
Title Exploiting Extended Search Sessions for Recommending Search Experiences in the Social Web

Authors(s) Saaya, Zurina, Schaal, Markus, Coyle, Maurice, Briggs, Peter, Smyth, Barry

Publication date 2012-09-03

Publication information Saaya, Zurina, Markus Schaal, Maurice Coyle, Peter Briggs, and Barry Smyth. “Exploiting 

Extended Search Sessions for Recommending Search Experiences in the Social Web.” Springer 

Berlin Heidelberg, 2012.

Conference details 20th International Conference, ICCBR 2012, Lyon, France, September 3-6, 2012.

Publisher Springer Berlin Heidelberg

Item record/more 

information

http://hdl.handle.net/10197/4351

Publisher's statement The final publication is available at www.springerlink.com

Publisher's version (DOI) 10.1007/978-3-642-32986-9_28

Downloaded 2023-10-05T14:16:07Z

The UCD community has made this article openly available. Please share how this access

benefits you. Your story matters! (@ucd_oa)

© Some rights reserved. For more information

https://twitter.com/intent/tweet?via=ucd_oa&text=DOI%3A978-3-642-32985-2&url=http%3A%2F%2Fhdl.handle.net%2F10197%2F4351


Exploiting Extended Search Sessions for
Recommending Search Experiences in the Social

Web

Zurina Saaya, Markus Schaal, Maurice Coyle, Peter Briggs and Barry Smyth

CLARITY: Centre for Sensor Web Technologies
School of Computer Science and Informatics

University College Dublin, Ireland
firstname.lastname@ucd.ie

http://www.clarity-centre.org

Abstract. HeyStaks is a case-based social search system that allows
users to create and share case bases of search experiences (called staks)
and uses these staks as the basis for result recommendations at search
time. These recommendations are added to conventional results from
Google and Bing so that searchers can benefit from more focused results
from people they trust on topics that matter to them. An important
point of friction in HeyStaks is the need for searchers to select their
search context (that is, their active stak) at search time. In this paper
we extend previous work that attempts to eliminate this friction by au-
tomatically recommending an active stak based on the searchers context
(query terms, Google results, etc.) and demonstrate significant improve-
ments in stak recommendation accuracy.

Keywords: social search, community recommendation

1 Introduction

Over the past few years there has been a growing interest in the application of
case-based reasoning techniques to the type of experiences and opinions that
are routinely captured as web content. The modern web is characterized by
a proliferation of user-generated content. On the one hand we are all familiar
with user generated content in the form of blog posts, online reviews, comments
and ratings. On the other hand there is an equally rich tapestry of implicit

experiential signals created by the actions of web users: the links people follow
as their navigate, the results we select when we search, the pages we bookmark
and share, and the movies and music we play. Collectively this content, and our
actions as we consume and share it, encode our experiences and these experiences
constitute the raw material for reuse as evidenced by recent work in the area of
WebCBR and the Experience Web [16], [22].

We are also interested in the experience web, specifically in the search experi-
ences of users and the opportunity to reuse these experiences in order to improve



the e↵ectiveness of mainstream web search. Modern search engines continue to
struggle when it comes to delivering the right results to the right users at the
right time. This is particularly acute in today’s culture of sophisticated search
engine optimization (SEO) techniques and so-called content farming strategies,
which are designed to boost the rank of targeted results, often to the detriment
of the individual searcher. Much has been written about the need for a more
personalized approach to web search, see [5], [7], [17]. One particular approach
to improving web search that has been gaining traction recently is evidenced by
recent moves by mainstream search engines to introduce an element of so-called
social search into their workflow, by incorporating results that have originated
from the searcher’s social network (e.g. Twitter, FaceBook, Google+), borrowing
ideas from work on collaborative web search, see [20], [15], [2].

