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Personalized Opinion-based Recommendation

Ruihai Dong, Barry Smyth

Insight Centre for Data Analytics
School of Computer Science and Informatics

University College Dublin, Ireland

Abstract. E-commerce recommender systems seek out matches between
customers and items in order to help customers discover more relevant
and satisfying products and to increase the conversion rate of browsers to
buyers. To do this, a recommender system must learn about the likes and
dislikes of customers/users as well as the advantages and disadvantages
(pros and cons) of products. Recently, the explosion of user-generated
content, especially customer reviews, and other forms of opinionated ex-
pression, has provided a new source of user and product insights. The
interests of a user can be mined from the reviews that they write and
the pros and cons of products can be mined from the reviews written
about them. In this paper, we build on recent work in this area to gen-
erate user and product profiles from user-generated reviews. We further
describe how this information can be used in various recommendation
tasks to suggest high-quality and relevant items to users based on ei-
ther an explicit query or their profile. We evaluate these ideas using a
large dataset of TripAdvisor reviews. The results show the benefits of
combining sentiment and similarity in both query-based and user-based
recommendation scenarios, and also disclose the effect of the number of
reviews written by a user on recommendation performance.

Keywords: recommender systems, opinion mining, sentiment analysis, person-
alization

1 Introduction

Recommender systems help to provide users with the right information at the
right time. They do this by profiling a user’s interests and preferences over
time and use these profiles to select and/or rank items for presentation by pre-
ferring those that are similar to the ones the user has liked in the past. In an
e-commerce setting, recommender systems endeavour to learn from our past pur-
chasing habits in order to identify new products that we may wish to purchase
in the future. Getting this right can mean improved conversion rates for the re-
tailer and improved satisfaction levels for the shopper. More satisfied customers
are more loyal customers which improves the likelihood of repeat business, a
win-win for customer and retailer alike.

Different types of recommendation techniques rely on different types of data.
For example, collaborative filtering [1], either neighbourhood methods [2, 3] or



latent factor models [4], relies on product ratings. These ratings may be explicitly
provided by users, or they may be inferred from their behaviour. And patterns
in these ratings are used to identify similar users and relevant products for
recommendations.

Content-Based recommendation [5] is another important approach for build-
ing recommender systems, based on the availability of specific item knowledge.
For example, product meta-data or catalog-data may be used to characterise
products in terms of specific features (type, price, size, weight etc). When this
type of product data is available the preferences of users can be expressed in
terms of the products that they have purchased and the features of these prod-
ucts. Recommendations can then be based on various forms of feature similarity,
by recommending products that are similar to the user’s profile. This approach
obviously shares many commonalities with case-based reasoning methods and in
fact many case-based recommendation techniques have been proposed based on
representation, similarity, and retrieval ideas from the CBR community [6, 7].

In the past, a big challenge when building recommender systems has been
ensuring the availability of and access to these different sources of data. Some-
times product data is hard to come by, limiting the efficacy of content/case-based
methods. And the type of rating data used by collaborative filtering approaches
can be notoriously sparse. This has led researchers to develop hybrid models
that make the best of both worlds [8] and also led to the exploit of auxiliary
information; see [9, 10].

In recent years, a new alternative data source has emerged with the ubiquity
of user-generated reviews. The intuition is that these reviews contain important
product knowledge and valuable customer preferences and insights for use in rec-
ommendation; see [11, 12]. But the information contained within user-generated
reviews can be noisy and unstructured. Nevertheless, opinion mining and natu-
ral language processing techniques (for example, see [13]) are now robust enough
for researchers to use user-generated review content as an alternative (or com-
plementary) source of recommendation knowledge [14].

User-generated reviews are plentiful and they contain rich product feature
information including sentient information. For example, The Thai red curry
was delicious, ..., but price at $22, quite expensive, tells us that the restaurant
in question serves a very tasty Thai red curry (positive sentiment) that costs $22
but it is expensive (negative sentiment). This combination of traditional feature-
value information and sentiment means that we can generate recommendations
that are not only similar to those a user has liked in the past, but that are also
better based on features that matter to the user; see [15, 16].

