
Title Overlapping Stochastic Community Finding

Authors(s) McDaid, Aaron, Hurley, Neil J., Murphy, Thomas Brendan

Publication date 2014-08-20

Publication information McDaid, Aaron, Neil J. Hurley, and Thomas Brendan Murphy. “Overlapping Stochastic

Community Finding.” IEEE, 2014.

Conference details The 2014 IEEE/ACM International Conference on Advances in Social Network Analysis and

Mining (ASONAM), Beijing, China, 17-20 August 2014

Publisher IEEE

Item record/more

information

http://hdl.handle.net/10197/8215

Publisher's statement © 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained

for all other uses, in any current or future media, including reprinting/republishing this material for

advertising or promotional purposes, creating new collective works, for resale or redistribution to

servers or lists, or reuse of any copyrighted component of this work in other works.

Publisher's version (DOI) 10.1109/ASONAM.2014.6921554

Downloaded 2023-10-05T14:16:07Z

The UCD community has made this article openly available. Please share how this access

benefits you. Your story matters! (@ucd_oa)

© Some rights reserved. For more information

https://twitter.com/intent/tweet?via=ucd_oa&text=Overlapping+Stochastic+Community+Finding&url=http%3A%2F%2Fhdl.handle.net%2F10197%2F8215

Overlapping Stochastic Community Finding

Aaron McDaid, Neil Hurley
Insight Centre for Data Analytics

School of Computer Science and Informatics
University College Dublin

Dublin, Ireland
Email: aaronmcdaid@gmail.com

Email: neil.hurley@insight-centre.org

Brendan Murphy
Insight Centre for Data Analytics
School of Mathematical Sciences

University College Dublin
Dublin, Ireland

Email: brendan.murphy@insight-centre.org

Abstract—Community finding in social network analysis is the
task of identifying groups of people within a larger population
who are more likely to connect to each other than connect to
others in the population. Much existing research has focussed
on non-overlapping clustering. However, communities in real-
world social networks do overlap. This paper introduces a new
community finding method based on overlapping clustering. A
Bayesian statistical model is presented, and a Markov Chain
Monte Carlo (MCMC) algorithm is presented and evaluated
in comparison with two existing overlapping community finding
methods that are applicable to large networks. We evaluate our
algorithm on networks with thousands of nodes and tens of
thousands of edges.

Much research has been carried out on community finding
in networks [1], but most of the existing research has focussed
on non-overlapping clustering, where the nodes of the network
are clustered such that each node is assigned to exactly one
cluster. This paper introduces a new method for overlapping
clustering1, where each node may be assigned to more than one
community or to zero communities. Overlapping community
finding is the goal of research such as [2, 3] which has
shown that a member of a Facebook network may be a
member of six communities on average. Community-finding
is a special case of clustering. The assumption in community-
finding, as opposed to other clustering approaches such as
block-modelling [4], is that if a pair of nodes are linked to
each other in the network then it is more likely they will both
be members of the same community than if they are not linked.

This paper introduces a new model, which we call Over-
lapping Stochastic Community Finding (OSCF) and which is
related to the Overlapping Stochastic Block Model (OSBM)
[5]. Non-statistical methods are usually described explicitly as
a function which takes a network as input and computes a com-
munity labelling as a function of the network. In a Bayesian
statistical approach, a stochastic generative model is described
specifying a stochastic procedure to select a number of clusters
and to assign the nodes randomly to those clusters. Then, given
that assignment, we specify a stochastic procedure to generate
a network based on the assignment. In a community-finding
model such as ours, we specify a procedure which tends to
place the edges within communities. This results in a stochastic
procedure for which the network is a random output of the
model. Given an observed network as input, we use a Markov
Chain Monte Carlo algorithm (MCMC) to produce a sample
from the conditional joint distribution, given that network, of

1http://github.com/aaronmcdaid/OSCF-mcmc

the labelling and the number of clusters.

The variables of interest are the number of clusters, the la-
belling, and the network. Other variables in the model include
the number of nodes assigned to each cluster and the density
at which edges form within each cluster. A typical MCMC al-
gorithm explicitly samples all variables. Then variables whose
samples are not of interest to us can be numerically integrated
in order to access the marginal posterior. However, some mod-
els allow such nuisance variables to be analytically integrated
out, resulting in an algorithm whose state is simply the number
of clusters and the labelling. This approach has been called
collapsing and is used in this paper. The collapsed conditional
(‘posterior’) distribution is a function of the network, of the
proposed number of clusters, and of the proposed labelling.
We use modern MCMC techniques, inspired by the allocation
sampler [6], to improve the efficiency of the algorithm.