In this work we will focus on one particular approach to collaborative web
search as presented previously in work by [21] and implemented in a system
called HeyStaks. HeyStaks integrates collaborative web search into Google and
Bing via a browser plugin. HeyStaks is further informed by the recent interest in
curation on the web as evidenced by the emergence of content curation services
such as Pinterest, Clipboard, ScoopIt etc; see [14]. Briefly, HeyStaks allows users
to curate and share collections of search experiences called staks; each stak is
essentially a case base of search experiences on a given topic. As a stak member
searches, in the context of a given stak, any results they select are added to the
stak. Then, in the future, when other members search for similar queries they
may be recommended these results, in addition to the standard Google or Bing
results. For example, consider a small group of college students planning a vaca-
tion together. One of the students might create a travel stak and share it with
the others. Over time their vacation-related searches will add valuable queries
and results to this stak and other members will benefit from these experiences
by getting recommendations from this stak during their searches. We will review
the operation of HeyStaks in more detail in Section 3.

We will focus on a specific problem faced by HeyStaks users, namely the
selection of an appropriate context (stak) for their target search. Currently,
HeyStaks users need to select one of their search staks at search time to ensure
that any queries and selections are stored in the correct context. If users forget
to select a stak, which they frequently do, then search experiences can be mis-
recorded, compromising stak quality and leading to poor recommendations in the
future. Recently [19] proposed an alternative to manual stak selection by using
textual CBR methods to recommend staks at search time. While results were
promising they were not at the level necessary to use in practice. For example,
to be practical it is necessary to be able to recommend an appropriate stak 80-
90% of the time. However, the work of [19] achieved recommendation success
rates of less than 60%. This initial solution based its recommendations on a
straightforward term-overlap between the terms associated with the searcher’s
current query (e.g. query terms and/or terms from the results retrieved from the
underlying mainstream search engine) and terms that reflect stak topics (e.g.,
terms associated with queries and or pages that make up the stak). The main



contribution of this work is a two-part extension of the work of [19]. First we look
at the potential to profile a searcher’s query across multiple query instances (a so-
called search session), since searchers often submit a series of related queries (and
receive di↵erent result lists) before they find what they are looking for. Second,
we describe a technique for weighting the relative importance of search session
terms during recommendation. We go on to present a set of results based on
live-user usage of HeyStaks to demonstrate the potential of these new techniques
relative to the benchmark described by [19].

2 Related Work

There is a history of using case-based methods in information retrieval and web
search. For example, the work of [18] looks at the application of CBR to legal
information retrieval (see also [3]), and [6] describe a case-based approach to
question-answering tasks. Similarly, in recent years there has been considerable
research looking at how CBR techniques can deal with less structured textual
cases. This has led to a range of so-called textual CBR techniques [13][23].

In the context of Web search, one particularly relevant piece of work concerns
the Broadway recommender system [12] and a novel query refinement technique
that uses case-based techniques to reuse past query refinements in order to rec-
ommend new refinements. Broadway’s cases reference a precise experience within
a search session and include a problem description (made up of a sequence of
behavioural elements including a sequence of recent queries), a solution (a new
query refinement configuration), and an evaluation (based on historical explicit
user satisfaction ratings when this case was previously recommended). The work
of [8] apply CBR techniques to Web search in a di↵erent way. Very briefly, their
PersonalSearcher agent combines user profiling and textual case-based reasoning
to dynamically filter Web documents according to a user’s learned preferences.

More recently researchers have applied CBR concepts to web search. For ex-
ample, [4] introduced collaborative web search (CWS) and the idea of reusing
the search experiences of communities of like-minded searchers as implemented
in the form of a system called I-SPY. In short, each community is associated
with a case base of past search cases, with each case taking the form of a set
of query terms (the problem specification) and a selected result (the problem
solution). When presented with a new target query the I-SPY system retrieves
a set of cases with similar queries and rank orders a set of corresponding results,
recommending the top ranking results which have been frequently selected for
similar queries by the community during past searches. This approach was re-
cently expanded on by the work of [21] in the HeyStaks system, which allowed
users to create and share their own case bases of search experiences. HeyStaks
also extended search case representations to include snippet information, tags,
and sharing and voting signals, in addition to simple query terms, in order to
facilitate a more flexible approach to case similarity and retrieval. We will review
HeyStaks in the following sections as it forms the basis of the work presented



URLn
URL2

Stak

URL1
Search�queries
Titles�and�snippets
Tagged�Terms
#Selects
#Votes
#Shares
#Tagged

Fig. 1. Search Experiences in HeyStaks

in this paper and then proceed to describe the stak recommendation task and
evaluate our extended solution.

