biologically active secondary metabolites.  In this paper we review the 

historical and recent developments of organofluorine biotransformation in microorganisms, 

and highlight the possibility of using microbes as models of fluorinated drug metabolism in 

mammals. 
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Introduction 

Although fluorine is the 13th most abundant element in the earth’s crust, and the most 

abundant halogen, it plays a minor role in biology.  One of the main reasons for this is that 

most of the fluorine in the environment is present in an insoluble form (e.g. as calcium 

fluoride), thus is biologically unavailable.  Nevertheless, microorganisms encounter 

fluorinated compounds as a result of the myriad industrial, agrochemical and pharmaceutical 

applications that these compounds have (Lewandowski et al. 2006).  Substitution of hydrogen 

for fluorine in an organic compound can affect the compound’s stability, lipophilicity and 

electronic properties, with minimal steric consequences.  Although the general perception of 

fluoroorganic compounds is that they are biologically inert, some biotransformation can occur 

because of fluorine’s similar size to hydrogen and hydroxyl.  There is concern over the fate of 

fluorinated compounds in the environment, most notably perfluorinated compounds, which 

have been detected in wildlife and humans (Paul et al. 2009).  Studying the microbial 

metabolism of organofluorines has a dual importance: identifying the fluorinated compounds 

present in the environment as the result of human activities, and in the development of 

biotechnological processes for the incorporation of fluorine into industrially or 

pharmaceutically important organic compounds.  In this review, both aspects of 

organofluorine metabolism in microorganisms will be addressed. 

 

Environmental impact: Biodegradation of organofluorine compounds 

 

Fluoroaromatics 

Fluorinated aromatic compounds are used in agriculture as pesticides, herbicides and 

insecticides (e.g. diflubenzuron and tefluthrin), thus microorganisms in soils will encounter 

them.  Understanding the fate of these compounds in the environment is important, since 
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transformation products might be highly toxic.  A common feature of fluorinated 

agrochemicals is the trifluoromethyl group, in addition to other functional groups (e.g. 

hydroxyl, nitro), thus the degradation of these compounds in soils is complex (Key et al. 

1997).  In pure culture, investigations on fluoroaromatic catabolism have predominantly 

focussed on less chemically complicated compounds such as fluorobenzoates and 

fluorophenols (Ribbons et al. 1987).  Aerobic bacteria can degrade fluoroaromatic 

compounds, such as fluorobenzene (Carvalho et al. 2006; Iwai et al. 2009), fluorobenzoates 

(Boersma et al. 2004) and fluorophenols (Boersma et al. 2001), along the well-established 

aromatic hydrocarbon-degrading pathways.  Figure 1 is an overview of the microbial 

transformations of mono-fluorinated aromatic compounds.  Most commonly, oxygenase 

attack on the fluorinated substrate yields 3- or 4-fluorocatechol, which subsequently 

undergoes intra-diol cleavage to form 2- or 3-fluoromuconic acid.  3-Fluoromuconic acid can 

be further catabolised via 3-fluoromuconolactone, to 3-oxoadipate with concomitant fluoride 

release, whereas 2-fluoromuconic acid is a dead-end metabolite.  The position of the fluorine 

atom on the aromatic ring determines its biodegradability.  Benzoate-1,2-dioxygenase attack 

on 4-fluorobenzoate will yield only 4-fluorocatechol, and subsequently 3-fluoromuconic acid.  

On the other hand, benzoate-1,2-dioxygenase action on 3-fluorobenzoate can result in 3- and 

4-fluorocatechol being formed, leading to 2- and 3-fluoromuconic acid.  Dioxygenase attack 

on 2-fluorobenzoate can result in spontaneous elimination of fluoride ion, if hydroxylation 

occurs at C-1 and C-2, or the ultimate production of 2-fluoromuconic acid, if the 

hydroxylation is at C-1 and C-6.  Fluorophenols are converted to fluorocatechols by 

hydroxylases (Bondar et al. 1998; Reinscheid et al. 1996), and to insoluble polymeric 

substances, via fluoroquinone, by tyrosinase (Battaini et al., 2002).  Most recently, Ferreira 

(2008) discovered an Arthrobacter strain that degraded fluorophenol via a monoxygenase to 

benzoquinone, which is immediately reduced to hydroquinone, a heretofore unknown 
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pathway.  Anaerobic degradation of fluoroaromatic compounds with stoichiometric fluoride 

release has also been observed (Schennen et al. 1985; Vargas et al. 2000), and very recently 

Mouttaki et al. (2009) reported the reductive dehalogenation of 3-fluorobenzoate in 

Syntrophus aciditrophicus.  These researchers were also able to detect a novel 3-

fluorocyclohexadiene intermediate by GC-MS and 19F NMR analyses of culture supernatants.  

