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Abstract 

 
This paper presents exploratory research related to novel full-scale multi-layered 

timber beams with composite action achieved with welded-through wood dowels. Different 
multi-layer beam designs, where the timber layers were interconnected with welded wood 
dowels providing interlayer shear resistance, were tested in bending with different dowel 
densities. The main originality of this study is the achievement of dowel welds through 
greater depths of sections than has previously proved possible.  The practical difficulties 
encountered in constructing deeper multi-layer beams, and the successful solutions arrived at, 
are discussed. The significance of the research reported is the demonstrated ability to produce 
multilayered timber sections which are structurally efficient and do not require non timber 
based joining agents such as nails or adhesive.   
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1. Introduction 

 
Glue laminated timber, glulam, has been used in Europe since the end of the 19th 

century [1]. Glulam technology finds extensive applications in timber construction due to its 
flexibility and the advantages it offers in terms of different shapes and forms in final 
assembled systems.  Also, where possible, its use is often favoured as timber is recognised as 
being more environmentally friendly, and often more aesthetic, when compared to traditional 
materials such as steel and concrete. In addition to adhesive joining technologies, metallic 
fasteners and plates, between constituent timber components, have been, and continue to be 
widely used, to achieve composite action and connectivity between multiple components, for 
example in connections between glulam beams and supporting columns. However, the 
manufacture and the use of glulam beams, and other structural timber products, have been 
shown to be very energy intensive, thereby leading to significant levels of undesirable 
emissions to the environment.  Life Cycle Inventory (LCI) studies [2], examining the energy 
requirements, and resulting emissions to the environment, associated with the production of 
glulam and other structural timber products, have identified the need to optimise the 
utilization of natural materials, and particularly the manner in which they are used [3] so as to 
maximise the environmental accruing from them.  
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In addition to being less environmentally friendly other disadvantages manifest 
themselves when traditional (adhesive and metallic fastener based) joining technologies are 
used. Wood working, planning and cutting, is incompatible with the presence of metal 
fasteners in wood. Fire fighter experience and studies of the performance of metallic 
connectors have shown that early failure can be attributed to the presence of metallic 
connections in an otherwise timber structure. As a result, stringent requirements for fire-
proofing of metallic connectors have been introduced. These have severe implications on cost, 
simplicity of construction and environmental impact, since most insulating materials are made 
from non-renewable sources. Gluing is also extensively used today, but is associated with 
both real and perceived pollution costs. At manufacture the deposits on the glue-applicators 
and subsequent cleaning of the work area and safe disposal of the excess adhesive is costly 
and incompatible with an otherwise environmentally friendly product. Adhesives also 
experience problems in environments susceptible to thermal change. The glass transition 
temperature of adhesives is greatly influenced by temperature, and thus glulam stiffness 
decreases drastically before its timber has experienced any major temperature effects. Thus in 
a fire situation the adhesive tends to be the weakest component of the composite system.  

To address these concerns, an original joining alternative, which uses wooden dowels 
to replace metallic fasteners, connectors, and the traditional poly (vinyl acetate) (PVAc)-
adhesive, is advanced. The process of achieving a natural weld between the dowels and the 
timber components to be joined is high speed dowel rotation welding [4-5]. If the economic 
cost and mechanical performance of dowel-welded structural joints can be shown to be at 
least comparable to that achieved by nailing or adhesives then this novel joining solution will 
be attractive on two fronts, firstly as it will result in an entirely organic, and thus more 
environmentally friendly, composite system and secondly as it will result in a more 
sustainable structural performance during fire. The idea to use wood fasteners in the 
construction industry is not new, but research in this area has been limited by the widespread 
use of nails since the beginning of the 20th century. The use of wooden dowels is generally 
limited to the furniture industry and the interior joinery and the do-it-yourself markets. 
However, with the rise in steel and petroleum, and hence energy, costs there is a stronger than 
ever incentive to investigate cheaper, more sustainable and more environmentally friendly 
solutions. 