3 HeyStaks: A Case-Based Approach to Social Search

HeyStaks combines a number of ideas to deliver an improved search experience
for users. First and foremost it is based around the notion of collaboration,
namely that it is useful for users to be able to collaborate as they search. Second
it emphasizes the importance of curation and the willingness of interested users
to create and maintain collections of topical content. Thirdly, it stresses the
importance of integration by delivering social search within the context of an
existing search service such as Google, by integrating with Google via a browser
plugin. Bringing all of these ideas together HeyStaks allows communities of like-
minded users to create and share curated repositories of search experiences,
which deliver targeted recommendations to community members as they search,
in addition to the organic results of Google, Bing or Yahoo.

The central idea in HeyStaks is the notion of a search stak. A stak is a named
collection of search experiences. It is represented as a case base of search cases.
Users can create and share their own search staks or they can join those created
by others. Staks will typically be created around a topic that matters to a group
of users, perhaps an upcoming vacation. At their core staks contain URLs for web
pages that have been found during search sessions. Each URL is essentially the
solution of a search case and is associated with a set of specification features that
capture the di↵erent ways in which this case has been located in the past. For
example, these features will typically include the terms of any queries that led to
this URL being selected. Similarly, any snippet terms associated with the URL by
some underlying search engine can also be used as part of the case specification.
HeyStaks users can tag, rate, and share URLs too and this information will also
be captured as part of a given URL’s specification; see Figure 1. In this way
each URL is associated with a rich set of search experiences that have led to its
selection and these features can be used during future searches as a means to
decide whether or not the URL should be recommended to the future searcher.



Fig. 2. The searcher is looking for visa information to enter Canada but Bing responds
with results related VISA payment system. HeyStaks recognises the query as relevant
to the searcher’s Canada Trip stak and presents a set of more relevant results drawn
from this stak.

The full details of staks and their search cases have been covered elsewhere (see
[21]) and are beyond the scope of this paper.

Fig. 2 shows HeyStaks in operation. It shows a searcher, looking for Canadian
visa information, benefiting from recommendations made by a group of friends
who share a search stak called Canada Trip. The HeyStaks browser toolbar
is shown, which provides access to key functionality such as tagging, rating,
sharing etc. In this example, the user has selected the Canada Trip and a set
of recommendations are shown alongside the standard Bing result list. These
recommendations have been inserted into the standard Bing results page via
the HeyStaks toolbar and the recommendations have been selected based on the
past search experiences of other stak members. In this way our searcher benefits
from the wisdom of people they trust on a topic that matters to them while they
search. Once again the full details of this recommendation process are beyond
the scope of this paper but they have been discussed in detail in [21]

One notable feature of this example is that the screenshot shows the Canada
Trip stak being suggested to the user at search time; notice the message ”Your

active stak was changed to Canada Trip”. This is important for this paper be-
cause we are focused on automating this type of recommendation to the user,
as opposed to recommending search results as per [21] currently these stak rec-
ommendations are very limited in HeyStaks. It is important for the user to be
using the right stak for a given search if they are to benefit fully from HeyStaks’



recommendations. In the past this has been a largely manual process, meaning
the user was expected to select the stak at search time, which is far from ideal
since it introduces an additional point of friction into the overall proposition.

4 Recommending Search Case Bases

The recommendation of prior search results depends crucially on the recom-
mendation of a suitable stak to the searcher at search time. The importance of
selecting the correct stak is twofold. On the one hand, the detection of staks
related to the current query provides the basis for result recommendations for
the user and if this detection does not work properly then in all likelihood any
recommendations made by HeyStaks to the user will be unlikely to be e↵ective.
But much more importantly, the current active stak provides a context for any
search experiences such as selections, tagging, rating that the users make during
the search session, etc. If the wrong stak is chosen, search experiences will be
stored in an inappropriate stak, thus polluting this incorrect stak with irrelevant
results, and preventing the case-base to gain maturity through learning based
on the user’s current session.