The features mentioned by a user in her reviews may reflect her preferences.
Intuitively, if a feature is mentioned many times by a user, it may indicate
that it is an important one. Musat et al. [17] built a user interest profile for
each user based on the topics mentioned in their reviews and used these profiles
to produce personalized product rankings. Liu et al. [18] built user preferences
based on the assumption that a user may have a higher requirement for a feature



if she frequently gives a lower score for the feature compared to other users; see
also the work of [19] on estimating reviewer weights at the aspect (feature) level.

In this paper, we focus on a pair of use-cases in the context of a hotel rec-
ommendation site such as TripAdvisor. Specifically, we imagine a traveller at-
tempting to book a suitable hotel for an upcoming trip to a new city. In the first
use-case (more-like-this) we consider the common scenario where the traveler
has a previous hotel that they have liked but in a different city and they wish
to look for something similar in their target city. In this use-case, the previous
hotel becomes a target query and is used to select and rank hotels from the tar-
get city. We describe a query-based technique to show how the combination of
similarity and sentiment can be used to recommend better hotels than similarity
alone. In our second use-case (personalization) we use the user’s profile as an
implicit query in order to recommend hotels from the target city, again looking
at the benefits of using similarity and sentiment; we refer to this as a user-based
approach.

2 Mining User Profiles & Item Cases

This paper extends recent work on mining opinions from user reviews to generate
user profiles and item descriptions. The work of [20, 15, 21] is especially relevant
and describes how shallow NLP, opinion mining, and sentiment analysis can be
used to extract rich feature-based product descriptions (product cases) based on
the features that users mention in their reviews, and also the polarity of their
opinions. In order to generate user profiles and hotel descriptions, we follow four
basic steps:

1. Mine hotel features from user-generated reviews (extending the techniques
described in [15]) to generate a set of basic hotel features and sentiment.

2. Apply clustering techniques to group related basic features together and use
these clusters as high-level features. We refer to these as clustered features.

3. Aggregate clustered features and sentiment mined from the reviews of a hotel
to generate hotel cases.

4. Aggregate clustered features for users to generate user profiles; that is, the
features mined from the reviews of a given user form the basis of this user’s
profile.

This is summarized in Figure 1 and produces a set of hotel cases and user
profiles/cases which are used as the basic recommendation data for our recom-
mender system as shown. In the next section we will describe the details of the
recommendation process but first, in what follows, we will provide additional
details about this feature mining and case generation process.

2.1 Features & Sentiment

The feature extraction and sentiment analysis approach adopted in this work are
based closely on the approach taken by [15]. As such we mine bi-gram (adjective-



Fig. 1. High-level opinion mining architecture: basic features are extracted from user
generated reviews; these features are clusterd into related sets; these clustered features
are used as the basis for hotel/item cases and user profiles/cases.

noun) and single-noun features using a combination of shallow NLP and statis-
tical methods.

In the current work we extend this approach to also consider additional tri-
gram features by using the patterns described in the work of [22]. This allows
us to find features like member of staff, bottle of water.

These single-noun, bi-gram, and tri-gram features are filtered using a number
of statistical techniques as described previously in [15]. For example, we eliminate
certain bi-gram features if the adjective is a common sentiment word; this way
we can eliminate false bi-gram features such as great location, excellent service,
which are really single-noun features.

Next, for each extracted (basic) feature, fi, mentioned in some sentence sj
of review rk, we must evaluate its sentiment. We do this by finding the closest
sentiment word wmin to fi in sj ; sentiment words are available from a sentiment
lexicon and for the purpose of this work we rely on the common Bing Lui senti-
ment lexicon [23]. Note, if no sentiment words are present in sj then the feature
fi is labeled as neutral.

In order to further filter the basic features, we use the opinion pattern mining
technique described by [15]. To do this we identify the part-of-speech (POS)
tags for wmin, fi, and any words that occur between them. These POS tags
constitute an abstract opinion pattern. After a complete pass over all features,
the frequency of occurrence of all of these opinion patterns is computed. Patterns



that occur more than k times are considered valid, on the grounds that less
frequent patterns are likely to correspond to unusual or convoluted expressions
of opinion that cannot be reliably understood. In this case, we set k = 1 and
for each valid feature, fi (that is, a feature which corresponds to a valid opinion
pattern) we assign it a sentiment label based on the sentiment of its wmin.
Finally, we reverse the sentiment of fi if sj contains a negation term within a
4-word distance of wmin.

