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Abstract

Biological systems are known to be both robust and evolvable to internal and external perturbations, but what causes these
apparently contradictory properties? We used Boolean network modeling and attractor landscape analysis to investigate
the evolvability and robustness of the human signaling network. Our results show that the human signaling network can be
divided into an evolvable core where perturbations change the attractor landscape in state space, and a robust neighbor
where perturbations have no effect on the attractor landscape. Using chemical inhibition and overexpression of nodes, we
validated that perturbations affect the evolvable core more strongly than the robust neighbor. We also found that the
evolvable core has a distinct network structure, which is enriched in feedback loops, and features a higher degree of scale-
freeness and longer path lengths connecting the nodes. In addition, the genes with high evolvability scores are associated
with evolvability-related properties such as rapid evolvability, low species broadness, and immunity whereas the genes with
high robustness scores are associated with robustness-related properties such as slow evolvability, high species broadness,
and oncogenes. Intriguingly, US Food and Drug Administration-approved drug targets have high evolvability scores
whereas experimental drug targets have high robustness scores.
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Introduction

Organisms have evolved so that their networks are robust

against the effects of mutations, but evolvable in response to

environmental changes [1–4]. Genetic mutations can profoundly

change network structures, so mutational robustness of a network

indicates how well the network can preserve its own dynamic

behavior upon changes to its structure. In a similar way,

evolvability of a network represents how well a network can

produce appropriate dynamic behavior in response to environ-

mental changes. Although robustness and evolvability are appar-

ently opposite notions, they are simultaneously implicit in

biological organisms. There are three main research results on

mutational robustness and evolvability. First, mutational robust-

ness facilitates evolvability as high mutational robustness increases

the diversity of genotypes that can evolve [5–7]. Second, biological

networks have evolved to have scale-free structures [8] and highly

optimized tolerance (HOT) structures [9] so as to increase

mutational robustness. Third, biological systems have evolved to

possess modular structures [10–12], critical regime [2,13], hub

nodes [14,15], and hierarchical structures [15] so as to simulta-

neously increase mutational robustness and evolvability. These

investigations mainly focused on either revealing the relationship

between mutational robustness and evolvability or unraveling the

structural characteristics of biomolecular regulatory networks

which have evolved to increase robustness and evolvability.

Although a number of studies have been done on mutational

robustness and evolvability of the biomolecular regulatory

networks [2,5–15], many questions still remain unsolved. For

instance, the evolutionary design principles by which the

mutational robustness and evolvability are implemented in

biomolecular regulatory networks are poorly understood. For this

purpose, we need to identify not only the network components and

their molecular interactions but also the dynamic properties of the

network.

Previous studies have shown that signaling networks can

effectively be analyzed by considering the cellular phenotype as

a high-dimensional state attractor [16–21]. An attractor is a

mathematical concept representing a stable steady state or limit

cycle (a repeating sequence of states) adopted by a dynamic

system, in this case a signaling network [16–21]. Based on this

concept a signaling network is mapped into an attractor landscape,

where each point in this landscape represents one state of the

network defined by a set of state values containing the activity

states of all signaling proteins in the network [16–21]. Although an

attractor landscape of a signaling network is composed of various
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attractors, cellular behavior typically reaches a dominant stable

state known as ‘‘primary attractor’’, which represents the normal

cellular state or phenotype [16–21]. The set of states, which

converge to an attractor, is called the ‘‘basin of attraction’’ and the

primary attractor has the biggest basin of attraction [16–21].

In this paper, we show that the human signaling network

consists of a subgroup of interactions for mutational robustness

and the other subgroup of interactions for evolvability. For this

purpose we used an integrated human signaling network

constructed by Helikar et al. [22], where the connections between

nodes (edges) are described by well-characterized Boolean logics

derived from mechanistic data in the biochemical literature, which

based on a set of logical rules specify whether a connection exists

or not. This network model is composed of representative signal

transduction pathways regulated by three major receptor families

including receptor tyrosine kinases, G protein-coupled receptors,

and integrins. It was shown that the Boolean dynamic model of

this network has the ability to replicate known qualitative

behaviors of the actual human signaling network. Based on the

Boolean network model, we first identified an attractor landscape

of the model, and then we decomposed the network into two

subgroups of interactions: the evolvable core, which preserves the

basin of the primary attractor in state space, and the robust

neighbor, which has no influence on the basin of the primary

attractor. Decomposition of the network elucidated that the

evolvable core has more scale-freeness than the robust neighbor

and that the robust neighbor contributes to reducing the

characteristic path length of the evolvable core, thereby constitut-

ing the HOT structure. We validated the theoretical predictions

related to the different effects of perturbations in the evolvable

core compared to the robust neighbor through biochemical

experiments. Our network decomposition analysis further indi-

cates that the genes with high evolvability score are associated with

evolvability-related properties whereas those with high robustness

score are associated with robustness-related properties. Intrigu-

ingly, US Food and Drug Administration (FDA)-approved drug

targets have high evolvability score whereas experimental drug

targets (targets of drugs in the pipeline or not yet approved by the

FDA) [23] have high robustness score. Thus, the decomposition of

a biomolecular regulatory network into an evolvable core and a

robust neighbor can not only reveal the evolutionary design

principle of the network, but also help identifying potential drug

targets.

Results

Decomposition of the human signaling network
The attractor landscape is a useful representation of phenotypes

of biological systems [2]. Hence we defined the two subgroups of

interactions (the evolvable core and robust neighbor) of a

biomolecular regulatory network based on the attractor landscape

(see Materials and Methods for the definition of these subgroups of

interactions). In order to decompose the human signaling network

(Fig. 1A) into the evolvable core and robust neighbor, we first

identified the attractor landscape of the network through Boolean

simulation. Since the human signaling network consists of 139

nodes, we would have to calculate transitions between 2139 states

to obtain its attractor landscape, which is unfeasible. Therefore, we

used 10,000 randomly selected initial states to identify the

approximated attractor landscape (see Materials and Methods).