How then can we select and recommend a stak at search time? Prior work
of [19] has looked at how to profile a stak and, given a current search query
or partial search experience, how to identify those staks that are most likely to
correspond to the current search needs. A summary of this stak recommendation
process is presented in Figure 3. Briefly, for each user a new case base called the
stak summaries case base (SSCB) is produced. In this case base each stak case

corresponds to a single stak. In other words it is a case that is produced from
a combination of the individual search cases in the corresponding stak case
base. In e↵ect, the specification part of each stak case is the combination of the
specifications of the corresponding stak’s search cases and the solution of the
stak case is the corresponding stak id. In this way, stak cases are associated
with the queries, snippets, URLs etc that are the basis of the search experiences
within individual staks.

At search time we can use information about the searcher’s current search
context in order to retrieve a set of similar stak cases from the SSCB, or prefer-
ably automatically switch the user into a stak based on the most similar stak
case. What information can be used to do this? In [19] a number of sources of
information were considered including the searcher’s current query, the snippet
text for any results returned by the underlying search engine, the URLs of these
results, and popularity information for the user’s staks. This information can be
used to build a stak query SQ for the user and then we can score each stak case
in the SSCB using a scoring metric such as that shown in Equation 1 to produce
a ranked list of stak recommendations as per Equation 2.

Score(SQ, SC , SSCB) =
X

t✏SQ

tf(t, SC)⇥ idf(t, SSCB) (1)



Fig. 3. An overview of the stak recommendation process

RecList(SQ, SU , SSCB) =
SortDesc(Score(SQ, SC , SSCB))
8SC✏SU

(2)

Thus the user’s stak query SQ is made up of a set of terms (that may include
query and snippet terms, URls etc) and we can use TF-IDF [9] to calculate the
relevance of a candidate stak SC (from those staks the user is a member of,
SU ) to SQ; see Equation 1, which gives a higher weighting to SQ terms that
are common in SC but uncommon across SSCB as a whole. By using di↵erent
combinations of features for the stak query SQ we can implement and test a
number of di↵erent stak recommendation strategies as discussed by [19]. In
what follows in this work we will focus on the combinations shown in Table 1.

Strategy Description

URL URLs from the result-list
Snippet Page titles and snippets from the result-list
Query User’s search query
URLSnippetQuery Combination of URLs, search query,

page titles and snippets
Popular Most frequent stak for the user
URLSnippetQueryPopular Combination of all strategies

Table 1. Strategies for Staks Recommendation

5 Extending Stak Recommendation

The approach of [19] is limited in a number of important respects. Firstly each
search is considered to be an atomic (singleton) session, which is not the way
that people search in practice. Very often a searcher will require a few (related)



queries to find what they are looking for (see [1]) and this means that we are not
limited to using a single query (and its attendant data) for stak recommendation.
In principle it is possible to assemble a stak query from the information contained
in extended search sessions that span multiple queries, and in so doing provide
a richer SQ as the basis for recommendation. Moreover, the work of [19] did
not consider the weighting of SQ features/terms. But if we are constructing stak
queries across multiple sessions then frequently recurring terms can be considered
more important within SQ, for example, and this information can be used to
further enhance stak recommendation. We will develop and evaluate both of
these ideas in the remainder of this paper.

5.1 Harnessing Extended Sessions

Given that many search sessions will span multiple queries it is natural to con-
sider the possibility of using additional information from an evolving search ses-
sion as the basis for stak recommendation. For example, while it might not be
possible to reliably recommend the correct stak on the first query, the availabil-
ity of an additional query (and its associated URLs and snippets) may improve
recommendation quality. Thus, an alternative stak recommendation approach
should build each stak query SQ by aggregating the information that is avail-
able across related searches. Of course to do this it is necessary to be able to
identify an extended search session. For the purpose of this work we use the
method introduced by [11] (see Fig. 4), which e↵ectively groups queries from a
search log based on a simple term-overlap threshold.