The end result of this process is, for each review, a set of valid features (men-
tioned in the review) and their sentiment labels. These reviews are associated
with specific hotels and specific users and so their features and sentiment con-
tribute to the descriptions of these hotels and the profiles of the users; we will
return to this later.

2.2 Clustering Features

One of the problems with the above approach is that it tends to produce a
proliferation of features. In reviews, people may refer to the same types of things
in a variety of ways. For example, in hotel reviews, some reviewers will comment
on the elevators while others will talk about lifts. One reviewer might comment
on the quality of the pillows while another may comment on the comfort of the
bed or the softness of the matress. Rather than treating these as separate and
independent features it is more natural and useful to recognize that they are
referring to the same aspect of a hotel.

Cluster 1 - location, walking distance, distance, minutes work, ...

Cluster 2 - bill, charge, fee

Cluster 3 - burger,pizza,grill

Cluster 4 - chip, chicken, salad, fish, steak, meat

Cluster 5 - egg, bacon, waffle, pancake, sausage

Cluster 6 - cake, afternoon tea, sandwich

Cluster 7 - bar, beer, drink, cocktail

Cluster 8 - bed, pillow, mattress

Cluster 9 - bathroom, tube, toilet, shower, bath

Cluster 10 - stair, lift, elevator

Cluster 11 - sofa, king-bed, couch, living room

Cluster 12 - desk staff, hotel staff

Fig. 2. Examples for Clustered Features

To do this we apply standard clustering techniques to group related features
together based on their similarities. Firstly, we associate each basic feature with
a term-vector made up of the set of words extracted from the sentences that
refer to this feature; these words are converted to lowercase, stemmed, and stop
words are removed. Thus, each feature fi is associated with a set of terms and



the value of each term is a normalized term frequency weight. Next, we apply a
standard clustering algorithm empirically setting the target number of clusters
to be 35% of the total number of features; we used CLUTO1. The result is a
set of feature clusters such as the examples in Figure 2. These clusters act as
high-level features and they are used as the basis for generating hotel and user
cases as we shall describe in the next sections.

2.3 Generating Hotel Cases

Each item/hotel (hi) is associated with a set of customer reviews reviews(hi) =
{r1, . . . , rn} and the above processes extract a set of features and, ultimately,
clusters, c1, . . . , cm, from these reviews. Each cluster is comprised of a set of
basic features and in effect, acts as a type of abstract feature, a clustered feature,
such that the basic features it contains are related in some way. For example, in
Figure 2 we can see that the features of Cluster 1 are all related to the location
of the hotel. The features in clusters 4, 5, and 6 are all related to food but each
is separately related to dinner, lunch, or breakfast meals.

Effectively each clustered feature is labelled with the cluster id, cj , and it is
assigned an importance score and a sentiment score as per Equations 2 and 3.
Then a hotel/item case is made up of the clustered features associated with its
reviews and their corresponding importance and sentiment scores; see Equation
1. Note that cj ∈ reviews(hi) means that any of the basic features in cj are
present in reviews(hi).

item(hi) = {(cj , s(cj , hi), imp(cj , hi)) : cj ∈ reviews(hi)} (1)

The importance score of cj , imp(cj , hi), is the relative number of times that
cj (or rather its basic features) is mentioned in the reviews of hotel hi.

imp(cj , hi) =

∑
fk∈cj count(fk, hi)

|reviews(hi)|
(2)

The sentiment score of cj , s(cj , hi), is the degree to which cj (that is, its basic
features) is mentioned positively or negatively in reviews(hi). Note, pos(fj , hi)
and neg(fj , hi) denote the number of mentions of the basic feature fj labeled as
positive or negative during the sentiment analysis phase.

s(cj , hi) =

∑
fk∈cj pos(fk, hi)−

∑
fk∈cj neg(fk, hi)∑

fk∈cj pos(fk, hi) +
∑
fk∈cj neg(fk, hi)