In this regard Pizzi et al. [4] and Kanazawa et al. [5], among others, have studied the 
performance of timber assemblies made with welded wood dowels as connecting elements 
rather than traditional poly (vinyl acetate) (PVAc)-glued dowels and nailing. Guan et al. [6] 
and Jung et al. [7] studied timber joint systems using compressed wood fasteners and plates in 
place of steel fasteners. While,   Hassel et al. [8] have investigated the performance of a 
wooden block shear wall assembled with compressed wood dowels. Bocquet et al. [9] 
undertook studies on small-scale and full-scale two-layer timber beams joined with welded 
wood dowels. The relations between the applied load and deflection, as well as the load 
carrying capacity of two-layer timber beams, were measured. The results showed clearly the 
role of the wood dowels in carrying shear stresses that would otherwise have been transferred 
through the adhesive. All of these works concluded that joint systems made with wood dowels 
perform well with good initial stiffness and load carrying capacity compared to traditional 
joining methods using bonded wood dowels or metallic fasteners (nails or screws). Despite 
these significant advances further research and investigation is needed, primarily on large 
scale structural applications, so as to enable this joining technique to penetrate the structural 
engineering market.   

This paper focuses on the structural response of 2.2m laminated timber beams, in 
which, two and four, timber laminates are joined using wood welded dowels. Specifically the 
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study evaluates the efficiency of the composite action and the resulting flexural behaviour. In 
order to estimate the efficiency of the composite beams, the simplified design method, also 
called “ −γ method”, related to the Möhler’s model [10], is used in the case of two-layer beam 
system by considering fully composite and fully non-composite actions. In addition a solution 
identified, to weld multi-layered beams at much greater depths than previously achieved [9], 
is presented.  

 
2.  Assessment of Efficiency  

 
The use of welded-wood dowels to transfer shear forces between the timber layers 

leads to a composite beam with semi-rigid connections, and hence partial composite action, 
between the individual layers. The structural response of such a beam system will be bound 
between that of a layered beam (with no inter connectivity) and a layered beam with fully 
rigid (no slip) interfaces between the individual layers. On this basis, and as suggested by 
Gutkowski et al. [11], the efficiency of the welded-wood dowel connection can be evaluated 
as: 
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Where:  

nD is the theoretical composite beam deflection with fully composite connections,  

cD is the theoretical composite beam deflection without interlayer connections, 

iD is the theoretical composite beam deflection with semi-rigid interlayer connections.  

Using the “ −γ method”, which can be found in Eurocode 5 [12], it is possible to 
approximate the effective bending stiffness of a simply supported composite beam, composed 
of two layers (Fig. 1), as follows:  

 
2
22222

2
11111 eIEIEeIEIEEI eff +++= γ                                                                                 (2) 

 
The shear coefficientγ , of the semi-rigid connexion, and the distances 1e and 2e  are 

given by: 
  

2
11

2

1

1

Lk

sAEπ
γ

+

=                                                                                                                       (3)    

  

2
21

1
2

e
hh

e −
+

=                                                                                                                      (4) 

 
( )

2211

2111
2

2 AEAE

hhAE
e

+

+
=

γ

γ
                                                                                                              (5) 

 
Where ii A,I and iE  represent the second moment of inertia, area and modulus of 

elasticity of the timber layers, s  is the regular spacing between wood dowels, L represents the 
length of the beam, k  is the slip modulus of the dowel, ih is the layer thicknesses. 
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Fig. 1: Cross-section of a two-layer beam with wood dowel connection 
 

In the above equations, 1=γ  indicates a fully bonded system (fully composite 

connections) while 0=γ  indicates no shear transfer between layers.  

According to equations (2) to (5), the normal stresses in the composite section for each 
timber layer, at mid-span, and the shear force in the dowels can be calculated by the 
following: 
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Where q  is the uniformly distributed load, maxw  is the mid-span deflexion, iσ and 

i,mσ are the stresses at the centroid and the flexural component of the stresses in the timber 

layers, F  is the shear force acting in the wood dowel, dM is the maximum bending moment 

and dV  is the shear force in the cross-section of interest.  