A small number of reports describe investigations on the bacterial transformation of benzoate 

and catechol substituted with a trifluoromethyl group, which the most widely used fluorinated 

moiety in pharmaceuticals and agrochemicals (Engesser et al. 1988; Engesser et al. 1990).  

No strain has yet been shown to grow on these compounds, but co-metabolism is possible via 

ortho- and meta-cleavage pathways. 

Fungal biodegradation of fluorotoluenes, yielding 3-fluorobenzoate, 3-fluoro-4-

hydroxybenzoate and 3-fluoroprotocatechuate, and of difluorophenols to corresponding 

catechols has been demonstrated (Prenafeta-Boldu et al. 2001; Wunderwald et al. 1997).  

Furthermore, transformation of fluorophenols via fungal chloroperoxidase yields 1,4-

benzoquinone (Osborne et al. 2006) and other fluorinated products arising from the 

fluorophenoxy radical (Murphy 2007b).  Extracellular degradation of 2-fluorophenol yielding 

3-fluorocatechol, catechol and fluoride ion has been observed in cultures of Geophyllum 

striatum when cultured in medium containing iron, probably as a result of hydroxyl radicals 

generated by the Fenton reaction (Kramer et al. 2004). 

Comparatively less research has been conducted on the microbial transformation of 

polycyclic fluorinated compounds.  One early study investigated the transformation of 1-

fluoronaphthalene by the fungus Cunninghamella elegans (Cerniglia et al. 1984), resulting in 

the formation of trans-3,4-dihydroxy-3,4-dihydro-1-fluoronaphthalene and trans-5,6-

dihydroxy-5,6-dihydro-1-fluoronaphthalene; the fluorine atom blocks epoxidation at the 

fluoro-substituted double bond.  In contrast to polychlorinated biphenyls (PCBs), the 
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biodegradation of fluorobiphenyl has not been thoroughly investigated.  Green et al. (1999) 

identified hydroxylated fluorobiphenyls upon incubation of 4-fluorobiphenyl with several 

mycorrhizal fungi, and Murphy et al. (2008) demonstrated that 2- and 4-fluorobiphenyl could 

be used as carbon and energy sources by the PCB-degrading bacterium Pseudomonas 

pseudoalcaligenes KF707, which degraded the fluorinated analogues via the upper biphenyl 

pathway (Figure 2).  The replacement of PCBs by polyhalogenated diphenyl ethers as flame-

retardants prompted investigations on the biodegradation of this class of compound, and 

Sphingomonas spp. SS3 and SS33 degraded 4-fluoro- and 4,4’-difluoro-diphenyl ether via 

dioxygenase attack to fluorophenol and fluorocatechol, which were subsequently mineralised 

(Schmidt et al. 1993). 

 

Fluorinated aliphatics 

The most common fluorinated aliphatic is fluoroacetate, which is produced by some plants 

and the bacterium Streptomyces cattleya, and is used as a rodenticide in some countries.  It is 

a highly toxic compound owing to the in vivo lethal synthesis of (2R, 3R)-2-fluorocitrate, 

which is an inhibitor of aconitase (Peters et al. 1953) and citrate transport across 

mitochondrial membranes (Kirsten et al. 1978).  Kelly (1965) made the first observation that 

bacteria could degrade fluoroacetate, and fluoroacetate dehalogenases have been isolated from 

Pseudomonas spp. (Kawasaki et al. 1981; Donnelly and Murphy 2009), Burkholderia sp. 

(Kurihara et al. 2003) and fungi (Walker and Lien 1981).  Liu et al. (1998) studied the 

mechanism of the fluoroacetate dehalogenase from Delftia acidovorans (formerly Moraxella 

sp. B), which shares 18 % amino acid sequence identity with the haloalkane dehalogenase in 

Xanthobacter autotrophicus, by incubating the purified enzyme with fluoroacetate in H2
18O.  