(3)

2.4 Generating User Profile Cases

Just as we generate hotel cases from the reviews written about a specific hotel
we can generate user profile cases using the reviews written by a specific user,
uq. Equation 4 defines each user as a set of clustered features and each feature is

1 http://glaros.dtc.umn.edu/gkhome/views/cluto



associated with an importance score based on how frequently that user refers to
that feature in her reviews; this is exactly analogous to the hotel cases. However,
unlike the hotel cases, we do not associate any sentiment with the user profile
features. The reason for this is that the sentiment that a user expresses for a
given feature is a property of the feature in the context of a specific hotel, rather
than a general property of the feature; we will revisit this in future work.

user(uq) = {(cj , imp(cj , uq)) : cj ∈ reviews(uq)} (4)

3 Ranking & Recommendation

Unlike traditional content-based recommenders — which tend to rely exclusively
on similarity in order to rank products with respect to some user profile or query
— our approach leverages feature sentiment and similarity, during recommen-
dation. The starting point is the work of [15] which uses a linear combination
of similarity and sentiment during recommendation ranking. Briefly, when it
comes to recommending some candidate item i we can compute a recommenda-
tion score based on how similar the item is to the query q, and based on the
sentiment of the item. And as per Equation 5 we can adjust the relative influence
of similarity and sentiment using the parameter w.

Score(q, i) = (1− w)× Sim(q, i) + w × Sent(q, i) (5)

In the present work we use clustered features as the basis of our item de-
scriptions, rather than the basic features used by [15]; we will usually refer to
these clustered features as just features in what follows. We will also describe
a personalized version of ranking, which harnesses user profiles that are better
with respect to features that matter to the query user.

3.1 Query-Based Recommendation

To begin with we will implement a standard non-personalized ranking approach,
similar to [15], albeit based on clustered features. We imagine an user uq has a
hotel in mind, hq. Perhaps it is a hotel he has stayed in before and he is looking
for something similar in a new city. We use hq as a query and we compare it
to candidate items hc, computing the similarity and sentiment values to score
each hc for ranking and recommendation to uq. For the purpose of similarity
assessment we use a standard cosine metric; see [5]. Equation 6 demonstrates
this for hq and hc. Note that we use the importance scores of shared features as
the feature values.

Simh(hq, hc) =

∑
ciεC(hq)∩C(hc)

imp(ci, hq)× imp(ci, hc)√ ∑
ciεC(hq)

imp(ci, hq)2 ×
√ ∑
ciεC(hc)

imp(ci, hc)2
(6)



Next, we need to calculate the sentiment score for hc. As mentioned earlier,
sentiment information is unusual in a recommendation context but it makes it
possible to consider not only how similar hc is to hq but also whether it enjoys
better sentiment; it seems reasonable to recommend items that are not only
similar to hq but have also been more positively reviewed. We do this based on
a feature-by-feature sentiment comparison as per Equation 7. We can say that
ci is better in hc than hq (better(ci, hq, hc) > 0) if ci in hc has a higher sentiment
score than it does in hq.

better(ci, hq, hc) = s(ci, hc)− s(ci, hq) (7)

We calculate the sentiment score, Sent(hq, hc) from the sum of these better
scores for the features that are common to hq and hc as per Equation 8; we use
C(i) to denote the clustered features of item i.

Sent(hq, hc) =

∑
ci∈C(hq)∩C(hc)

better(ci, hq, hc)× imp(ci, hc)

|C(hq) ∩ C(hc)|
(8)

Accordingly we can implement a non-personalized scoring function based on
the above by combining Simh and Sent as per Equation 9.

ScoreQB(hq, hc) = (1− w)× Simh(hq, hc) + w × Sent(hq, hc) (9)

3.2 User-Based Recommendation

Rather than using a specific item (hq) as a query to trigger recommendations,
another common recommendation use-case, is to use the user profile uq as a
query. To do this we need to implement a personalized version of the approach
above, by introducing user preference information into both the similarity and
the sentiment calculations.

Regarding similarity, we implement a version in which we use the importance
weights from the query user uq instead of the weights from hq during similarity
assessment as per Equation 10. In this way, features that are more important to
uq and hc play a greater role in the similarity computation.