Fig. 4. (Left) A sequence of queries submitted by one user. (Right) Sessions obtained
based on shared query terms as per [11].

Thus, the stak query, as defined in the previous section, can now be adapted
to cover sessions with multiple queries as S

⇤
Q = {S1

Q, ..S
n
Q}. And in turn we

can apply the stak recommendation techniques to these extended stak queries
to investigate their impact on overall recommendation accuracy. In this way,
as a search session evolves, the stak recommendation system has access to an
increasing volume of relevant information as the basis for recommendation. The



intuition is that this will improve recommendation quality, which we will come
to test in due course.

5.2 Session-based Term Weighting

The second limitation of the work presented in [19] is that the elements of a
stak query are all assumed to be equally important. In other words there is
no relative weighting of stak query terms even though, as we accumulate infor-
mation across extended search sessions, there is an opportunity to introduce a
weighting model into the stak recommendation process. Simply put, we can use
term frequency information (calculated across a search session) as term weights,
W (t, S⇤

Q), during recommendation. In this way the terms that frequently recur
in the searchers queries (or in the snippet texts of the organic search results)
are deemed to play a more important role during stak selection according to the
new scoring function presented in Equation 3.

Score(S⇤
Q, SC , SSCB) =

X

t✏S⇤
Q

tf(t, SC)⇥ idf(t, SSCB)⇥W (t, S⇤
Q) (3)

Once again the intuition is that the combination of extended search ses-
sions as a richer source of query information combined with the availability of
term weights should help to improve overall recommendation e↵ectiveness. The
next section tests this hypothesis in detail by comparing a variety of di↵erent
recommendation strategies, using di↵erent sources of query information, and
combining extended sessions and term weighting.

6 Evaluation

In the previous work of [19] a stak recommendation strategy was tested using
only the information from singleton sessions. In what follows we will adopt a
similar methodology but look at the e↵ectiveness of recommendation when using
the extended session and term-weighting techniques described above.

6.1 Dataset and Approach

The dataset comes from the HeyStaks anonymous usage logs based on a group
of 28 active users, who are members of approximately 20 staks each, and who
have each submitted at least 100 queries. For the purpose of this evaluation
we limit our interest to only those sessions that are associated with at least
one non-default search stak. This is important because it means that we can
focus on search scenarios where the user has actively selected a specific stak
during their search session. This selected stak is used as the ground-truth against
which to judge our recommendation techniques; in other words, we are using
information from the user’s search session to make a stak recommendation and



(a) (b)

Fig. 5. Summary of session data; (a) query modification classes and (b) average unique
URLs, query terms and snippet terms across di↵erent session length

we compare this to the actual stak that they chose at search time. If their
chosen stak matches the recommendation then the recommendation is deemed
to be correct or successful. Arguably, this is quite a strict measure of success.
After all, users sometimes join a number of related staks and even if the correct
stak is not recommended a related one might be, which would probably still
be useful to the searcher. However, we ignore these near-miss recommendations
and treat them as failures for the purpose of this strict evaluation. According to
the above criteria our test dataset covers 10,177 individual searches which have
been grouped into 4,545 sessions, and the average each user has submitted 364
queries in 162 sessions.

6.2 Session Data

Before describing the results of the session-based evaluation it is useful to look at
the relationship between consecutive queries, qi and qi+1, from the same user and
session, to get a sense of the type of modifications and refinements that searchers
tend to make within extended sessions. The following modification classes are
based on those presented in [10]:

– New – initial query in a session.
– Reformulation – the current query is on the same topic as the previous query

and both queries contain common terms. (add some terms and removed
others from the previous query and both queries still have some common
terms)

– Generalization – the current query is in the same topic as previous query, but
the searcher seeking more general information (remove terms from previous
query)

– Specialization – the current query is on the same topic as the previous query,
but the search is now seeking more specific information. (adding new terms
to the query)