Mass spectral analysis of the peptide fragments containing suspected active site residues, 

revealed that Asp105 was enriched with 18O.  Thus Liu et al. (1998) proposed that 
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defluorination of fluoroacetate occurs by nucleophilic attack on the fluoromethyl group by the 

side-chain carboxylate of Asp105, displacing fluoride and forming an ester, which is 

subsequently hydrolysed yielding glycolate (Figure 3), and is analogous to the reaction 

catalysed by the X. autotrophicus dehalogenase.  Most recently the fluoroacetate 

dehalogenase from Burkholderia sp. strain FA1 has been crystallised (Jitsumori et al. 2009), 

and the x-ray structure revealed that the enzyme is a member of the α/β superfamily.  It was 

observed that an active site tryptophan residue (Trp150) binds chloride ion in the 

crystallisation solution, suggesting that this residue is important in halide ion binding.  

Furthermore, when this residue was mutated the enzyme no longer dehalogenated 

fluoroacetate, but retained activity towards chloroacetate, thus it was speculated that hydrogen 

bonding between Trp150 and fluoroacetate is a requirement to lower the activation energy of 

defluorination.  Gregg et al. (1998) transformed the ruminant bacterium Butyrivibrio 

fibrisolvens with a gene coding for fluoroacetate dehalogenase, which, when introduced to 

sheep, conferred resistance to fluoroacetate toxicity, thus demonstrating a novel way to 

protect animals who graze in areas where fluoroacetate-producing plants grow.  Heffernan et 

al. (2009) explored the use of a tubular biofilm of Pseudomonas fluorescens to degrade 

fluoroacetate in wastewater, and determined that fluoroacetate was not as efficiently degraded 

by biofilm cells compared to suspended cells in a chemostat.  The differences observed 

between planktonic and biofilm cells appear to be at least partially a result of oxygen 

limitation within the biofilm. 

 Trifluoroacetic acid is present in the environment as a result of the degradation of 

hydrofluorocarbons and hydrochlorofluorocarbons in the atmosphere (Franklin 1993).  

Anaerobic biodegradation of this compound has been observed in mixed cultures, with the 

detection of di- and mono-fluoroacetic acid, and acetic acid, indicating stepwise reductive 
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defluorination (Visscher et al. 1994; Kim et al. 2000).  However, no enzyme has yet been 

identified that can specifically cleave C-F bonds in the trifluoromethyl group. 

 Some bacteria, such as the fluorometabolite producer Streptomyces cattleya, can 

stereospecifically degrade the amino acid L-4-fluoroglutamic acid (Donnelly and Murphy 

2007).  In cell free extract ammonia and fluoride are produced from 4-fluoroglutamic acid, 

and although the enzyme(s) involved have not been identified, this reaction appears to be 

gratuitous, since it occurs in other bacteria that are not known to produce fluorinated 

secondary metabolites.  Dave et al. (2003) highlighted the need to develop methods for the 

resolution of 4-fluoroglutamate stereoisomers, which can be used as enzyme inhibitors, or as 

synthons in the preparation of fluorinated pharmaceutical compounds, and the ability of some 

bacteria to degrade L-4-fluoroglutamic acid is a potential biocatalytic method for generating 

D-4-fluoroglutamic acid from racemic mixtures. 

 Perfluorinated surfactants, such as perfluorooctane sulfonate and perfluorooctanoic 

acid, are particularly recalcitrant, and efforts are being made to design surfactants that are 

more easily biodegraded.  One example is 10-(trifluoromethoxy)decane-1-sulfonate, which 

can be degraded by non-adapted sewage sludge to trifluoromethanol, via desulfonation and β-

oxidation (Peschka et al. 2008).  Trifluoromethanol is unstable and spontaneously degrades 

yielding fluoride ion and CO2. 

 

Importance of fluorine in pharmaceutical compounds 

The number of fluorinated drugs is continually increasing, and around a fifth of all drugs have 

at least one fluorinated substituent, including three of the current top 10 selling medicines: 

Lipitor, Prevacid and Seretide (Isanbor and O'Hagan 2006).  . 