I. THE OSCF MODEL

Let n be the number of nodes in the network which is
taken as given. The number of communities, q, is drawn from
a Poisson prior, conditioned that the number of clusters is
greater than zero. The n nodes are assigned to the q clusters
such that sk, the number of nodes in cluster k, an integer
in the range 0 to n (inclusive), is drawn from a Geometric
distribution.2. The clustering is recorded in an n× q matrix Z
such that zik = 1 if node i is in cluster k and 0 otherwise.
Given sk, the elements zik are set to zero or one at random
such that sk =

∑
1<i<q zik. There is no other constraint on

this matrix, in particular each node may be in any number of
clusters (including zero).

Next, given (Z, sk, q), we generate a random latent network
for each of the q clusters, in a three-dimensional array Y
of dimension q × n × n such that the “slice” Yk∗∗ records
the random latent network corresponding to cluster k. These
slices are generated independently given (Z, sk, q) and the
final observed network is the union of these networks. For any
cluster k, we require that edges are possible only if the two
endpoints are members of cluster k: zikzjk=0 ⇒ ykij=0.
This places an upper limit of s2k on the number of edges that
may be present in the latent network of cluster k. Furthermore
imposing that the network is symmetric with no self-loops,
implies that

∑
i<j ykij ≤

1
2sk(sk−1) ,

1
2ak is the maximum

number of edges possible in the latent network for cluster k.

2ignoring prob. that sk > n, which is very low for large n

The random process next generates a vector m of
length q, of integers between 0 and ak (inclusive), mk ∼
Uniform({0, 1, ..., ak}), as the number of edges within the
latent network for cluster k. Given mk, the network Yk∗∗
is chosen with uniform probability from all networks of mk

edges that can be generated from the ak possible edges.
Marginalising away mk, we can write

P(Yk∗∗|z∗k, sk, q)=


1

(1+m∗
k)

(
ak
mk

)−1 if
∑
i zik=sk

and sym,
no self-loop

0 otherwise

where m∗k is defined as a function of Yk∗∗: m∗k =∑
i<j ykij . Finally, we have the probability distribution of Y :

P(Y |Z, s, q) =
∏q
k=1 P(Yk∗∗|z∗k, sk, q) , and, given Y , the

observed network X is a (deterministic) function of Y . An
edge is observed in X if and only if there is at least one k for
which ykij=1 i.e. xij |Y = min (1,

∑q
k=1 ykij) .

A. Collapsing

Rather than sample from Y ,m, Z, s, q|X , we would like
to integrate out m, s and Y to sample directly the conditional
distribution of the variables of interest, Z, q|·, however the
summation over Y appears impossible. Fortunately, we can
take a different approach and derive a closed-form expression
for P(X,Y , q). Then, with this probability mass function,
we can implement a Markov Chain which samples from the
conditional distribution Y , q|X . Now,

P(X,Y , q) = P(X|Y , q)

(∑
Z

P(Y , Z|q)

)
P(q) . (1)

We have that P(q) ∝ 1
q! and P(X|Y , q) is the simple 0-1

function that tells us if Y is compatible with x. It may be
shown that

∑
Z P(Y , Z|q) can be computed as:

q∏
k=1

(
n∑

sk=0

(∑
z∗k

(
P(Yk∗∗|z∗k, sk)P(z∗k|sk)P(sk)

)))
.

The inner summation can be simplified further. Each term
is either zero, or it is equal to 1

1+ak
1

(ak
mk

)
1

(n
sk
)

. Therefore,

we simply need to count how many terms will take the
non-zero value. Again, some calculation leads to P(Y |q) =∏q
k=1 f(s

∗
k,m

∗
k, n) , where

f(s∗k,m
∗
k, n) ,

sk=n∑
sk=s∗k

1

2(1+sk)
1

1 + ak

1(
ak
m∗

k

) 1(
n
sk

)(n− s∗k
s− s∗k

)
,

which depends only on three numbers (n, s∗k,m
∗
k). For large

n, the number of terms in the summation in f(·) is large,
but the value is very much dominated by the first few terms.
Therefore, we have found it sufficient to approximate f(·) by
the summation over the first 100 terms. Also, for a given triple
(n, s∗k,m

∗
k), we calculate f(·) only once and the result is stored

in a cache. As the algorithm makes changes to its estimates of
(Y , q), we keep track of how this changes s∗k and m∗k, and then
we can calculate the relevant probability mass, P(X,Y , q),
quickly by using these sufficient statistics and looking up the
cache of f(·).