 
3. Experimental Study 

 

      In this study a series of multilayered beams were constructed and tested under four 
point bending. The number of laminates and density of wood welded dowels was varied. 
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3.1. Construction process of multi-layered beams 

C16 Irish Spruce was used to construct the multi-layered beams. The individual layer 
dimensions were 140 x 38 x 2200 (mm). Commercially fluted beech dowels of 10mm of 
diameter were used in the assembly of the multilayer beams. Two series of multi-layered 
beams were constructed; namely two-layer and four-layer beams. All multi-layered beam 
systems had one row of wood dowels inserted at 45°, with respect to the plane of the layers as 
indicated in Fig.2, in the two-layer beams, and at 60° in the four-layer beams. 

3.1.1. Construction of the two-layer beams  

In the first stage of the study, the earliest work done on rotational wood dowel welding 
for a two-layer beam [9] was replicated in order to gain first hand experience of constructing 
multi-layered beams before attempting a greater number of layers, and hence dowel insertion 
depths. The number of dowels used for the two-layer beam was 56. The dowels used were 
130mm long and, at 33mm centres, were distributed evenly along the 2m simply supported 
length of the beam. (Fig. 2).  It was found that all 56 dowels, each of 10 mm diameter, could 
be successfully inserted at 45° and welded into 9mm holes through the two-layers.  

 

 

 

 

Fig. 2: Dowel arrangement in the two-layer beam (one half beam) 

 
3.1.2. Construction of the four-layer beams  

The success of the two-layer beam construction led to a  decision to consider 
constructing four-layer beams, the challenge being the increased insertion depth, arising from 
an increase in beam depth from 76mm to 152mm, required during rotational welding. For 
these four layered beams the dowels used were 10mm diameter and 200mm long. The 
insertion process used for the two layer system did not prove as effective with the dowels 
splintering at their bases (Fig.3). This splintering generally occurred when the dowels passed 
a depth of two layers and was attributed to the greater insertion force required for deeper 
insertion lengths through four layers.  

 
  

 

 

 

 

 

 

 

Fig. 3: Splintering of dowels during beginning of four-layer beam construction. 

Splintering 
of dowels 
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Two options were considered to prevent this occurrence of splintering. The first was to 
increase the diameter of the dowel holes in the layers; a further potential benefit of this 
approach was considered to be the reduction in insertion force, as the mismatch between hole 
and dowel diameters would be reduced. This approach did not prove effective. The increase in 
hole diameter required to prevent splintering was such that the dowel was able to pass quite 
freely through the hole. Using this approach little or no friction existed between the dowel and 
substrate resulting in not enough heat being generated during the weld process to cause 
melting of the lignin nor enough mechanical resistance to aid entanglement. The second 
option considered was the use of plasticising compounds, such as water, petroleum jelly, 
vegetable oil, and sunflower oil [5] to aid insertion. Eventually Sunflower oil was chosen as 
the plasticiser to be used as its effects on the tensile capacity of the joint, although slightly 
negative, had been documented in previous research [5]. The dowels were soaked for ten 
minutes in sunflower oil to a depth of 160mm (Fig. 4). The top 40mm was not soaked for two 
reasons, it was not entering into the layers and it was being held in the drill and so the 
sunflower oil would have hampered the drill’s grip on the dowel. Trial tests, with the soaked 
dowels, also showed that adjusting the rate of dowel insertion, on a dowel-by-dowel basis, 
lead to an increase in the number of successful insertions without splintering. 

 

 

Fig. 4: Dowels soaking in sunflower oil 

Finally, with this construction process proving successful, a total of seven four-layer 
beams were constructed (Fig.5). The number of dowels in each beam was varied in order to 
evaluate their effect on the stiffness of the beam, from which the composite action could be 
assessed. In total three pairs of beams, with 56, 44, and 32 dowels respectively, and one final 
beam with 20 dowels were constructed.  