The reason why we used the sampling size 10,000 is because it is

feasible, and because we could show that for sample sizes 10–100

fold bigger than 10,000 the distributions of estimated (relative)

basin sizes are very similar (Fig. S1). From this random sampling

approach, we obtained an approximated landscape of the human

signaling network. From the 10,000 initial states, we obtained 135

attractors and found one primary attractor whose basin contained

approximately 56% out of the 10,000 initial states (Fig. S1A). This

primary attractor was a limit cycle composed of a repeating

sequence of six states (Table S1). In these six states, 123 nodes

were ‘OFF’ and the remaining 16 nodes were ‘ON’ at least once in

their cyclic state transitions. The sub-network composed of these

16 nodes and their interactions consists of three separate modules:

a module for phosphatidylinositol signaling, a module for Raf

activation (composed of three inactivated forms of Raf and PP2A

(Protein serine/threonine Phosphatase 2A)), and a module for

PKC (Protein Kinase C) activation (composed of PKC_primed

which is an inactivated form of PKC) (Fig. S2). The ‘ON’ nodes in

the primary attractor are related to precursors of second

messengers or inactive forms of kinases. In other words, the

primary attractor can be considered as a ‘ready’ state of the

signaling network, which might be the nominal condition of cell

signaling [24–28].

Next, we developed an algorithm for the decomposition of the

human signaling network (see Materials and Methods), which

allowed us to identify the evolvable core with 408 edges (Fig. 1B)

and the robust neighbor with 167 edges (Fig. 1C). The lists of links

in the evolvable core and robust neighbor are provided in Table

S2 and Table S3, respectively. We obtained similar results when

using different random seeds of initial states (Fig. S3A) and

deletion order (Fig. S3B). In order to compare the attractor

landscape of the original human signaling network and its

evolvable core, we projected all the obtained attractor states,

which correspond to 139-dimensional vectors, onto a 2-dimen-

sional plane using principle component analysis (PCA). Fig. 1D

shows the projected landscape of the 135 attractors of the original

network. Using the same 10,000 initial states as used to find the

attractors of the original network, we obtained 106 attractors for

the evolvable core. Then we projected all the obtained attractor

states onto the same plane in Fig. 1D, after applying the same

linear transformation as in the PCA analysis of the original

network. Fig. 1E shows this projected landscape of attractors of

the evolvable core. The attractor landscape of the original network

and that of the evolvable core are very similar despite the fact that

the evolvable core was obtained by removing edges whose deletion

did not change the landscape of the primary attractor only.

Furthermore, the approximated relative basin sizes of each

attractor were also similar (Figs. 1D and E). These results imply

that the landscape of the evolvable core largely represents the

landscape of the original human signaling network.

Perturbation experiments of the evolvable core and
robust neighbor

We wanted to experimentally validate the theoretical prediction

that perturbations in the evolvable core have a stronger effect on

Author Summary

Biological systems are known to be robust and evolvable
to internal mutations and external environmental changes.
What causes these apparently contradictory properties?
This study shows that the human signaling network can be
decomposed into two structurally distinct subgroups of
links that provide both evolvability to environmental
changes and robustness against internal mutations. The
decomposition of the human signaling network reveals an
evolutionary design principle of the network, and also
facilitates the identification of potential drug targets.
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the network than perturbations in the robust neighbor. There-

fore, we carried out a series of biochemical experiments where we

induced perturbations through chemical inhibition or overex-

pression of the nodes with high evolvability score and those with

high robustness score (see Materials and Methods and Table S4

for the definition of these scores), and compared the phosphor-

ylation of four network outputs: ERK, Akt, p38 and JNK (Figs. 2

and S4). To perturb the nodes with high evolvability score, we

overexpressed the constitutive active HRasV12 mutant (Ras

perturbation), the HRasV12C40 mutant (PI3K perturbation),

Raf1 (Raf perturbation), Src, and ASK1; and we carried out

chemical inhibition with blebbistatin (Actin perturbation). To

perturb the nodes with high robustness score, we overexpressed

the HRasV12G37 mutant (RalGDS perturbation), MLK2,

MLK3, and MKK6; and we carried out chemical inhibition

with the drug ML7 (Myosin perturbation). All kinases were GFP

tagged, and each experiment was carried out in triplicate. A

representative western blot is shown in Fig. S4. To facilitate

comparison between the different types of experiments all

measurements were quantified and normalized to the value of

the respective controls (untreated cells or cells expressing a

control plasmid). The results show that the overall normalized

perturbation effect of the evolvable core is higher than that of the

robust neighbor (Figs. 2A, 2B and S5). The average of all the

perturbation effects for the evolvable core was significantly

higher (p-value = 1.09E-2) than that for the robust neighbor

(Fig. 2C).

Topological properties of the evolvable core and robust
neighbor sub-network

In the previous subsections, we showed that the human

signaling network could be decomposed into an evolvable core

and a robust neighbor. The attractor landscape of the evolvable

core is very similar to that of the original network, and the edges of

the robust neighbor do not affect the landscape of the original

network. How do the two sub-networks differ in terms of

structure? The interlinked structure of feedback loops in a network

is an important factor determining the characteristics of the

attractor landscape, such as the number of attractors and the

distribution of basin sizes [29,30]. Hence, we first compared the

numbers of self-feedback loops (Fig. 3A), two-node feedback loops

(Fig. 3B), and three-node feedback loops (Fig. 3C) in the evolvable

core sub-network to the numbers of these loops in similar random

edge-deleted sub-networks; and also compared the numbers of

these loops in the robust neighbor sub-network to the numbers of

these loops in similar random edge-selected sub-networks (see

Materials and Methods for the definition of these sub-networks).

For this purpose we constructed 100 random-deletion sub-

networks by taking the human signaling network and randomly

deleting 167 edges; and 100 random-selection sub-networks by

Figure 1. Decomposition of the human signaling network. (A) Human signaling network. (B) Evolvable core. (C) Robust neighbor. (D)
Attractor landscape of the human signaling network. (E) Attractor landscape of the evolvable core.
doi:10.1371/journal.pcbi.1003763.g001
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taking sub-networks composed of 167 edges randomly selected

from the human signaling network. Subsequently, we calculated

the average number of feedback loops in the random-deletion sub-

networks and compared them to the numbers in the evolvable core

sub-network; and calculated the average number of feedback loops

in the random-selection sub-networks and compared them to the

numbers in the robust neighbor sub-network. We found that the

evolvable core sub-network contains significantly more feedback

loops compared to the random-deletion sub-networks, whereas the

robust neighbor sub-network contains significantly less feedback

loops compared to the random-selection sub-networks (Figs. 3A,

3B, and 3C). We obtained similar results when using different

random seeds of initial states (Figs. S5A, S5C, and S5E) and

deletion order (Figs. S5B, S5D and S5F).

Scale-freeness is one of the representative characteristics of

biological networks. We calculated the degree heterogeneity and

the degree distribution [31,32] as a measure of this scale-freeness.