II. CONTRAST WITH MOSES AND OSBM

The OSCF model is similar to the models used in MOSES
[3] and in the OSBM [5]. In these models, each node may be
be in any number of clusters. MOSES is a specialization of the
OSCF, where each cluster is assumed to have the same density.
In place of the mk variable in MOSES, there is a single real-
valued parameter which is P(ykij = 1|zik = 1, zjk = 1). The
approach taken in OSCF, where each community effectively
has its own density parameter, is perhaps more realistic and
also has the advantage of allowing the collapsing mentioned
above as it introduces more independence between the com-
munities. In the OSCF and in MOSES, given Z, the probability
of two nodes connecting depends only on the intersection of
the sets of communities that the two nodes are in; the number
of such communities is

∑q
k=1 zikzjk. However, the OSBM

considers every pair of communities in the product of those
two sets and allows each to contribute to the log-odds of a
connection. OSBM allows a more general type of structure, not
simply assuming that edges are preferred within communities.

III. MCMC FOR OSCF

We present a Metropolis-Hastings algorithm to draw
Y , q|X . Note that the observed data X appears only in the
0-1 probability P(X|Y , q). If xij = 0, then we know that
ykij |X = 0, for all k, and therefore these cells of y are fixed at
zero and no proposal is ever made in our MCMC algorithm to
change them. Similarly, if xij = 1 then we know this condition
requires that at least one of the ykij |X be equal to 1. As long
as these two conditions are preserved at all times, we need not
concern ourselves with P(X|Y , q) as it is constant under those
conditions. For each edge xij = 1 we keep track of the total∑
k ykij . Every move in the algorithm can be decomposed into

a series of moves that change q, or which flip individual cells
ykij . It is straight-forward to efficiently update the sufficient
statistics as individual cells in ykij are changed. The moves
are as follows:

1) Move #1 - Metropolis on q: This move first chooses,
with probability 1/2, whether to attempt to add or to remove
a community. Each existing community is identified with a
number between 1 and q inclusive. If add is selected, then
we propose to increase q via q′ = q + 1 and the identity of
the proposed new community, k, is selected randomly between
1 and q + 1 inclusive - if accepted and if k ≤ q, the edges
that were in the existing community k are moved to a new
community with identifier q + 1, leaving k as the new empty
community. If remove is selected, then one of the q existing
communities is selected at random. If it is not empty then the
proposal is immediately rejected.

2) Move #2 - Metropolis, one node one community: This
is the simplest move. One edge is selected at random from
the observed network X, a pair of nodes i and j such that
xij = 1, and one community, k, is selected at random. The
node is either in the community, ykij = 1, or it is not, ykij = 0.
We propose to flip this, y′kij = 1− ykij .

3) Move #3 - Gibbs update on ‘Nearby’ communities: A
simple Gibbs update was implemented, but is not included by
default as it is slow on networks with large numbers of com-
munities. In the simple update, one edge is selected at random
from the observed network X , which joins node i to node j.

This tells us that xij = 1 and therefore that
∑
k ykij ≥ 1. We

consider the vector y∗ij which records which communities that
edge has been assigned to. The existing value of this vector is
discarded and a new value for this vector, y′∗ij , is accepted,
drawn from the conditional distribution where everything else
in Y is fixed, y∗ij |Y (−∗ij), q,X . A slightly more complicated
variant of the Gibbs update identifies a subset of the cells
within the Y object and updates all of them simultaneously,
conditioning on all other entries remaining fixed. First, an edge
is selected from the network, i.e. a pair (i, j) such that xij = 1.
Then, a set of ‘nearby’ communities, N(i, j), is identified for
that edge, consisting of those communities containing edges
that share one node with the current edge. This is the set of
communities k such that there exists at least one edge in Yk∗∗
which includes exactly one of {i, j}. When q is large, the set
of nearby communities will typically be much smaller than the
full set of communities.