Simu(uq, hc) =

∑
ciεC(uq)∩C(hc)

imp(ci, uq)× imp(ci, hc)√ ∑
ciεC(uq)

imp(ci, uq)2 ×
√ ∑
ciεC(hc)

imp(ci, hc)2
(10)

Regarding sentiment, we propose Equation 11, which calculates a sentiment
score based on the average sentiment of all hotels visited by uq with hc. We
use H(uq) to denote the hotels visited by uq. Thus, the sentiment score of hc is
influenced by uq’s history. Obviously, this is just one way that we might make
the sentiment calculation more personalized for uq. In this work it serves as a
useful test-case and future work will consider alternative approaches.



Sentu(uq, hc) =

∑
hq∈H(uq)

Sent(hq, hc)

|H(uq)|
(11)

For now, this means we can implement Equation 12 as the recommendation
scoring function for generating personalized recommendations.

ScoreUB(uq, hc) = (1− w)× Simu(uq, hc) + w × Sentu(uq, hc) (12)

4 Evaluation

In this section, we will describe an initial evaluation of these query-based and
user-based recommendation techniques using real-user data.

4.1 Datset & Setup

The dataset used in this work is based on the TripAdvisor dataset shared by the
authors of [15]. This dataset covers 148,575 users for 1,701 hotels. We collected
the member pages of these users from TripAdvisor website, we found that these
users totally have written 1,008,585 hotel reviews until July, 2014; approximately
7 reviews per user, although some users have authored significantly more. For
the purpose of this work, we focus on a subset of 1,000 users who have written
at least 5 hotel reviews. This provides a test dataset of 11,993 reviews for 10,162
hotels. Finally, for each of these hotels, we collected up to its top 100 reviews
for a total of 867,644 reviews; some hotels do not have 100 reviews.

For each of these users and hotels, we apply opinion mining to generate our
feature-based descriptions. On average our test users have written 12 reviews re-
sulting in profiles containing an average of 91 different clustered features. Like-
wise, the hotels are associated with an average of 89 reviews resulting in 189
clustered features per hotel on average. Clearly the opinion mining is capable
of generating rich item descriptions. In what follows we will evaluate the query-
based and user-based recommendation techniques using a standard leave-one-out
style approach in which we attempt to recommend a specific target hotel given
a query hotel or a user profile.

4.2 Evaluating Query-Based Recommendation

To evaluate the non-personalized, query-based recommendation strategy we pro-
duce a set of test triples of the form (uq, hq, ht) corresponding to a query user
uq, a query hotel from uq’s profile and a target hotel, ht, that is also in the
user’s profile. hq and ht are in different cities to simulate the use-case of the user
looking for a hotel in some new city but based on a familiar hotel in a different
city. For the purpose of this test we are careful to choose ht from a set of 8
cities in our dataset which have sufficient candidate hotels that are also in our
dataset(> 80). In each triple ht is chosen only if it has been rated as 5-star by
uq; we assume the user is looking for a hotel they will like.



Furthermore, we note the user’s rating for each of the query hotels in our
test triples and distinguish between those query hotels that have a low (2-star
or 3-star) rating by the user and those that have a much higher (4-star or 5-
star) rating; we will refer to these as 23-queries and 45-queries, respectively.
This allows us to compare the performance of the ranking based on how well the
query user liked the query hotel; we might expect that it is easier to identify ht
if we are starting from a 45-query than a 23-query. In this sense, the 23-queries
correspond to more a challenging query-based recommendation task than the
45-queries.

This provides us with 888 test triples; 705 have 45-queries and the remaining
183 have 23-queries. Each triple is a recommendation test, the objective of which
is to locate ht based on a ranking of hotels (from the same city as ht) using hq as
a query. In other words, for each triple we use hq as a query hotel and rank-order
the other hotels in the same city as hq using ScoreQB , varying w to adjust the
mix of similarity and sentiment.