As a result, we found that the degree heterogeneity of the

evolvable core sub-network is significantly higher than that of

random-deletion sub-networks (Fig. 3D). The degree distribution

of the original network is similar to that of an Erdös random

network [33] which has many middle-degree nodes, whereas the

degree distribution of the evolvable core sub-network is similar to

that of a scale-free network [33] which has much more low-degree

nodes (Fig. 3E). This implies that many middle-degree nodes were

deleted during the link-deletion process that identified the

evolvable core. In fact, we verified that the ratio of robust

neighbor links to the whole links for the middle-degree (from 6 to

9) nodes is higher than those for the low-degree (from 2 to 5) and

high-degree (from 10 to 42) nodes (Fig. 3F). We obtained similar

results using different random seeds of initial states (Figs. S6A and

S6C) and deletion order (Figs. S6B and S6D).

It is well-known that biological networks which transfer

information such as cell signaling pathways satisfy the small-world

property as well as scale-freeness [34]. In order to explore the

small-world property of the evolvable core sub-network, we

compared the characteristic path length [32] of the evolvable

core sub-network to 100 random-deletion sub-networks. We found

that the characteristic path length of the evolvable core sub-

network is larger than those of random-deletion sub-networks

(Fig. 3G). This implies that appending the robust neighbor to the

evolvable core increases the small-world property. We obtained

similar results using different random seeds of initial states (Fig.

S6E) and deletion order (Fig. S6F). In order to verify this, we also

compared the network structures of the robust neighbor sub-

network to the 100 previously mentioned random-selection sub-

networks. The result shows that the number of connected

components (Fig. 3H) and the characteristic path length (Fig. 3I)

of the robust neighbor sub-network are significantly smaller than

those of random-selection sub-networks. We obtained similar

results using different random seeds of initial states (Figs. S7A and

S7C) and deletion order (Figs. S7B and S7D). In summary, the

robust neighbor sub-network contains many middle-degree nodes

that are closely connected to each other. Hence we conclude the

structure of the robust neighbor sub-network is similar to the HOT

structure [9,35], and has been evolutionarily designed to be robust

to changes or a targeted attack.

Genetic properties of the network nodes versus
evolvability and robustness scores

The evolvable core is defined by the minimal subgroup of

interactions that preserves the attractor landscape and the robust

neighbor is defined by the subgroup of interactions satisfying that

deletion of any link in the subgroup of interactions does not affect

the attractor landscape. From this definition, we speculated that a

link perturbation on the evolvable core could induce a new

phenotype with higher probability than that on the robust

neighbor. In order to confirm this conjecture, we investigated

the relationship between the evolutionary rate and the evolvability

score for each node, and found a significant positive correlation

between them (Fig. 4A). Furthermore, we found that the species

broadness is significantly negatively correlated with the evolva-

Figure 2. Perturbation experiments of the evolvable core and robust neighbor. (A) Average of absolute log2 fold change of each output
node activity over three repetitions obtained from each perturbation experiments of the evolvable core. (B) Average of absolute log2 fold change of
each output node activity over three repetitions obtained from each perturbation experiments of the robust neighbor. (C) Average of all the
experimental results (three repetitions6four output nodes6eight perturbation experiments) with respect to perturbation of the evolvable core
elements and average of all the experimental results (three repetitions6four output nodes6five perturbation experiments) with respect to
perturbation of the robust neighbor elements. Error bars denote the standard errors of the average values. The red numbers and blue numbers in
Figs. 2A and 2B denote the evolvability scores and the robustness scores, respectively.
doi:10.1371/journal.pcbi.1003763.g002
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bility score (Fig. 4B). This result implies that mutations in the

evolvable core can induce new phenotypes more frequently, since

the mutation of genes with high evolutionary rates can facilitate

positive selection [36] and genes with low species broadness result

from rapid evolution [37]. We again obtained similar results using

different random seeds of initial states (Fig. S8A and S8C) and

deletion order (Fig. S8B and S8D).

Furthermore, we looked at genes related to the immune system

and oncogenes. The immune system is known to rapidly evolve in

order to cope with rapidly evolving pathogens [38,39]. Oncogenes

denote genes that promote cancer when mutated or overex-

pressed. Cancer is a system which utilizes some of the robustness

mechanisms of normal tissues and further evolves them to become

more robust due to the greatly enhanced ability of generating

genetically heterogeneous cells that increase the population fitness

under selection [40]. Therefore, the genes related to the immune

system might have higher evolvability score than other genes

whereas the oncogenes might have higher robustness score than

the other genes. As expected, the genes related to immune system

have a high normalized average evolvability score (Fig. 4C),

whereas oncogenes have a high normalized average robustness

score (Fig. 4D). These findings support the notion that the

evolvable core is related to evolvability, and the robust neighbor

is related to robustness in terms of biological data. We obtained

similar results using different random seeds of initial states (Figs.

S9A and S9C) and deletion order (Figs. S9B and S9D).

Drug targets
Because a link perturbation on the evolvable core could be more

effective in changing the cellular phenotype than a link perturba-

tion on the robust neighbor, we can speculate that drug targets

might have higher evolvability scores than non-drug targets. We

found that the FDA-approved drug targets have a high normalized

average evolvability score (Fig. 5A). Similarly, we can expect that

the experimental drug targets might have a high normalized

average evolvability score. Surprisingly, we found that the

experimental drug targets have a high normalized average

robustness score (Fig. 5B). Since many drugs have multiple target

proteins, we considered combination of targets for all the FDA-

approved drugs and the union of targets of all the experimental

Figure 3. Topological characteristics of the evolvable core and robust neighbor sub-network. (A) Number of self-loops. (B) Number of
two-node feedbacks. (C) Number of three-node feedbacks of the original network, evolvable core sub-network, random-deletion sub-network, robust
neighbor sub-network, and random-selection sub-network. (D) Degree heterogeneity of the original network, evolvable core sub-network, and
random-deletion sub-network. (E) Degree distribution of the original network and evolvable core sub-network. (F) The ratio of robust neighbor links
to the whole links for the low-degree, middle-degree, and high-degree nodes, respectively. (G) Characteristic path length of the original network,
evolvable core sub-network, and random-deletion sub-network. (H) Number of connected components of the robust neighbor and random-selection
sub-network. (I) Characteristic path lengths of the robust neighbor and random-selection sub-network. Error bars denote the standard errors of the
average values.
doi:10.1371/journal.pcbi.1003763.g003

Robustness and Evolvability of Signaling Network

PLOS Computational Biology | www.ploscompbiol.org 5 July 2014 | Volume 10 | Issue 7 | e1003763



drugs. The overlap between 1330 targets of FDA-approved drugs

and 765 targets of experimental drugs is only 297. To show that

this overlap does not influence our result on the relationship

between evolvability score and drug target, we further analyzed

the FDA-approved drug targets that are not experimental drug

targets and the experimental drug targets that are not FDA-

approved drug targets, and obtained the same results (Fig. S10).