– Change Stak –the current query identical with the previous query, but the
stak has been changed



(a) no term weighting; k=1 (b) no term weighting; k=3

(c) with term weighting; k=1 (d) with term weighting; k=3

Fig. 6. Success Rate for both approaches when k = 1 and k = 3

Fig. 5(a) shows the frequency of these query modification classes. We see
that users frequently change their staks during a session (19% of the time) and
that about 36% of the modifications involve changes to the terms in the query,
which will ultimately lead to changes in the result-list returned to users, and so
provides a strong indication that leveraging these extended sessions will deliver
a richer source of information for stak recommendation. In Fig. 5(b) we present
the unique number of query and snippet terms, and URLs, for di↵erent session
lengths and we can see that there is a steady increase in the quantity of this
information as session length grows. However, it is worth highlighting that, for
example, doubling the session length, does not deliver twice the number of unique
query or snippet terms or unique URLs; the reason being, of course, that minor
modifications to the query will not radically change the new result-list.

6.3 Experimental Setup

We are primarily concerned with the accuracy of our three basic recommenda-
tion strategies Query, Snippet, URL, which di↵er based on the type of basic
information used for a stak query. As per [19] we also consider the combination
of these techniques and further combine them with the baseline stak popularity

strategy, which recommends the stak most frequently used by the user. In total
we look at 6 di↵erent strategies; see Table 1 earlier.



To evaluate these alternatives, we generate a recommendation list for each of
the 4,545 sessions and compute the percentage of times (success rate) that the
known active stak (ground-truth) is recommended in the top k stak recommen-
dations (here we look at k = 1 and k = 3). We calculate this success rate across
sessions of di↵erent lengths, both with and without term weighting.

6.4 Success Rate vs. Session Length

The results are presented in Fig. 6(a-d). Similar to the findings of [19], techniques
such as URL and Query perform poorly, while Popularity and Snippet, and
combinations thereof, perform well. This is true across all techniques and session
lengths. However, there is a wide variety in absolute success rates.

As we can see from the graphs, increased session length generally implies im-
proved success rates, especially when comparing sessions of length 1 (singleton
sessions as per [19]) with sessions of length 2. It is particularly important to pay
special attention to the k = 1 results because the ideal strategy for HeyStaks is
to automatically switch the user into a correct stak, rather than present a set
of (> 1) stak recommendations for the searcher to choose from. For k = 1, we
can see for example that the best performing singleton strategies deliver success
rates in the region of 51-56%; see, for example, Figure 6(a). By comparison,
when we consider sessions of length 2 this tends to increase to 61-66%, a relative
improvement of just under 20%. However, this rate of improvement is not sus-
tained over longer search sessions and by and large the success rates for longer
sessions are no higher than those for sessions of length 2. In other words, despite
the availability of additional query, URL, and snippet data in longer sessions of
length 3, 4, 5 etc., this extra data does not seem to help from a stak recom-
mendation viewpoint. Another influencing factor is probably that searchers that
require long sessions (> 2 queries) are probably fundamentally harder to satisfy
than those that require just 2 queries and so success is likely to be more elusive.
At the moment the test data contains a mixture of these data and so it is a
matter for future work to further consider this explanation.

6.5 Term Weighting

The results of adding term weighting are presented in Figure 6(c, d) and further
analysed in Figure 7. One of the best performing strategies when using term
weighting, URLSnippetQuery, achieves a success rate of more than 70% for ses-
sion lengths > 2, at k = 1); see 6(c) for example. This is an improvement of up
to 17% in comparison to the results without term weighting.