 The fate of drugs in the organism is modulated depending on the passages of 

adsorption, distribution, metabolism and excretion (ADME).  Intuitively, the ideal drug has to 
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have the right lipophilicity to be adsorbed, distributed in the organism and reach the target 

organ, and have a good rate of metabolism to form active but not toxic or reactive metabolites 

that can be finally easily excreted as more polar compounds.  With this challenging preface, 

fluorine is often considered the favourite substituent to modulate unfavourable 

pharmacokinetic drug properties.  Depending on the position where it is incorporated, it can 

improve metabolic stability, bioavailability and interactions with the biological target (Purser 

et al. 2008).  The peculiar chemical properties that make fluorine such a popular candidate in 

drug design have been extensively reviewed (Park et al. 2001).  Fluorine is the most 

electronegative element so the acidity or basicity of proximal functional groups is strongly 

affected.  Its small size makes it, of all substituents, the best to mimic hydrogen in the C-H 

bond, minimising steric challenges.  Often it is used to replace hydroxyl groups since its van 

der Waals radius (1.35 Å) is between that of oxygen (1.47 Å) and hydrogen (1.2 Å).  Carbon-

fluorine bonds are one of the strongest bonds in nature; thus substitution in a strategic position 

can make the drug more resistant to enzyme attack.  These attractive physicochemical 

characteristics result in changes in the lipophilicity (and accordingly in bioavailability) of the 

molecule, which has consequences for penetration of the cellular membrane and interaction 

with hydrophobic molecules.  The trifluoromethyl group, one of the most lipophilic groups 

known, is widely present as a replacement for methyl groups in fluorinated drugs that act in 

delicate organs such as the central nervous system (Smart 1999; Park et al. 2001). 

 

Fluorinated natural products 

While halogenated metabolites are relatively common in the microbial world, fluorinated 

natural products are extremely rare, with only a handful of reports in the literature. A number 

of reasons have been proposed for this scarcity, including the poor nucleophilicity of the 

hydrated fluoride ion, the low solubility of most fluoride-containing minerals, and the high 
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oxidation potential of the fluoride ion, which prevents the formation of F+ species. The 

occurrence and biosynthesis of fluorinated natural products has been reviewed recently (Deng 

et al. 2004; Deng and O'Hagan 2008). Structures of fluorinated microbial metabolites are 

given in figure 4. 

The first fluorinated microbial metabolite to be reported was nucleocidin, an antibiotic 

nucleoside isolated from Streptomyces calvus. While the metabolite was first isolated in 1957 

(Thomas et al. 1957), the correct structure was not proposed until 12 years later (Shuman et 

al. 1969), before being confirmed by total synthesis (Jenkins et al. 1976).  While the 

intriguing structure has attracted attention, numerous attempts to re-isolate nucleocidin from 

S. calvus strains have proved unsuccessful (Maguire et al. 1993). 

In 1986, a Streptomyces cattleya strain was reported to produce fluoroacetate and 

fluorothreonine (Sanada et al. 1986).  The biosynthesis of fluoroacetate and 4-fluorothreonine 

in S. cattleya has been studied, with the key fluorination step occurring through the 

nucleophilic attack of the fluoride ion on S-adenosyl methionine, catalysed by a fluorinase 

enzyme (Dong et al. 2004; Zhu et al. 2007).  The discovery of the fluorinase has opened the 

door to the possibility of biological production of medicinally important fluorinated 

compounds de novo.  One example of this is the generation of fluorine-18 labelled 

compounds that could be used for positron emission tomography investigations (Deng et al. 

2006). 

 

Precursor-Directed Biosynthesis and Mutasynthesis 

While fluorinated natural products are very rare, the syntheses of fluorinated natural product 

derivatives are increasingly common.  In many cases, fluorinated natural product derivatives 

can be formed using synthetic modifications (Begue and Bonnet-Delpon 2006b; Thomas 
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2006).  However, whether due to structural complexity or instability, synthetic modification is 

often not possible, and as such an alternative strategy is required.  