Moreover, we have analyzed the evolvability scores of all the

targets of each multi-target drug and calculated the standard

deviation of the scores. We found that the average of the standard

deviations for all multi-target drugs (0.0557, see Table S5) is much

smaller than the standard deviation of the evolvability scores of all

the nodes in the network (0.298). This indicates that most of the

targets are still included either in the evolvable core (for the FDA-

approved drugs) or in the robust neighbor (for the experimental

drugs) and mixed inclusion is uncommon even for the multi-target

drugs.

Why do FDA-approved drug targets and experimental drug

targets have such contrasting scores? To answer this question, we

investigated the distribution of receptors and kinases since most

FDA-approved drug targets are membrane proteins such as

receptors whereas the experimental drug targets also include

proteins localized in various cellular compartments [23]. Interest-

ingly, we found that the receptors have a high normalized average

evolvability score (Fig. 5C) whereas the kinases have a high

normalized average robustness score (Fig. 5D). This implies that

the deletion of a link connected to a receptor is more likely to

significantly change the cellular phenotype than the deletion of a

link connected to a kinase. It also explains why FDA-approved

drug targets and experimental drug targets have such contrasting

scores and why they have different cellular compartmental

distributions [23]. We obtained similar results using different

random seeds of initial states (Figs. S11A, S11C, S11E, and S11G)

and deletion order (Figs. S11B, S11D, S11F, and S11H).

Discussion

Here we show that the human signaling network can be

decomposed into an evolvable core and robust neighbor by

analyzing the attractor landscape. We also show that the two

subgroups of interactions are different in terms of structure and

biological meaning. We further validated salient properties of and

predicted associations with the evolvable core and robust neighbor

experimentally through specific chemical inhibition or overex-

pression of wild-type and mutant proteins. Like any model our

model is not a one-to-one description of the real biological network

but a simplified abstraction that can explain general network

properties. Thus, we would not expect that every detail can be

experimentally confirmed; this even is rarely possible in classic

biochemical experiments which test only one or few components

of a network. Thus, the experimental work has to be taken as a

validation of the general properties of the network, and viewed in

the context of the overall results. The experimental results simply

add another piece of information to the usefulness of the approach

to elaborate network structures with different properties through

modeling. One remarkable point in Fig. 2A is that the perturba-

tion effect of ASK1 was most significant. This is particularly

meaningful if we consider the following facts: (i) Only ASK1

among the six perturbed evolvable core nodes in the experiments

is connected to all of the four output nodes through evolvable core

links; (ii) The normalized proportion of the paths in the evolvable

core from ASK1 to each output node over such paths in the

original network is higher than those of the other five perturbed

evolvable core nodes, which means that most of the paths from

Figure 4. Genetic properties of the network nodes in terms of evolvability and robustness scores. (A) The correlation between
evolutionary rate and evolvability score. (B) The correlation between species broadness and evolvability score. (C) The normalized average
evolvability and robustness scores of the genes related to immune system. (D) The normalized average evolvability and robustness scores of the
oncogenes.
doi:10.1371/journal.pcbi.1003763.g004
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ASK1 to output nodes remain invariant during the network

reduction to evolvable core (Table S6). Hence, the experimental

result in Fig. 2A is meaningful even though it cannot be a full

experimental validation of the simulation results.

The proposed concept and analysis can be applied to any other

biomolecular regulatory network that was shaped by evolution. In

the conceptual framework of the attractor landscape, deletion of a

robust neighbor link causes cryptic genetic variation [6], whereas

deletion of an evolvable core link changes the phenotype of the

biological system represented by the attractor landscape (Fig. 6).

Hence, a molecule which has many robust neighbor links would

have robustness-related properties, whereas a molecule which has

many evolvable core links would have evolvability-related

properties as we found in the human signaling network.

Wagner [41] showed that genotypic robustness and genotypic

evolvability share an antagonistic relationship, whereas phenotypic

robustness promotes phenotypic evolvability. In this regard, the

coexistence of evolvable core and robust neighbor in the human

signaling network implies that both phenotypic robustness and

phenotypic evolvability are reflected on the human signaling

network, since the concepts of evolvable core and robust neighbor

of the human signaling network are related to phenotypic

evolvability and phenotypic robustness, respectively.

One might consider that the concept of ‘robust neighbor link’ is

similar to that of ‘redundant link’ in the context of canalizing

function, which is a function of multiple input variables with the

property that one of its inputs can solely determine the output

value regardless of other inputs [20,42,43] (see Fig. S12A).

However, they are different because the robust neighbor links

can be identified by considering global dynamics whereas the

redundant links can only be identified by examining the local

relationship between the regulatory inputs and the resulting output

of a particular node. To further clarify this, we determined and

compared both robust neighbor links and redundant links in our

example network. We identified 325 redundant links and found

that 192 links out of these 325 redundant links are evolvable core

links, which are not redundant when considering the attractor

landscape (i.e. not robust neighbor links) (Fig. S12B and Table S7).

Aldana et al. [2] defined that a network is evolvable if, as a result

of perturbations, new attractors emerge. On the other hand, we

defined that a network is evolvable if, as a result of perturbations,

the attractor landscape is significantly changed in terms of the

primary attractor. To investigate the relationship between these

two concepts, we considered 408 sub-networks obtained by

deleting the 408 evolvable core links one by one. By simulating

each of the 408 sub-networks, 3,500 new attractors were obtained

from 10,000 initial states that were included within the basin of the

primary attractor of the original network. We found that about

88% of the 3,500 new attractors are not the attractors of the

original network. This implies that our concept of evolvability is

closely related to the concept of evolvability suggested by Aldana

et al [2]. However, our concept of evolvability is broader and more

inclusive in that a network is evolvable if, as a result of

perturbations, an initial state which was included in the basin of

attraction of the primary attractor of the original network

converges to any of other attractors of the original network or a

new one. In the literature, multiple definitions of evolvability were

suggested [41,44–51]. In general, a system is said to be evolvable if

the genotypic variation in the system can produce heritable

phenotypic variation [41]. We think that the difference among the

multiple definitions is caused by the different definition of the

phenotypic variation. Aldana et al. considered the emergence of a

Figure 5. The relationship between drug targets and evolvable core or robust neighbor. The normalized average evolvability and
robustness scores of the genes related to FDA-approved drug targets (A), experimental drug targets (B), receptors (C), and kinases (D).
doi:10.1371/journal.pcbi.1003763.g005
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new attractor as phenotypic variation. On the other hand, we

considered the variation of attractor landscape as phenotypic

variation since phenotypic variation includes not only the

emergence of new attractors but also the transition between

attractors [16,17,52,53].