Figure 7 looks at the relative performance of the three best performing tech-
niques using term weighting and compares them to their corresponding results
without term weight, across di↵erent session lengths; we focus on k = 1 recom-
mendations only in this instance but comparable results are found for k = 3.
The results show that the relative improvement due to term weighting falls o↵
sharply with increasing session lengths. For example,Snippet achieves a success
rate of about 52% for sessions of length 1, rising to about 62% for sessions of



Fig. 7. Di↵erence of success rate between standard session-based and term weighting

(a) Large staks with term weighting, k=1 (b) Small staks with term weighting, k=1

Fig. 8. Large vs. Small Search Staks

length 2, with term weighting is not used; see Figure 6(a). When term weighting
is used these success rates are 63% and 72%, respectively, leading to relative
improvements of about 23% and 11% as shown in Figure 7. These relative im-
provements continue to decline for Snippet as session lengths increase, as can be
seen in Figure 7, and similar relative improvements, and subsequent declines, are
also observed for URLSnippetQuery and URLSnippetQueryPopular as indicated.

These results help to clarity that, in combination, term weighting and ex-
tended sessions do have a positive impact on overall success rates. In absolute
terms this combination is beneficial but scale of the relative benefit decreases
with session length.

6.6 Success Rate of Stak Size

It is interesting to consider the influence of stak size on recommendation success
rates. The majority of staks in this study (94%) contain a relatively few pages
(1-500 URLs) which we expect to provide a relatively weak recommendation
signal. As HeyStaks matures we can expect users to develop more mature staks
and so it is appropriate to evaluate the relationship between recommendation
success and stak size. To test this, we juxtapose the recommendation success
rates by dividing the data according to the stak size into small (< 500 URLs)
and large (>= 500 URLs), for k = 1 and with term weighting; see Figure 8.



Clearly there are di↵erences in accuracy between small and large staks.
Larger, more mature staks enjoy higher success rates across the various rec-
ommendation techniques and session length settings. For example, looking at
URLSnippetQueryPopularity, we see a success rate of 63-70% for large staks (Fig-
ure 8(a)) compared to only 47-60% when used with small staks (Figure 8(b)).
This is encouraging because, from a engineering standpoint, these higher suc-
cess rates suggest it may be practical to implement a reliable automatic stak
switching policy, for larger staks which contain more than 500 URLs.

7 Conclusions

In this paper we have reconsidered the stak recommendation challenge faced by
HeyStaks, a case-based social search solution. Our main contribution has been
to extend the work of [19] by exploring a number of novel stak recommendation
strategies that take advantage of the additional information that is available
as a source of context across extended search sessions. The results, based on
live-user search logs, suggest that recommendation success can be improved by
using extended search session data, albeit with certain caveats. For example,
the benefit of using extended search sessions is maximized as when we consider
the di↵erence between singleton sessions and sessions of length 2. That being
said, it is to the advantage of HeyStaks that these benefits are maximized for
shorter sessions because these sessions are more frequent than longer sessions.
Moreover, the relative improvements that we have found in stak recommendation
accuracy, compared to the past work of [19], suggest that this new approach may
have practical merit in a deployment setting, certainly for large stak sizes.

Acknowledgments

This work is supported by Science Foundation Ireland under grant 07/CE/I1147,
HeyStaks Technologies Ltd, Ministry of Higher Education Malaysia and Univer-
siti Teknikal Malaysia Melaka.

References

1. Amanda Spink, Tom Wilson, D.E., Ford, N.: Modeling Users’ Successive Searches
in Digital Environments. D-Lib Magazine (1998)

2. Amershi, S., Morris, M.R.: CoSearch: A System for Co-located Collaborative Web
Search. In: Proceeding of the 26th Annual SIGCHI Conference on Human Factors
in Computing Systems. pp. 1647–1656. CHI ’08, ACM, New York, NY, USA (2008)

3. Ashley, K.D.: Modeling Legal Arguments: Reasoning with Cases and Hypotheti-
cals. MIT Press, Cambridge, MA, USA (1991)

4. Balfe, E., Smyth, B.: Case-Based Collaborative Web Search. In: Funk, P., Gon-
zalez Calero, P.A. (eds.) Advances in Case-Based Reasoning, Lecture Notes in
Computer Science, vol. 3155, pp. 1015–1050. Springer Berlin / Heidelberg (2004)



5. Bharat, K.: SearchPad: Explicit Capture of Search Context to Support Web Search.
Computer Networks 33(1-6), 493 – 501 (2000)