Precursor-directed biosynthesis is a useful strategy for producing natural product 

derivatives, in which the growth medium of a producing microbial strain is supplemented 

with an analogue of the natural precursor, forming corresponding derivatives of the natural 

product. Often, these derivatives may be inaccessible by synthetic methods. In a wild type 

strain, the modified precursor competes with the natural precursor, and thus a mixture of 

products is formed. However, in mutasynthetic studies, a mutant microbial strain is used in 

which a key biosynthetic gene has been inactivated or modified, which can result in the 

exclusive production of the modified metabolites. Several general reviews on both precursor-

directed biosynthesis and mutasynthesis have been published recently (Weist and Sussmuth 

2005; Kennedy 2008).  As the fluorine atom is almost isosteric with hydrogen, fluorinated 

precursors have proved particularly effective and are often accepted as precursors by 

producing microbial strains. Table 1 lists reported instances of the successful incorporation of 

fluorinated precursors in precursor-directed biosynthesis and mutasynthesis studies, while 

Figure 5 displays the structures of selected metabolites.  

An early example of a fluorinated precursor being used in such a study was in 1968, 

when Gorman and co-workers reported the metabolism of 6-fluorotryptophan by a 

Pseudomonas aureofaciens strain, yielding 5′-fluoro-pyrrolnitrin (Gorman et al. 1968).  

Following up on this initial study, the same group produced additional analogues using 5-

fluoro-, 7-fluoro-, and 6-trifluoromethyl-tryptophans as precursors (Hamill et al. 1970).  

Interestingly, the presence of the trifluoromethyl group prevented both chlorination at C-3′ 

and oxidation of the C-2′ amino group of pyrrolnitrin. 5′-Fluoro-pyrrolnitrin possessed 

slightly elevated antifungal activity relative to the parent compound, while the remaining 

derivatives were less active. 
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Polyketides are a popular target for precursor-directed biosynthesis studies.  In 

particular, those biosynthesised from aromatic carboxylic acid starter units are good 

candidates, as substituted aromatic acids are readily available commercially.  A common 

theme in the production of fluorinated polyketide analogues is the use of fluorobenzoic acids 

in feeding studies. An example of this strategy is the production of fluorinated squalestatin 

derivatives by two fungal strains. One report describes the incorporation of monofluorinated 

benzoic acids by an unidentified fungus to yield fluorinated derivatives (Chen et al. 1994).  In 

a second study, using a Phoma species, mono- and di-fluorinated benzoic acids, 

phenylalanines and benzaldehydes were used, yielding mono- and di-fluorinated squalestatins 

(Cannell et al. 1993).  In both cases, the monofluorinated derivatives were reported to possess 

potent nanomolar activity as inhibitors of squalene synthase, comparable to the parent 

compound. 

Another group of polyketides that have proved fruitful for directed biosynthesis and 

mutasynthesis studies are the erythromycins.  In one study, semi-synthetic erythromycin 

aglycones were fed to a Saccharopolyspora erythraea (Streptomyces erythraeus) strain 

blocked in erythromycin production, leading to the production of 8-fluoroerythromycins 

(Toscano et al. 1983).  These novel analogues possessed comparable antibiotic activity to the 

parent compounds, but higher levels were present in the serum and tissue (Benoni et al. 1988).  

A 2005 report described a mutasynthetic study using a mutant strain, in which the natural 

loading module had been replaced by a wide-specificity module, was used to produce 16-

fluoroerythromycin (Goss and Hong 2005). In several recent studies, a two-step process has 

been used for the production of 15-fluoroerythromycins. Firstly, mutant Streptomyces 

coelicolor strains are used to produce fluorinated erythromycin aglycones using suitable 

diketide precursors. These aglycones are then converted to the corresponding erythromycin 

derivatives using mutant Sa. erythraea strains with disrupted polyketide synthase systems 
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(Ward et al. 2007; Desai et al. 2004; Ashley et al. 2006). 15-Fluoroerythromycin A was found 

to possess similar activity but lower lipophilicity than erythromycin A. 

Peptides are another structural class that lend themselves easily to precursor-directed 

biosynthesis. Many fluorinated amino acid derivatives are commercially available, in 

particular the aromatic amino acids phenylalanine, tryptophan, and tyrosine. In addition, the 

biosynthesis of non-ribosomal peptides is relatively well understood, and thus tools are 

available for mutasynthetic studies. In 1992, Hensens and co-workers (1992) produced a 

cyclosporine A derivative using fluoroalanine as a precursor: the new metabolite possessed 

similar in vitro immunosuppressant activity to cyclosporin A but was considerably more polar 

(Patchett et al. 1992). 