In this study, we identified the evolvable core and robust

neighbor of the human signaling network on the basis of its

inherent network dynamics with all the state values of input nodes

(i.e. nodes without any incoming link) set to ‘OFF’ and

synchronously updating the Boolean functions. To examine

whether this result might depend on the input conditions or

asynchronous update of Boolean functions, we further carried out

extensive simulations for various input conditions and asynchro-

nous update of Boolean functions. This also links the biochemical

data better with the simulations, as to see activation, and

subsequent differences in activation, of the measured output

nodes stimulation with growth factors, such as serum, is necessary.

It turns out that the decomposition into the evolvable core and

robust neighbor does not depend on the input conditions or

synchronous/asynchronous update of Boolean functions, and that

the evolvable core and robust neighbor are mostly invariant and

do not much depend on such conditions (Figs. S13 and S14) even

though the primary attractor might change (Tables S8-S18). This

change in primary attractor upon different input conditions makes

biological sense, as specific parts of the network are switched ON, in

addition to the nodes that are already switched ON with all input

nodes ‘OFF’. In other words, the network switches from a ‘ready’ to

an ‘active’ state.

Helikar et al. [22] showed that there is an emergent function of

information processing in the human signaling network. We have

further investigated whether such an emergent function is

preserved in the evolvable core and found that it is well-preserved

(see Fig. S15 and Table S19). This suggests that the evolvable core

might be the minimal structure with the complexity that can create

such an emergent function.

Previous research suggested that biological networks have

evolved to have scale-free [8] and HOT [9] structures so as to

increase mutational robustness. However, these studies could not

unravel the dynamic characteristics underlying the mutational

robustness of the biological networks since they only focused on

topological characteristics. Our results about the topological

difference such as degree heterogeneity of the evolvable core

Figure 6. A conceptual framework of the evolvable core and robust neighbor in biomolecular regulatory networks. This figure shows
that deletion of an evolvable core link causes acquiring a new phenotype, whereas deletion of a robust neighbor link causes cryptic genetic variation
for the biological system represented by the attractor landscape.
doi:10.1371/journal.pcbi.1003763.g006
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and low characteristic path length of the robust neighbor, shed light

on the previous results in terms of network dynamics that explain the

eventual state transition of molecular components in the network in

a collective way since we used attractor landscape analysis to

decompose the network into the two subgroups of interactions.

Furthermore, we show that the two subgroups of interactions are

different in terms of biological meaning as well as topological

characteristics. Even though we divided the network into the two

subgroups of interactions based on the Boolean simulation only, the

two subgroups of interactions are distinguished from each other in

terms of many biological properties such as evolutionary rate, species

broadness, and relationships to the immune system, oncogenes,

FDA-approved drug targets, experimental drug targets, receptors,

and kinases. To examine the potential generality of our result, we

first have analyzed another large-scale signaling network example

(JAK/STAT signaling network) obtained from the curated signaling

pathway database SignaLink [54]. For this example, we have also

identified and analyzed the evolvable core and robust neighbor on

the basis of Boolean modeling with the logical rules adopted from Li

et al. [55]. Secondly, we have analyzed another curated logic model

(keratinocyte signaling network) [56]. As a result, we found that the

evolvable cores and robust neighbors of the JAK/STAT signaling

network and the keratinocyte signaling network show consistent

results in terms of genetic properties (evolutionary rate, species

broadness, relationship with immune system, and relationship with

oncogene, see Fig. S16 and S17). This segregation will be useful for

understanding large-scale genomic data, which are now being

generated, by predicting which mutations or gene deletions are likely

to affect the phenotype. Moreover, we could validate the existence of

the evolvable core and robust neighbor through biological

experiments.

In our previous research about network kernels [37], we showed

that a signaling network can be divided into a kernel and non-

kernel. The kernel represents a part that preserves transient

dynamics, whereas the evolvable core here represents a part that

preserves steady state dynamics. Although these two concepts seem

to be similar in terms of preserving some dynamic behavior, they

are very different in terms of evolutionary rates and drug targets.

Further studies will be needed to unravel the relationship between

the kernel and the evolvable core of various biological networks.

Materials and Methods

A Boolean network model for the human signaling
network

We adapted the Boolean network model of the human signaling

network [22] composed of 139 nodes and 575 links (Fig. 1A). In the

Boolean network model, each node is associated with a logic table

that determines the state of the node for a given input node set [16–

21], except the nodes without any incoming link [22]. Network

dynamics were simulated by updating all the Boolean functions

simultaneously from the initial state to the corresponding final

attractor state, where a network state is a collective binary

representation of all node variables [16–21]. The nodes without

any incoming link can be considered as input nodes of the network

such as ligands of the signaling network. We fixed the state values of

those nodes as ‘OFF’ at each time step since we wanted to analyze

nominal dynamics of the system without any external input signal.

Evolvable core (robust neighbor), evolvable core (robust
neighbor) sub-network, and evolvability (robustness)
score

The evolvable core of a network is defined by the subgroup of

interactions satisfying the condition that deletion of any edge in

this subgroup of interactions causes a significant change of the

attractor landscape of the original network by changing its primary

attractor. The robust neighbor is defined by the subgroup of

interactions satisfying that deletion of any edge in the subgroup of

interactions does not affect the attractor landscape of the original

network much, by preserving its primary attractor. The evolvable

core (robust neighbor) sub-network is defined by a sub-network

composed of the evolvable core (robust neighbor, respectively)

links and all the nodes of the original network. The evolvability

(robustness) score of a node is defined by the proportion of

evolvable core (robust neighbor, respectively) links connected to

the node over all links associated with the node.