4) Move #4 - M3: The M3 move is inspired by the
allocation sampler of [6]. Two distinct communities k and
l are selected at random. The M3 move proposes to rearrange
the edges in both communities. The edges of interest fall into
three categories, those that are in community k, those that are
in community l, and those that are in both communities. The
formal Metropolis proposal is built by iterating through the
edges in a random order and assigning them to one of the
three categories, keeping track of the acceptance probability.
The probability of the reverse proposal is also calculated in
the same way.

5) Move #5 - AnySM: Propose merge/split between any
two communities: The split-merge move can take any two
communities and propose to merge them, and it also can do the
opposite move where a community is split in two. In order to
create a split proposal, a new empty community with identifier
q+1 is created, and then a community 1 ≤ l ≤ q+1 is selected
at random. If l < q+1, then the edges currently in community
l are moved into the empty community, q + 1. Now, l is the
empty community. Another community, 1 ≤ k 6= l ≤ q + 1,
is selected. The proposal is then to consider all edges that are
currently in k and to assign them to one of three possible states
correponding to placing the edge k, or in l, or in both.

Initially, a launch state [7] for the move is computed. With
probability 1/2, the launch state is formed by simply removing
all edges from the community. Otherwise, a more complicated
launch state policy first assigns the edges to one of the three
possible states using a Dirichlet random variable to select the
proportions to be used for this random assignment. After this
initialization, five sweeps are performed where the edges are
iterated over in a random order, using a simple Gibbs update
like in the M3 move described above. Once the launch state
is reached, the remainder of the move proceeds much like the
M3 move; the proposal itself is a single sweep of the Gibbs
update, again limited to the three allowable states, where the
probability of each of the three states is proportional to the
target distribution at those three states.

6) Move #6 - SharedSM: Propose merge/split based on a
shared edge: The last move, SharedSM, is identical to AnySM
except for one change. AnySM, when attempting a merge, will
select two communities at random. Instead, SharedSM will
select an edge at random, and if that edge is a member of two
or more communities then it will propose that two of those

communities be merged. Otherwise, the method is identical to
AnySM.

7) Initialization: In the next section, we discuss experi-
ments where the algorithm is initialized in two ways. A simple
initialisation sets q = 1 and every edge is placed in that single
community. A more complex initialization strategy is inspired
by the seed expansion used in [3, 8]. An edge is selected at
random and the two nodes of that edge are used to form the
seed of a community. Nodes are added to the seed one at
a time until a local maximum of eq. (1) is achieved. Then,
those edges are ignored for the remainder of the initialization
process, which proceeds to make new communities until every
edge is in exactly one community.

IV. EVALUATION ON SYNTHETIC DATA

We performed an evaluation by creating a variety of
synthetic networks with known “true” clusterings and tested
the ability of our algorithm to find the true overlapping com-
munities. Two other algorithms are included in this evaluation.
The OSLOM method [9] also takes a statistical approach
to finding overlapping communities, calculating the ‘fitness’
of a proposed community via the statistical significance of
clusters with respect to random fluctuations. We also use
MOSES [3] as it has a similar Bayesian model to that used
in OSCF. We use implementations provided by the authors,
with default parameters. We ran our OSCF algorithm for
1,000 iterations – where an iteration involves running the six
MCMC moves once for each edge in the network. Also, we
included the initialization strategy defined in section III-7. The
networks each had 1,000 nodes and were generated by the LFR
benchmark software [10]. The degree of the nodes is fixed so
that each node connects to approximately seven members of
each community that it is a member of. Therefore, when a
node is in eight communities, its degree is 56 = 7× 8.

In table I, the details of the parameters used to generate
the files are presented and, for each of the algorithms, their
accuracy at finding the true clustering. We use the overlappig
NMI formula [11] to measure the accuracy between the true
clustering and that found by the algorithm. We generate five
networks of each type, and present the median, minimum, and
maximum NMI score attained by each algorithm. We have
also highlighted the best performing algorithm on each type
of network by printing their median score in bold.