 

 
 

Fig. 5: Four-layer beam held in clamps during construction 
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3.2. Bending tests and measurements  

The experimental program consisted of four point bending tests (Fig.6) of each of the 
multi-layered beams, assembled with different number of wood dowels. The load was applied 
using an Instron 8500 series load cell. A steel jig consisting of two 80mm and 90mm box 
sections and two half cylindrical load pads were used to convert the one point load of the 
Instron load cell to two point loads acting on the beam. Two series of beams systems were 
tested, namely the two layers and the four layer doweled beams.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 6: Four-point bending tests: (a) four- layer beam during test, (b) test arrangement (in mm) 

 
Initially the two-layer beam systems, with 56 dowels, were loaded to 3.725 KN. The 

beam was then ramp loaded to failure under controlled displacement. Inspection of vertical 
sections taken through the beam allowed inspection of the manner in which a welded dowel 
behaves when working under both shearing and tension forces (induced by bending).   

In a second series of tests, the four-layer beams, with different number of dowels: 20, 
32, 44 and 56 dowels were loaded up to 7.22 KN.   In addition to the dowel welded beams un-
joined layered beams (with two and four layers) were also tested to enable the efficiency of 
the dowel welded beams to be quantified using the theoretical approach described in Section 
2. For all tests mid-span deflection was recorded in addition to applied load. 

 
4. Results and discussion 

            4.1. Results from the two – layer beams 

Fig. 7 illustrates the comparison between the theoretically calculated (fully composite 
and full non-composite) and experimentally obtained load-deflection curves for the two-layer 
beams (with and without the 56 dowels). As expected the dowelled beam response is between 

2000 

600 800 600 F F 

(b) 

(a) 
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the fully composite and non composite beam theoretical solutions. The dowelled two-layer 
beam performs well with good initial stiffness and exhibits essentially linear load-deflection 
behaviour up to the final applied load level of 3.725 KN. The non-dowelled beam is slightly 
stiffer than the theoretical solution; the small additional stiffness is attributed to inter-layer 
friction in the experiment which is not considered in the theoretical solution. 

The efficiency of the 56-dowel two-layer beam is approximately 72% (estimated using 
equation 1), indicating the capability of wood welded dowels to resist inter-layer shear forces.  
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Fig. 7:  Load – Deflection curves from two – layer beam: comparison between fully composite, fully 
non-composite and partial composite actions. 

 

For a better understanding of the mode of failure of the welded wood dowels, vertical 
sections through the two-layer beam are shown in Fig.8. It can be seen that the dowels are not 
working only in shearing but primarily receive the upward tensile force caused by the layers 
wanting to separate vertically due to flexure.  

   

 

(a)                                                                                       (b) 

Fig. 8: Vertical sections of the two- layer beam: (a) Left support, (b) Right support 
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 4.2. Results from the four – layer beams 

The load–deflection responses obtained for the four-layer beam systems with varying 
numbers of dowels (20, 32, 44 and 56) are plotted in Fig. 9. The 56-dowel and 44-dowel 
beams were found to be of similar efficiency (stiffness) and obviously more efficient than the 
other beam sets. The 32-dowel beam was the next most efficient (stiff) while the lowest 
efficiency (stiffness) was obtained for the 20-dowel beam. The estimated efficiencies of the 
different beams were: 74%, 71%, 63% and 49% for 56-dowel, 44-dowel, 32-dowel and 20-
dowel beams, respectively. Hence it is demonstrated that efficiency increases with increasing 
number of dowels. However, beyond a certain number of dowels the incremental increase 
reduces until such point as it becomes negligible, as evidenced by the similar efficiencies 
achieved for the 56 and 44 dowel beams.   
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Fig. 9: Load – Deflection curves from four – layer beam as a function of number of dowels. 