Decomposition algorithm to identify the evolvable core
and robust neighbor

We identified the evolvable core and the robust neighbor of a

Boolean network through the following processes (see Fig. S17): (i)

A Boolean network can be represented by a directed graph

G~ V ,E,Lð Þ, where V is a set of nodes, E is a set of edges, and L is

a set of logic tables. Each edge can be represented by eij~ vi,vj

� �

where vi is a start node and vj is an end node. The logic table of

node vj can be represented by l(vj) and the reduced logic table of

node vj when the state value of vi is x (0 or 1) can be represented by

l vj Dvi~x
� �

. The logic table of each node is a set of output node

states for each combination of input node states. (ii) We randomly

sample 10,000 initial states which converge to the primary

attractor in the original network. (iii) We then consider a copy,

termed ‘Reduced Network’, of the original network. For each edge

eij~ vi,vj

� �
we remove the insignificant edges in which

l vj Dvi~0
� �

~l vj Dvi~1
� �

, and update the Reduced Network with

the edge-removed network. (iv) We then define a set of edges ER

for the reduction which is empty initially. (v) For each edge

eij~ vi,vj

� �
in the Reduced Network we test if the 10,000 initial

states are attracted to the primary attractor in the Reduced

Network with the selected edge removed. If the primary attractor

is preserved, we add the selected edge to ER. (vi) We then

randomly select an edge eij~ vi,vj

� �
from ER and test if the 10,000

initial states are attracted to the primary attractor in Reduced

Network with the selected edge removed. If the primary attractor

is preserved, we update the Reduced Network with the edge-

removed network. (vii) We repeat the above process (vi) until the

Reduced Network cannot be reduced any more. After all, the

Reduced Network becomes the evolvable core and the sub-

network obtained by subtracting the evolvable core links from the

original network becomes the robust neighbor.

Chemical inhibition and overexpression experiments
The experiments with chemical inhibitions and overexpression

of HRas and HRas mutants were performed in HeLa cells (ATCC

CCL-2), the overexpression of GFP-tagged kinases was performed

in HEK293 (ATCC CRL-11268). ML7 (I2764) and blebbistatin

(B0560) were purchased at Sigma. Antibodies against ppERK

(M8159) and total ERK (M5670) were from Sigma. Antibodies

against pJNK (9251), total JNK (9252), pP38 (9211), total P38

(9212), pAKT (9275) and total Akt (9272) were from Cell

Signaling. The antibody against Ras (OP40) was from Calbio-

chem. All GFP-tagged kinase plasmids were generated through

GatewayH cloning (Invitrogen), using the pDONR-223 gateway

entry vectors from the ‘Human Kinase Open Reading Frame

collection’ (Addgene 1000000014), and the destination vector 221

pCS-EGFP. As a control plasmid we used the same destination

vector, inserted with EGFP (pDONR-EGFP as entry vector).

Robustness and Evolvability of Signaling Network
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HRas mutants in the pDCR vector were a kind gift from Dr.

Pierro Crespo. In these experiments expression of the empty

vector was used as a control.

For the chemical inhibitions, HeLa cells were treated with either

2 mM ML7 for MLCK inhibitions or 1 mM blebbistatin for myosin

inhibition, 3 hours before lysis. For all overexpression experi-

ments, cells were transfected 24 hours after seeding and 48 hours

before lysis. In the experiments with chemical inhibitions and

HRas mutant overexpression in HeLa cells, the cells were starved

for 3 hours, and stimulated with 10% fetal bovine serum for

1 hour for JNK activation. Cells were starved for 16 hours, and

stimulated with 10% fetal bovine serum for 10 minutes for ERK,

Akt and P38 activation. All measurements upon overexpression of

the GFP-tagged kinases in HEK293 were performed in growing

conditions, 48 hours after transfection.

All cells were lysed in 20 mM HEPES, 150 mM NaCl, 1%

NP40. SDS-PAGE was performed, followed by Western blotting

using the antibodies against pJNK, pP38, total ERK or pAkt or

pan-Ras. The membranes were then stripped with 1%SDS, 0.2 M

glycin at pH 2.5, re-blocked in 4%BSA in TBS-T and incubated

with antibodies against total JNK, total P38, ppERK or total

AKT. We chose our outputs according to the following criteria,

i.e. that (i) they are linked to nodes in the evolvable core and robust

neighbor enabling a comparative assessment of perturbation

experiments; and (ii) they are experimentally tractable. This is

how we selected to measure ERK, Akt, p38, and JNK activation.

In addition, all of the outputs are linked to the primary attractor:

ERK activation is linked closely to Raf (which is the main

upstream activator of ERK) as well as PKC; Akt activation is

closely linked to phosphatidylinositol signaling; and the stress

activated MAP kinases JNK and p38 are closely linked to PKC

and also phosphatidylinositol signaling.

Degree heterogeneity and characteristic path length
The degree heterogeneity was defined by the variance of the

degree distribution divided by the average of the degree

distribution [31]. The characteristic path length was defined by

the average of the shortest path lengths over all pairs of nodes [32].

The evolutionary rate and species broadness
The evolutionary rates were defined by the ratios of the non-

synonymous substitution rates (dN) and the synonymous substitution

rates (dS) for homologous gene pairs in human and mouse, and we

obtained the evolutionary rates of 13815 genes from the Human

PAML Browser [57]. We defined the species broadness of a gene as

the number of species in which homologs of the gene exist. The

homolog information of 20 species was extracted from the

HomoloGene database [58] in the NCBI and the species broadness

of 19571 genes was obtained from the database. In order to investigate

the correlation between the evolutionary rates or species broadness

and the evolvability score, we mapped each node of the network into

the corresponding genes based on EntrezGene IDs (see Table S4).

Some nodes such as PIP_4 do not have corresponding EntrezGene

ID, some nodes such as MKK3 correspond to one EntrezGene ID,

and some nodes such as MLCP correspond to multiple EntrezGene

ID. Based on the transformation, we obtained 631 genes which have

EntrezGene ID. Among 631 genes, 549 genes have evolutionary rate

values and 629 genes have species broadness values.

Immune system, oncogene, FDA-approved drug target,
experimental drug target, receptor, and kinase

The list of genes related to immune system was selected as the

genes classified into the gene ontology (GO) term ‘immune system

process (GO:0002376)’ [59]. This list contains 944 genes related to

immune system, 109 of which are included in the human signaling

network (Table S20). The list of oncogenes was obtained from the

OMIM database [60] in the NCBI. This list contains 51

oncogenes, 12 of which are included in the human signaling

network (Table S21). The drug target list was obtained from the

DrugBank database [61]. This list contains 1330 FDA-approved

drug targets, 168 of which are included in the human signaling

network (Table S22) and 765 experimental drug targets, 52 of

which are included in the human signaling network (Table S23).

The list of genes related to receptor or kinase was obtained on the

basis of GO terms, ‘receptor activity (GO:0004872)’ or ‘kinase

activity (GO:0016301). This list contains 1688 genes related

to receptors, 177 of which are included in the human

signaling network (Table S24) and 770 genes related to kinases,

107 of which are included in the human signaling network (Table

S25).