The results are presented in Figure 3(a) as a graph of the top-20 hit-rate –
the percentage of times the target hotel is within the top-20 recommendations
– versus w. As we increase w (that is, increase the influence of sentiment) the
hit-rate of the query-based algorithm improves for both 45- and 23-query groups.
For example, at w = 0 (pure similarity-based scoring) we can see that the hit-
rate is 0.20 for the 23-queries and 0.27 for the 45-queries. In other words ht is
in among the top-20 recommendations between 20% and 27% of the time. As
expected, we can more successfully recommend the target hotel when using a
45-query than a 23-query.

As we increase w up to about 0.6-0.8 then this hit-rate increases to 0.35. That
is, as we introduce more sentiment we improve hit-rates, from 27% (45-queries)
to 35%, a relative increase of 30% compared to the similarity-only setting at
w = 0. Indeed, the improvement is even more striking for the more challenging
23-queries: we see a relative improvement of 75% as hit-rate climbs from 20%
to as high as 35% (at w = 0.8). Even when the query is a relatively poor
starting point, as a 23-query is, the introduction of sentiment helps to produce
a hit-rate that is comparable to the top hit-rate achieved by the 45-queries
(with sentiment). Figure 3(a) also shows the average results across all queries
(combining 23/45 query groups) where hit-rate climbs from 26% (w = 0) to 35%
(w = 0.6) for a relative increase of about 35%.

There is a point after which more sentiment causes a disimprovement in
hit-rate as the influence of similarity is no longer felt and sentiment tends to
dominate. This point is w = 0.6 for 45-queries (and, on average, for all queries).
It occurs later (w = 0.8) for the 23-queries. This suggests that sentiment should
be relied on more when the query hotel is not a strong reflection of a user’s true
interests, as is the case with 23-queries. This makes sense: if these query hotels
are not a good reflection of a user’s true interests then it may not be appropriate
to rely on similarity, it would be much better to focus on recommendations that
are better than the query hotels by as much as possible.



For comparison, in Figure 3(b) we show the relative ranking of the target
hotels in the recommendation lists. In this case, a lower relative ranking score
means that the target hotel appears higher in the recommendation rankings.
For example, across all queries we see that the relative ranking of the target
hotel falls from being in the top 37% of recommendations to the top 30% of
recommendations as w is increased up to 0.6. These relative ranking results are
entirely consistent with the previous hit-rate results. They show an improvement
in recommendation performance with increasing w up to w = 0.6−0.8 depending
on the query set. Once again we see improved recommendation performance
for the 45-queries compared to the tougher 23-queries, but the introduction of
sentiment dramatically improves recommendation even for these 23-queries.

So far we have been looking for a single target hotel. That is not unusual in
these types of offline, leave-one-out tests, but the results remain silent when it
comes to the quality of the other recommendations. For example, what is the
average rating of the top-20 recommended hotels? And how does this change
with w? This is important because it tells us about the overall quality of the
recommendation lists produced. This information is shown in Figure 3(c) as the
average TripAdvisor rating for the top-20 recommendations as we increase w.

Once again we can see that there is a benefit when it comes to introducing
sentiment: as we increase w the average rating of the recommended hotels in-
creases from about 4-stars to over 4.5-stars; at w = 0.6, the turning point for
hit-rate and relative ranking, the average rating is almost exactly 4.5-stars. As
expected, we can see that the average rating for the ’easier’ 45-queries is slightly
higher than the average rating for the 23-queries. Note that there is no turning
point on this average rating graph, as there was previously. The reason for this is
that as we increase w we are guiding recommendation towards hotels with more
and more positive features and so we can expect their average ratings to increase
accordingly. And as they do, the average ratings is up to a maximum of about
4.6-stars, which presumably is at, or close to, the maximum possible rating for a
list of 20 hotels given the TripAdvisor rating distribution. Obviously, this does
not mean that we should turn-up w to its maximum level because if we do then
there is a cost when it comes to retrieving a particular target case. And these
results suggest a balancing point of w = 0.6 is close to optimal for this type of
query-based recommendation, at least in this domain.

4.3 Evaluating User-Based Recommendation

We follow a similar approach to evaluate the personalized, user-based recommen-
dation strategy. This time we use a set of user-item test pairs, each containing
a user profile uq, as a query, and a target item ht. In each case ht is one of the
hotels that uq has previously rated as 5-stars. This time our recommendation
test will be to use uq as a query to recommend ht.