At the top of the table, we can see examples where all
algorithms get high NMI scores. For example, when each node
is a member of just two communities (O=2) the structure
is relatively easy to detect and sometimes the algorithms
can get a perfect score (NMI=1.0). However, as the num-
ber of overlapping communities increases, we see that the
performance decreases. For example, where s=10, O=8 and
µ=0.0, OSCF-SE (our OSCF method, with initialization by
seed expansion) attains a median NMI of 0.999, but the other
algorithms achieve only 0.259 at best. These types of networks
are where OSCF performs best. An increase in the mixing
parameter µ, which controls the proportion of edges that have
been randomly rewired, also harms performance. If µ and O
are both too high, then all algorithms perform badly. In the
bottom portion of the table, we see results where the sizes
of communities (s) are not fixed and are chosen uniformly

TABLE I: Overlapping NMI scores for a number of algorithms.
Average NMI scores over 5 networks are presented. Best scores
are printed in bold. s: the size of community. q: the number of
communities. O: the number of communities that a typical node is in.
µ: mixing parameter. Algorithms: OSLOM[9], MOSES[3], OSCF-SE
(initialized by seed expansion), OSCF-10k (ran for 10,000 iterations,
seeded with q=1.)

s q O µ Algorithm NMI (median) NMI(min/max)
10 200 2 0.0 OSLOM 1.000 (1.000 / 1.000)
10 200 2 0.0 MOSES 0.942 (0.898 / 0.967)
10 200 2 0.0 OSCF-SE 1.000 (1.000 / 1.000)
10 200 2 0.1 OSLOM 0.994 (0.988 / 0.999)
10 200 2 0.1 MOSES 0.937 (0.923 / 0.967)
10 200 2 0.1 OSCF-SE 0.983 (0.982 / 0.987)
10 200 2 0.2 OSLOM 0.970 (0.969 / 0.986)
10 200 2 0.2 MOSES 0.970 (0.947 / 0.982)
10 200 2 0.2 OSCF-SE 0.986 (0.981 / 0.996)
10 400 4 0.0 OSLOM 0.857 (0.843 / 0.881)
10 400 4 0.0 MOSES 0.569 (0.001 / 0.647)
10 400 4 0.0 OSCF-SE 1.000 (1.000 / 1.000)
10 400 4 0.1 OSLOM 0.688 (0.660 / 0.717)
10 400 4 0.1 MOSES 0.730 (0.675 / 0.835)
10 400 4 0.1 OSCF-SE 0.994 (0.991 / 0.996)
10 400 4 0.2 OSLOM 0.195 (0.168 / 0.272)
10 400 4 0.2 MOSES 0.895 (0.841 / 0.904)
10 400 4 0.2 OSCF-SE 0.971 (0.965 / 0.974)
10 800 8 0.0 OSLOM 0.259 (0.234 / 0.277)
10 800 8 0.0 MOSES 0.001 (0.001 / 0.001)
10 800 8 0.0 OSCF-SE 0.999 (0.999 / 1.000)
10 800 8 0.1 OSLOM 0.013 (0.011 / 0.021)
10 800 8 0.1 MOSES 0.001 (0.001 / 0.049)
10 800 8 0.1 OSCF-SE 0.870 (0.826 / 0.901)
10 800 8 0.2 OSLOM 0.006 (0.003 / 0.009)
10 800 8 0.2 MOSES 0.001 (0.001 / 0.001)
10 800 8 0.2 OSCF-SE 0.240 (0.230 / 0.253)

10-40 ≈80 2 0.0 OSLOM 0.960 (0.912 / 0.987)
10-40 ≈80 2 0.0 MOSES 0.779 (0.770 / 0.800)
10-40 ≈80 2 0.0 OSCF-SE 0.993 (0.989 / 0.995)
10-40 ≈80 2 0.1 OSLOM 0.924 (0.869 / 0.959)
10-40 ≈80 2 0.1 MOSES 0.718 (0.610 / 0.795)
10-40 ≈80 2 0.1 OSCF-SE 0.970 (0.961 / 0.977)
10-40 ≈80 2 0.2 OSLOM 0.714 (0.643 / 0.873)
10-40 ≈80 2 0.2 MOSES 0.501 (0.348 / 0.543)
10-40 ≈80 2 0.2 OSCF-SE 0.904 (0.822 / 0.932)
10-40 ≈160 4 0.0 OSLOM 0.258 (0.231 / 0.333)
10-40 ≈160 4 0.0 MOSES 0.774 (0.763 / 0.791)
10-40 ≈160 4 0.0 OSCF-SE 0.993 (0.993 / 0.994)
10-40 ≈160 4 0.1 OSLOM 0.134 (0.111 / 0.153)
10-40 ≈160 4 0.1 MOSES 0.552 (0.483 / 0.612)
10-40 ≈160 4 0.1 OSCF-10k 0.963 (0.952 / 0.971)
10-40 ≈160 4 0.1 OSCF-SE 0.239 (0.202 / 0.292)
10-40 ≈160 4 0.2 OSLOM 0.056 (0.035 / 0.086)
10-40 ≈160 4 0.2 MOSES 0.235 (0.169 / 0.244)
10-40 ≈160 4 0.2 OSCF-10k 0.189 (0.157 / 0.217)
10-40 ≈160 4 0.2 OSCF-SE 0.075 (0.058 / 0.088)