Normalized average evolvability (robustness) score
In order to calculate the normalized average evolvability or

robustness score, we mapped each node of the network into the

corresponding genes based on EntrezGene IDs and calculated the

average of the proportions of evolvable core (or robust neighbor)

links of the resulting 631 genes. The normalized average

evolvability (robustness) score is defined as the average of the

proportions of evolvable core (robust neighbor, respectively) links

for a particular gene group (genes related to immune system,

oncogenes, FDA-approved drug targets, experimental drug

targets, receptors, or kinases) divided by the average of the

proportions of evolvable core (robust neighbor, respectively) links

for the total 631 genes.

Statistical analysis
We performed one-sided two sample t-test to compare the

number of feedback loops (Figs. 3A–C), degree heterogeneity

(Fig. 3D), and the characteristic path length (Fig. 3G) for the

evolvable core and random-deletion sub-networks; the number of

connected components (Fig. 3H) and characteristic path length

(Fig. 3I) for the robust neighbor and random-selection sub-

networks; the average perturbation effect (Fig. 2C). We performed

Pearson’s correlation test to analyze the significance of the

correlation between the evolutionary rates (Fig. 4A) or species

broadness (Fig. 4B) and the evolvability score. In order to compare

the normalized average evolvability (robustness) score of a

particular gene group (the genes related to the immune system

process, oncogenes, FDA-approved drug targets, experimental

drug targets, receptors, or kinases) with that of the random control

group, the permutation test with 100,000 permutations was

performed. The random control group was obtained by randomly

selecting genes out of 631 genes where the sample size was fixed as

the size of the given particular gene group.

Availability of the software
We have implemented the proposed decomposition algorithm

as software. It is available from the http://sbie.kaist.ac.kr/software

and as part of the Supplementary Materials.

Supporting Information

Figure S1 The histogram of the estimated basin sizes
for the major twenty attractors, computed using various
numbers of randomly selected initial states (10,000 for A,

100,000 for B, and 1,000,000 for C).

(TIF)
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Figure S2 Subnetwork of the human signaling network
composed of 16 nodes which are ‘ON’ at least once in
their cyclic state transitions of the primary attractor.
The subnetwork composed of these 16 nodes and their interactions

consists of three separate modules: a module for phosphatidylino-

sitol signaling (red nodes), a module for Raf activation (blue nodes),

and a module for PKC activation (green node). The ‘ON’ nodes in

the primary attractor are related to precursors of second

messengers or inactive forms of kinases. In other words, the

primary attractor can be considered as a ‘ready’ state of the

signaling network, which might be the nominal condition of cell

signaling.

(TIF)

Figure S3 Number of robust neighbor links with respect
to different random seeds of initial states (A) and
deletion order (B). This figure shows that the number of

robust neighbor links is similar irrespective of different random

seeds.

(TIF)

Figure S4 Representative western blots and quantifica-
tion of the MAPK (ERK, JNK, p38) and Akt output
activities upon chemical inhibitions (A) and overexpres-
sion of HRas mutants (B) and GFP-tagged kinases (C).

(TIF)

Figure S5 Number of self-loops, two-nodes feedbacks,
and three-nodes feedbacks in the evolvable cores with
respect to different random seeds of initial states (A, C,
and E) and deletion order (B, D, and F). This figure shows

that the evolvable cores obtained from the proposed identification

algorithm include, irrespective of different random seeds, a

significantly large number of feedbacks compared to the

random-deletion networks. Error bars on the white bars outlined

in red denote the standard errors of the average values.

(TIF)

Figure S6 The network heterogeneity of evolvable
cores, ratio of robust neighbor links, and characteristic
path lengths of evolvable cores with respect to different
random seeds of initial states (A, C, and E) and deletion
order (B, D, and F). This figure shows that the network

heterogeneity (A and B) and characteristic path lengths (E and F)

of the evolvable cores obtained from the proposed identification

algorithm are, irrespective of different random seeds, significantly

higher than those of random-deletion networks, and that middle-

degree nodes (red bars of C and D) contain more robust neighbor

links than low-degree nodes (blue bars of C and D) or high-degree

nodes (green bars of C and D) for all different random seeds. Error

bars of the white bars outlined in red in panels A, B, E, and F

denote the standard errors of the average values.

(TIF)

Figure S7 Number of connected components and the
characteristic path lengths of robust neighbors with
respect to different random seeds of initial states (A and
C) and deletion order (B and D). This figure shows that the

number of connected components and the characteristic path

lengths of the robust neighbors obtained from the proposed

identification algorithm are, irrespective of different random seeds,

smaller than those of random-selection networks.

(TIF)

Figure S8 Relationship between two genetic properties
(evolutionary rate and species broadness) and the
evolvability score for each node with respect to different

random seeds of initial states (A and C) and deletion
order (B and D). This figure shows that evolutionary rate

(species broadness) is positively (negatively) correlated with the

proportion of evolvable core links, irrespective of different random

seeds.

(TIF)

Figure S9 The normalized average evolvability and
robustness scores of the genes related to immune
system and those of the genes related to oncogene with
respect to different random seeds of initial states (A and
C) and deletion order (B and D). This figure shows that the

normalized average evolvability (robustness) score for the genes

related to immune system (oncogene, respectively) is, irrespective

of different random seeds, higher than that of the random control

group.

(TIF)

Figure S10 The normalized average evolvability and
robustness scores of the FDA-approved drug targets
which are not included in the experimental drug targets
and those of the experimental drug targets which are not
included in the FDA-approved drug targets.

(TIF)

Figure S11 The normalized average evolvability and
robustness scores of FDA-approved drug targets, exper-
imental drug targets, receptors, and kinases with
respect to different random seeds of initial states (A,
C, E, and G) and deletion order (B, D, F, and H). This

figure shows that the normalized average evolvability (robustness)

score of the FDA-approved drug targets or receptors (experimental

drug targets or kinases, respectively), irrespective of different

random seeds, are higher than that of the random control group.

(TIF)

Figure S12 Comparison of robust neighbor and redun-
dant links in the context of canalizing function. (A)

Illustration of the canalizing function and non-canalizing function.

(B) Venn diagram of the subgroups of links (evolvable core links

and robust neighbor links) and redundant links in the context of

canalizing function for the human signaling network.