6. Burke, R., Hammond, K., Kulyukin, V., Tomuro, S.: Question Answering from
Frequently Asked Question Files. AI Magazine 18(2), 57–66 (1997)

7. Dou, Z., Song, R., Wen, J.R.: A Large-scale Evaluation and Analysis of Personal-
ized Search Strategies. In: WWW 07: Proceedings of the 16th International Con-
ference on World Wide Web. pp. 581–590. ACM Press, New York, NY, USA (2007)

8. Godoy, D., Amandi, A.: PersonalSearcher: An Intelligent Agent for Searching Web
Pages. In: Monard, M.C., Sichman, J.S. (eds.) IBERAMIA-SBIA. vol. 1952, pp.
43–52. Springer (2000)

9. Hatcher, E., Gospodnetic, O.: Lucene in Action. Manning Publications (2004)
10. He, D., Göker, A., Harper, D.: Combining Evidence for Automatic Web Session

Identification. Information Processing & Management 38(5), 727–742 (2002)
11. Jansen, B.J., Spink, A., Blakely, C., Koshman, S.: Defining a Session onWeb Search

Engines. Journal of the American Society for Information Science and Technology
58(6), 862–871 (2007)

12. Kanawati, R., Jaczynski, M., Trousse, B., J-M, A.: Applying the Broadway Recom-
mendation Computation Approach for Implementing a Query Refinement Service
in the CBKB Meta-search Engine. In: Conférence Française sur le Raisonnement
á Partir de Cas (RáPC’99) (1999)

13. Lenz, M., Ashley, K.: AAAI Workshop on Textual Case-Based Reasoning (1999),
AAAI Technical Report WS-98-12

14. Liu, S.B.: Trends in Distributed Curatorial Technology to Manage Data Deluge in
a Networked World. The European Journal for the Informatics Professional 11(4),
18–24 (2010)

15. Morris, M.R., Teevan, J.: Collaborative Search: Who, What, Where, When, Why,
and How (Synthesis Lectures on Information Concepts, Retrieval, and Services).
Morgan and Claypool Publishers (2010)

16. Plaza, E.: Semantics and Experience in the Future Web. In: ECCBR. pp. 44–58
(2008)

17. Qiu, F., Cho, J.: Automatic Identification of User Interest for Personalized Search.
In: WWW 06: Proceedings of the 15th International Conference on the World Wide
Web. pp. 727–736. ACM Press, New York, NY, USA (2006)

18. Rissland, E.L., Daniels, J.J.: A Hybrid CBR-IR Approach to Legal Information
Retrieval. In: Proceedings of the 5th International Conference on Artificial Intelli-
gence and Law. pp. 52–61. ACM Press (1995)

19. Saaya, Z., Smyth, B., Coyle, M., Briggs, P.: Recommending Case Bases: Applica-
tions in Social Web Search. In: Proceedings of 19th International Conference on
Case-Based Reasoning, ICCBR 2011. pp. 274–288 (2011)

20. Smyth, B., Balfe, E., Freyne, J., Briggs, P., Coyle, M., Boydell, O.: Exploiting
Query Repetition and Regularity in an Adaptive Community-Based Web Search
Engine. User Model. User-Adapt. Interact. 14(5), 383–423 (2004)

21. Smyth, B., Briggs, P., Coyle, M., O’Mahony, M.: A Case-Based Perspective on
Social Web Search. In: McGinty, L., Wilson, D. (eds.) Case-Based Reasoning Re-
search and Development, Lecture Notes in Computer Science, vol. 5650, pp. 494–
508. Springer Berlin / Heidelberg (2009)

22. Smyth, B., Champin, P.A.: The Experience Web: A Case-based Reasoning Perspec-
tive. In Grand Challenges for Reasoning from Experiences, Workshop at IJCAI’09
pp. 566–573 (2009)

23. Weber, R.O., Ashley, K.D., Bruninghaus, S.: Textual Case-based Reasoning.
Knowledge Engineering Review 20(3), 255–260 (2005)