at random between 10 and 40. The NMI scores are generally
smaller than the corresponding scores in the top portion of
the table. In particular, the performance of MOSES decreases
as the community sizes are allowed to vary. This may be
because the model used by MOSES assumes that the edge
density within each community is constant. However, the
OSCF algorithm sometimes performs well when the size of
the communities varies. The OSCF algorithm is the slowest.
For example, when s=10− 40, O=4 and µ=0.1, the average
number of seconds for OSCF to complete 1,000 iterations
is 2,436.68, compared to 35.84 for MOSES and 1,038.02
for OSLOM. For completeness we did allow OSCF to run
to 10,000 iterations (without the seed expansion) for this
particular set of parameters, now taking 26,607.55 seconds on
average for a single run. These results are included in the table
as “OSCF-10k” and we can see that the NMI score after 10,000

iterations is better than after 1,000 iterations. OSCF is slow,
but it can be very accurate if allowed to run for a long time,
attaining an NMI of 96% where no other algorithm achieves
better than 56%.

V. CONCLUSION

We present a new model for overlapping clustering applied
to networks, suitable for community finding. Despite the
complexity of the model, we are able to derive a formula for
the conditional probability which is a function only of the
network, the proposed number of clusters and the proposed
clustering. An MCMC algorithm is presented which can be
applied to networks with up to 50,000 edges and 1,000 nodes.
The most challenging networks are those were the number
of communities is large and the size of the communities
varies; OSCF performs best here, significantly outperforming
the other methods, especially if allowed to run for a larger
number of iterations. We can not generally assume that ‘real-
world’ communities are all of the same size and density, and
therefore researchers should consider using more challenging
benchmarks such as those used here.

ACKNOWLEDGMENT

This publication has emanated from research conducted
with the financial support of Science Foundation Ireland (SFI)
under Grant Number SFI/12/RC/2289.

REFERENCES

[1] S. Fortunato, “Community detection in graphs,” Physics Re-
ports, vol. 486, no. 3-5, pp. 75 – 174, 2010.

[2] M. Salter-Townshend and T. Murphy, “Variational bayesian
inference for the latent position cluster model for network data,”
Computational Statistics & Data Analysis, vol. 57, pp. 661–671,
2012.

[3] A. McDaid and N. Hurley, “Detecting highly overlapping com-
munities with model-based overlapping seed expansion,” in
Proceedings of ASONAM, 2010, pp. 112–119.

[4] K. Nowicki and T. A. B. Snijders, “Estimation and prediction for
stochastic blockstructures,” Journal of the American Statistical
Association, vol. 96, no. 455, pp. 1077–1087, Sep. 2001.

[5] P. Latouche, E. Birmelé, and C. Ambroise, “Overlapping
stochastic block models,” Annals of Applied Statistics, Oct 2009.

[6] A. Nobile and A. Fearnside, “Bayesian finite mixtures with
an unknown number of components: The allocation sampler,”
Statistics and Computing, vol. 17, no. 2, pp. 147–162, Jun. 2007.

[7] S. Jain and R. M. Neal, “A split-merge Markov chain Monte
Carlo procedure for the Dirichlet process mixture model,” Dept.
of Statistics, University of Toronto, Technical Report 2003, July
27 2000.

[8] C. Lee, F. Reid, A. McDaid, and N. Hurley, “Detecting highly
overlapping community structure by greedy clique expansion,”
arXiv 1002.1827, 2010.

[9] A. Lancichinetti, F. Radicchi, J. J. Ramasco, and S. Fortu-
nato, “Finding statistically significant communities in networks,”
PLoS ONE, vol. 6, no. 4, pp. e18 961+, Apr. 2011.

[10] A. Lancichinetti and S. Fortunato, “Benchmarks for testing com-
munity detection algorithms on directed and weighted graphs
with overlapping communities,” Physical Review E, vol. 80,
no. 1, p. 16118, 2009.

[11] A. McDaid, D. Greene, and N. Hurley, “Normalized mutual
information to evaluate overlapping community finding algo-
rithms,” arXiv 1110.2515, 2010.