(TIF)

Figure S13 The number of evolvable core links and that
of robust neighbor links under various input conditions.
(A) The number of evolvable core links under various input

conditions, the number of links included in the intersection with

the original evolvable core under zero input condition, and the

number of links in the control. (B) The number of robust neighbor

links under various input conditions, the number of links included

in the intersection with the original robust neighbor under zero

input condition, and the number of links in the control. Here, the

control (random intersection) is the intersection between the

random subgroup of links of the same size with the original

evolvable core (or the original robust neighbor) and another

random subgroup of links of the same size with the newly obtained

evolvable core (or the newly obtained robust neighbor) under

various input conditions. In this comparison, we used the first seed

for random deletion order and random initial states as shown in

Figure S3 for the original evolvable core and robust neighbor

under zero input condition. P-values were obtained from one-

sided two sample Chi square tests for 2 (the number of evolvable

core links or robust neighbor links under zero input condition)62

(the number of evolvable core links or robust neighbor links

obtained from the simulations with one of the state values of nine

Robustness and Evolvability of Signaling Network
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ligands or the set of ligands for GPCRs (a_q_lig, a_i_lig, a_s_lig,

and a_12_13_lig) set to ‘ON’ alternatively) contingency tables.

(TIF)

Figure S14 The number of evolvable core links and that
of robust neighbor links for asynchronous update. (A)

The number of evolvable core links for asynchronous update, the

number of links included in the intersection with the original

evolvable core for synchronous update, and the number of links in

the control. (B) The number of robust neighbor links for

asynchronous update, the number of links included in the

intersection with the original robust neighbor for synchronous

update, and the number of links in the control. Here, the control

(random intersection) is the intersection between the random

subgroup of links of the same size with the original evolvable core

(or the original robust neighbor) and another random subgroup of

links of the same size with the newly obtained evolvable core (or

the newly obtained robust neighbor) for asynchronous update. In

this comparison, we used the first seed for random deletion order

and random initial states as shown in Figure S3 for the original

evolvable core and robust neighbor for synchronous update. P-

values were obtained from one-sided two sample Chi square tests

for 2 (the number of evolvable core links or robust neighbor

links for synchronous update)62 (the number of evolvable core

links or robust neighbor links for asynchronous update) contin-

gency tables.

(TIF)

Figure S15 The emergent function of information
processing in the evolvable core of the human signaling
network. We followed the same procedure proposed by Helikar

et al. [22]. These scatter plots show how the network system

clusters combinations of 10,000 random inputs and then maps

them to the global outputs. The input values (0,100%) of three

input nodes (‘EGF’, ‘ECM’, and ‘ExtPump’) associated with the 15

most common outputs of Helikar et al. [22] are plotted in 3-

dimensional space using principle component analysis, where the

input value denotes a percentage ‘ON’ for the input node in the

Boolean iteration of 1,000 times and the output value denotes the

average number of ‘ON’s over the last 100 iterations out of the

Boolean iteration of 1,000 times. The output values were

categorized by using three different ranges: 0 (0,9%), 1

(10,29%), and 2 (30,100%). A four-tuple of numbers in the

legends represents a category of the four output nodes (‘Akt’, ‘Erk’,

‘Rac’, and ‘Cdc42’).

(TIF)

Figure S16 Decomposition of the JAK/STAT signaling
network. (A) JAK/STAT signaling network. (B) Evolvable core.

(C) Robust neighbor. (D) The correlation between evolutionary

rate and evolvability score. (E) The correlation between species

broadness and evolvability score. (F) The normalized average

evolvability and robustness scores of the genes related to immune

system. (G) The normalized average evolvability and robustness

scores of the oncogenes.

(TIF)

Figure S17 Decomposition of the Keratinocyte signaling
network. (A) Keratinocyte signaling network. (B) Evolvable core.

(C) Robust neighbor. (D) The correlation between evolutionary

rate and evolvability score. (E) The correlation between species

broadness and evolvability score. (F) The normalized average

evolvability and robustness scores of the genes related to immune

system. (G) The normalized average evolvability and robustness

scores of the oncogenes.

(TIF)

Figure S18 A flow diagram illustrating the proposed
algorithm for identifying the evolvable core and robust
neighbor.

(TIF)

Table S1 Primary attractor states of the human signal-
ing network for the first seed of initial states as shown in
Figure S3.

(DOC)

Table S2 List of links in the evolvable core for the first
seed of deletion order and the first seed of initial states
as shown in Figure S3.

(DOC)

Table S3 List of links in the robust neighbor for the first
seed of deletion order and the first seed of initial states
as shown in Figure S3.

(DOC)

Table S4 The name, EnetrezGene IDs, degree, evolva-
bility score, and robustness score for each node of the
network.

(DOC)

Table S5 The standard deviation of the evolvability
scores of the targets of multi-target drug.

(DOC)
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the evolvable core from perturbed nodes to output
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normalized proportion (NPij ) of the paths in the evolvable core
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Pij
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1ƒkƒn

Pkj

� �,
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NE

ij

NO
ij

, NE
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evolvable core from a node i to a node j, NO
ij denotes the

number of paths in the original network from a node i to a

node j, and n denotes the number of all the nodes in the

original network.

(DOC)

Table S7 List of evolvable core links, robust neighbor
links, and redundant links in the context of canalizing
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(DOC)

Table S8 Primary attractor states of the human signal-
ing network obtained from the simulation with the state
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(DOC)

Table S9 Primary attractor states of the human signal-
ing network obtained from the simulation with the state
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the state value of the input node ‘IL1_TNF’ set to ‘ON’.
(DOC)

Table S16 Primary attractor states of the human
signaling network obtained from the simulation with
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Table S18 Primary attractor states of the human
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(DOC)

Table S19 The emergent function of information pro-
cessing in the evolvable core of the human signaling
network. We followed the same procedure proposed by Helikar

et al. [22]. This table shows that the relatively small number of

output categories are observed from 10,000 simulations with

different inputs, where the input values denotes a percentage ‘ON’

for the input node in the Boolean iteration of 1,000 times and the

output values denote the average number of ‘ON’s over the last

100 iterations out of the Boolean iteration of 1,000 times. The

output values were categorized by using three different ranges; 0

(0,9%), 1 (10,29%), and 2 (30,100%). A four-tuple of numbers

in the legends represents a category of four output nodes (‘Akt’,

‘Erk’, ‘Rac’, and ‘Cdc42’).

(DOC)
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(DOC)

Table S21 The list of oncogenes that are included in the
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Table S22 The list of FDA-approved drug targets that
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Table S23 The list of experimental drug targets that are
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Table S25 The list of genes related to kinases that are
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