Fluorinated amino acids may also be incorporated into alkaloids and other nitrogen-

containing metabolites. A rebeccamycin-producing strain of Saccharothrix aerocolonigenes 

was reported to produce fluoroindolocarbazoles when the growth medium was supplemented 

with 5- and 6-fluorotryptophans. The fluorinated metabolites were tested for anti-leukemia 

activity in mice, revealing 3 to 6-fold greater activity than rebeccamycin itself (Lam et al. 

2001).  Another notable study utilised an Aspergillus fumigatus strain, which when 

supplemented with fluorinated phenylalanines yielded fluorinated derivatives of synerazol 

and several other antibiotics.  While most of the fluorometabolites possessed similar 

biological activity to the parent compounds, fluoro-synerazol A was up to ten times as active 

against selected cancer cell lines (Igarashi et al. 2004). 

A particularly interesting example of a mutasynthesis study involving a fluorinated 

precursor is that of fluorosalinosporamide.  Salinosporamide is a chlorinated metabolite from 

the marine bacterium Salinospora tropica that acts as a potent irrreversible proteasome 

inhibitor (Feling et al. 2003).  Intriguingly, the chlorine of salinosporamide A was found to be 

incorporated via a chlorinase enzyme, SalL, that functioned in an analogous manner to the 
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fluorinase of Streptomyces catteleya (Eustaquio et al. 2008).  In a mutasynthetic study, 

fluorodeoxyadenosine was fed to an S. tropica mutant lacking the SalL gene, leading to the 

production of fluorosalinosporamide. Fluorosalinosporamide also acted as a proteasome 

inhibitor, though unlike salinosporamide A, the binding was reversible (Eustaquio and Moore 

2008). 

Finally, it should be noted that not only are fluorinated precursors useful for the 

production of small molecules, but macromolecules as well. Studies have shown that 

fluorinated fatty acids can be incorporated into the polysaccharide polymer emulsan, 

produced by Acinetobacter calcoaceticus, leading to polymers with improved emulsification 

properties (Johri et al. 2003).  Similarly, fluorinated hydroxylphenoxyalkanoic acids could be 

used to produce fluorinated polyhydroxyalkanoates (PHAs) in Pseudomonas putida, yielding 

crystalline polymers with higher melting points (Takagi et al. 2004). 

In conclusion, precursor-directed biosynthesis of microbial metabolites using 

fluorinated substrates has proved a highly successful process. Novel derivatives with altered 

biological and physical properties have been produced, some of which are significantly more 

active than their parent compounds. Given some of these notable successes, and bearing in 

mind the increasing availability of fluorinated precursors and development of safer and more 

selective fluorinating agents, it seems likely that such studies will only become more common 

in the future. 

 

Fluorinated drug metabolism  

The discovery that microorganisms possess cytochrome P450 monooxygenases, the 

enzymatic systems responsible for xenobiotic detoxification in mammals, initiated studies to 

investigate the possibility of using microorganisms as models of mammalian metabolism 

(Smith and Rosazza 1974; Smith and Rosazza 1981).  An intensive screening programme has 
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been conducted to select the most appropriate microorganisms, and it is widely recognised 

that fungal species of Cunninghamella and Beauvearia, and Actinomycetes bacteria are the 

most suitable for the investigation of drug metabolism.  Parallels between these selected 

microorganisms and mammals’ phase I and phase II metabolism of a wide number of 

important classes of drugs has been demonstrated (Casillas et al. 1996; Zhang et al. 1996). 

However, little attention has been given to the categories of drugs containing fluorine, despite 

the high probability of encountering fluorine in pharmacological treatments (Begue and 

Bonnet-Delpon 2006a; Kirk 2006).  One notable exception is the fluoroquinolones (FQs), 

which are synthetic fluorinated antibiotics with broad application in both human and 

veterinary medicine (Fig. 6). FQs have been widely studied with different varieties of fungal 

strains to assess both mammalian drug metabolism and environmental risks assessment. It has 

been reported in several investigations that fungal metabolism of enrofloxacin, sarafloxacin, 

ciprofloxacin and norfloxacin is similar to human and animal metabolism (Parshikov et al. 