There are 665 of these test pairs. Earlier we distinguished between hard and
easy queries, we do similar here by dividing user profiles into small, medium, and
large based on their number of reviews; see Table 1. For example, small profiles
have up to 10 reviews and there are 274 pairs from these profiles involving



249 unique hotels and 211 unique users. The intuition is that small profiles
will represent a tougher user-based recommendation test than medium or large
profiles.

Table 1. Testing Pairs for User-Based Recommendation

Pairs Hotels Users

All 665 526 461

Small (<= 10) 274 249 211

Medium (11 − 20) 238 215 166

Large (> 20) 153 142 84

Each test pair defines a recommendation test in which uq is used to rank and
recommend hotels from the same city as ht using ScoreUB . And in this test, for
each test pair, we re-generate uq without reviews from target hotel.

We calculate the top-20 hit-rate for different values of w, and the results
are presented in Figure 4 (a). As before we can see how increasing w tends to
improve hit-rate. For example, at w = 0 the hit-rate for large profiles is about
30% and this grows to 40% (at w = 0.4), a relative improvement of about 33%.
A similar effect is noted for medium and small profiles but, as expected, the size
of the effect is reduced.

Once again there is an optimal w in range of w = 0.4 − 0.5, that seems to
deliver an optimum hit-rate. Beyond this, as sentiment dominates, the hit-rate
falls sharply, eventually dropping below the hit-rate achieved at w = 0 (similarity
only).

Relative ranking results are also presented in Figure 4 (b). They are con-
sistent with the hit-rate results, showing a benefit to increasing w up to about
0.4-0.5 and with the best relative ranking accruing to the larger profiles.

For completeness, we also show the average TripAdvisor rating for the full
set of 20 recommendations as w varies. Once again we see a gradual increase in
recommendation quality for increasing w; the average rating of recommendation
lists increases from 4-stars to about 4.6-stars.

4.4 Discussion

We have evaluated the performance of our query-based and user-based recom-
mendation approaches on real-user data from TripAdvisor. In each case, we have
explored the benefit of using sentiment during recommendation for queries of dif-
ferent difficulty levels. The results have been very consistent across a number
of evaluation metrics. In each case, increasing sentiment can significantly im-
prove recommendation performance to a point. Although it is likely that the
best level of sentiment to include will likely be domain and task dependent, it is
equally likely, we believe, that selecting a reasonable value for w, such as w = 0.5,
should deliver significant recommendation improvements over more conventional



(a) Top 20 Hit-Rate.

(b) Relative Ranking.

(c) Top 20 Ave. Rating.

Fig. 3. Query-based recommendation.

(a) Top 20 Hit-Rate.

(b) Relative Ranking.

(c) Top 20 Ave. Rating.

Fig. 4. User-based Recommendations.

similarity-based techniques. Fine-tuning might improve this further but it may
not be necessary or particularly worthwhile in many settings.

5 Conclusions

This paper builds on recent work using product reviews as a novel source of
recommendation knowledge; see [15]. Our main contribution has been to propose
and evaluate a new, personalized, user-based recommendation approach that is
capable of generating proactive recommendations for a user based on their mined
preferences. In the process, we have modified the work of [15] by introducing tri-
gram features and a feature-clustering step during opinion mining in order to
better capture the relationship between basic features.



We have evaluated these approaches in an offline study using real-user evalu-
ation data from TripAdvisor. The results show the benefits of mixing sentiment
and similarity during recommendation in both query-based and user-based rec-
ommendation scenarios. Profile size is important and the size of the effect on
recommendation performance is closely connected to the number of reviews that
have contributed to a profile.

Extending the evaluation to larger datasets and/or new domains is one pri-
ority for future work. We also plan to explore new approaches to opinion mining
by using topic-modeling techniques to better understand hotel preferences and
trip purposes. Our intuition is that the probability distribution of topics in a
review is a mixture of the distributions associated with the user interests, travel
purpose, and the hotel features. We are currently exploring ways to learn these
topic models from review texts and incorporate this into recommendations.
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