2000; Parshikov et al. 2001a; Parshikov et al. 2001b). Predominantly, four typical mammalian 

metabolites have been isolated from fungal cultures; all products show that the 

transformations occur at the piperazine ring level.  From their results, neither the fluorine 

atom nor the fluorinated ring are affected during metabolism.  Since FQs are introduced into 

the soil directly from manure of treated livestock, and into drinking water from municipal 

sewage (Al-Ahmad et al. 1999), the study of their environmental degradation path has 

become a priority.  Common soil microbes have been investigated for their ability to degrade 

FQs directly in the environment, resulting in a large variety of products (Martens et al. 1996; 

Al-Ahmad et al. 1999; Wetzstein et al. 1999).  Most notably basidiomycetes, such as the 

brown rot fungus Gloephyllum striatum, which produces 87 metabolites from enrofloxacin via 

hydroxyl radical-based degradation (Wetzstein et al. 1997; Karl et al. 2006).  Wetzstein et al. 

(2006) demonstrated that other basidiomycetes, from agricultural soils and animal waste, 
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which express laccase- and peroxidase-type activity, generate 48 additional products to those 

identified in G. striatum cultures. 

The microbial metabolism of a small number of other fluorinated drugs has been 

investigated (Xie et al. 2005), and the selected microorganisms transform the parent drug but 

the fluorine-containing groups are not altered.  It is expected that investigations into the 

microbial catabolism of fluorinated drugs will become more common in the future, partly 

because of the increasing use of fluorine in pharmaceuticals, but also as a result of 

accessibility of analytical technology, such as fluorine-19 nuclear magnetic resonance 

spectroscopy (19F NMR).  This technique is ideal for assessing the biotransformation of 

fluorinated compounds, since it allows the detection of µM concentrations without 

purification of the fluorinated analytes from culture supernatants (Murphy 2007a).  One study 

reported the application of this technique to the rapid screening of microoganisms involved in 

drug metabolism (Corcoran et al. 2001), and it is increasingly used to monitor the catabolism 

of fluorinated xenobiotics. 

 

Concluding remarks 

Fluorine’s role in medicinal and agricultural chemistry shows no sign of diminishing, and 

increasingly, biological/enzymatic methods are being sought to replace classical synthetic 

methods of chemical production.  Microorganisms can incorporate simple fluorinated 

building blocks into complex biologically active metabolites, and synthesise fluorinated 

compounds de novo. Therefore, in the manufacture of fluorinated pharmaceuticals and 

agrochemicals microorganisms could potentially have an important role.  Furthermore, 

microorganisms may also be used to determine the likely intermediates that arise from 

mammalian metabolism of fluorinated drugs, reducing the need for animal dosing. 
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There is a mounting awareness that anthropogenic organofluorine compounds are of 

serious environmental concern, and their disposal must be carefully monitored.  A 

comprehensive understanding of the biotransformations of organofluorines that are present in 

the environment is needed to evaluate the effects that such compounds have over time.  While 

there is some understanding of the likely catabolism, the research in this area is particularly 

lacking, in comparison with organochlorines,  and requires significantly more attention.  

Advances in analytical technology, most importantly 19F NMR, will allow for more 

convenient identification of fluorometabolites and provide a deeper understanding of the 

environmental fate of organofluorine compounds. 
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Table 1: Fluorinated natural product derivatives formed by directed biosynthesis and mutasynthesis. 

Organism 
Compound 

class 
Precursor 

Biological 

activity 
Citation 

Micromonospora sp. diazepinomycins 
fluoroindoles, 5-
fluoroanthranilate 

antibacterial (Ratnayake et al. 2009) 

Bacillus subtilis iturins fluorotyrosine n/t (Moran et al. 2009) 

Salinospora tropica salinosporamides 
5’fluoro-
deoxyadenosine 

proteasome 
inhibitor 

(Eustaquio and Moore 
2008) 

Actinosynnema 

pretiosum 
ansamytosins 

3-amino-4-
fluorobenzoate 

anticancer (Taft et al. 2008) 

Streptomyces coelicolor CDA 
tryptophans, CF3-
glutamate 

n/t 

(Powell et al. 2007; 
Amir-Heidari et al. 
2008) 

Beauvaria bassiana beauvericins 3-fluorophenylalanines 
cytotoxic, 
antihaptotactic 

(Xu et al. 2007) 

Penicillium sp. communesin 6-fluorotryptophan n/t (Wigley et al. 2006) 
Chondromyces crocatus chondramides 5-fluorotryptophan n/t (Rachid et al. 2006) 

Aspergillus fumigatus 
synerazol, 
gliotoxin 

fluorophenylalanines 
antimicrobial, 
cytotoxic 

(Igarashi et al. 2004) 

Pseudomonas putida PHA polymer 
fluorophenoxyalkanoic 
acids 

n/t (Takagi et al. 2004) 

Sorangium cellulosum soraphens 
fluorocinnamate, 
fluorophenylalanine 

n/t 
(Hill and Thompson 
2003) 

Acinetobacter 

calcoaceticus 
emulsan fluorinated fatty acids n/t (Johri et al. 2003) 

S. hygroscopicus, S. 

maritimus 

enterocin, 
wailupemycin 

fluorobenzoic acids antimicrobial 
(Kawashima et al. 
1985a; Kalaitzis et al. 
2003) 

Amycolatopsis 

mediterranei 
balhimycin 

fluorohydroxytyrosine
s 

antibiotic (Weist et al. 2002) 

Saccharothrix 

aerocolonigenes 
indolocarbazoles fluorotryptophans anticancer (Lam et al. 2001) 

Streptomyces 

griseoviridis 

rhamnopyranosid
es 

3-fluorobenzoic acid n/t (Grond et al. 2000) 

Poronia piltformis piliformic acid 8-fluorooctanoic acid n/t (Culceth et al. 1998) 

Streptomyces 

staurosporeus 

tryptamines, 
indoles 

fluorotryptamines n/t 

(Yang and Cordell 
1997a; Yang and 
Cordell 1997b) 

Aspergillus parasiticus norsolorinic acid 6-fluorohexanoic acid n/t (McKeown et al. 1996) 
Aureobasidium pullulans aureobasidins fluorophenylalanines antifungal (Takesako et al. 1996) 

Streptomyces pactum pactamycin 
3-amino-5-
fluorobenzoic acid 

antimicrobial, 
cytox. 

(Adams and Rinehart 
1994) 

Phoma sp., unidentified 
fungus 

squalestatins fluorobenzoic acids 
squalene 
synthase 

(Cannell et al. 1993; 
Chen et al. 1994) 

Tolypocladium inflatum cyclosporins fluoroalanine 
immunosuppress
ant 

(Hensens et al. 1992) 

Pseudomonas 

aeruginosa 
pyochelin 5-fluorosalicylic acid iron transport (Ankenbauer et al. 1991) 

Aspergillus alliaceus asperlicin 
fluorotryptophan, 
fluoroleucine 

n/t (Houck et al. 1988) 

S. griseochromogenes blasticidin S 5-fluorocytosine antimicrobial (Kawashima et al. 1987) 

Streptomyces parvullus actinomycins fluorotryptophan anticancer 
(Kawashima et al. 
1985b) 

S. coelicolor, Sa. 

erythraea 
erythromycins 

erythronolides, 
diketides 

antimicrobial 

(Toscano et al. 1983; 
Goss and Hong 2005; 
Ashley et al. 2006; 
Ward et al. 2007) 

Streptomyces cacaoi polyoxins 5-fluorouracil antimicrobial (Isono et al. 1973) 
Pseudomonas 

aureofaciens 
pyrrolnitrin fluorotryptophans antifungal 

(Gorman et al. 1968; 
Hamill et al. 1970) 

Penicillium notatum penicillins fluorobenzoic acids antimicrobial 
(Behrens et al. 1948; 
Clarke et al. 1949) 

n/t: not tested 
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Figure legends 

Figure 1.  Overview of catabolism of fluorinated aromatic compounds 

Figure 2.  Biodegradation of 4-fluorobiphenyl in Pseudomonas pseudoalcaligenes KF707.  

Enzymes: BphA, biphenyl-2,3-dioxygenase; BphB, 2,3-dihydro-2,3-dihydroxybiphenyl 

dehydrogenase; BphC, 2,3-dihydroxybiphenyl 1,2-dioxygenase; BphD, 2-hydroxy-6-oxo-6-

phenylhexa-2,4-dienoate hydrolase 

Figure 3.  Mechanism of fluoroacatate dehalogenase 

Figure 4.  Structure of bacterial fluorinated natural products 

Figure 5.  Fluorinated natural product derivatives formed via precursor-directed biosynthesis 

and mutasynthesis 

Figure 6.  The general structure of fluoroquinolone antibiotics. 
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Figure 2 
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Figure 5 
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Figure 6. 
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