To evaluate the ultimate load of these multi-layer beams, selected beams were loaded, 
in four-point bending, to failure. The 44-dowel beam, at failure, is shown in Fig.10; other 
beams behaved similarly. Failure occurs in the bottom layer in the constant bending moment 
region. The mode of failure was consistently tensile fracture of the bottom layer at locations 
of knots (imperfections) in the timber. The load–deflection responses, for the beams loaded to 
failure, are plotted in Fig. 11. Initial stiffness, ultimate load attained and deflection at failure 
for the four layered beams, with different number of dowels, are summarized in Table 1. Note 
that stiffness values of all beams were calculated in the linear region of the load-deflection 
curves shown in Fig. 11.  
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Fig. 10: Four – layer 44-dowel beam at failure 
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Fig. 11: Load – Deflection curves from four – layer beam loaded up to failure. 

For the four beams tested to failure the ultimate load varied between 21kN for the 
unjoined system to 24kN for the 44-dowel beam (with the 20-dowel and 32-dowel beam lying 
between these in sequence). The impact on strength is thus not that significant, approximately 
14% for the 44-dowel beam, relative to the unjoined one. This is in contrast to the more 
pronounced difference in stiffness in the dowelled beams relative to the unjoined one; the 44-
dowel beam is just over twice as stiff as the unjoined one to load levels up to approximately 
10-12.5kN. The relatively small increase in strength is attributed to progressive dowel weld 
failure (there was no indication of actual dowel failure) as load is increased. This hypothesis 
is supported, in part, by examination of the various load deflection responses. The unjoined 
system response is smooth and essentially linear to approximately 15kN at which load some 
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softening of the response is evident as the ultimate load is approached. In contrast the 
dowelled system responses are characterised by small discrete step changes, notably around 
the 10kN load level in the 32-dowel and 20-dowel systems. In the 20-dowel system the post 
10kN stiffness is similar to the unjoined system, while it is almost 66% stiffer below this load 
level. This drop in stiffness is also evident, but less pronounced in the 44-dowel system, as 
load is increased.  Hence at increasing loads the stiffness tends to that of the unjoined system. 
As there is no evidence of actual dowel failure it is believed that it is failure of the welds 
between the dowels and the layers that contribute to this effect. The ultimate load is thus 
similar to that of the unjoined system.   However, increased numbers of dowels result in 
decrease of deflection, which reaches 20% in the case of 44-dowel beam compared to the 
deflection of the unjoined one.  

 

Table 1: Initial Stiffness, Ultimate Load and Maximum Deflection for Beams tested to failure 

Type of beam Initial Stiffness (KN/mm) Ultimate Load (KN) Maximum Deflection (mm) 

44 dowels 

32 dowels 

20 dowels 

Un-joined 

0.565 

0.465 

0.400 

0.180 

24.00 

22.75 

22.00 

21.00 

98.70 

108.15 

115.04 

123.57 

    

 

5. Conclusion 

 

In this paper a novel full-scale multi-layered beam has been presented where the 
timber layers were interconnected via welded wood dowels to form a timber-timber 
composite element. A manufacturing process, whereby dowels are submerged in sunflower oil 
for a period of ten minutes prior to being used as part of the rotational welding technique, 
allow wood welded dowels to be used over greater depths of composite sections than has 
previously been achieved.  

The experimental results demonstrate that it is possible to achieve a high degree of 
composite action using wood welded dowels as shear connecting elements. Increased 
numbers of dowels result in increased stiffness with the efficiency of composite action, 
measured using stiffness relative to a fully composite system, being between 49% and 74% 
for the beams tested. This degree of efficiency could be further enhanced for even more 
competitive performance by using more dowels in multiple rows. The strength increase was 
more modest and was attributed to progressive failure of the welds between dowels and 
individual layers as load increased. Clearly multiple dowel rows would reduce the stress on 
any individual weld and potentially manifest itself in more substantial strength increases; 
further investigation in this regard is needed. 

In conclusion wood welded dowel systems do offer potential as viable load bearing 
systems in structural applications and coupled with their environmentally friendly footprint 
further research into these systems is both justified and required. Reliable methods for 
measuring and quantifying the precise strength of the welds produced are required. Equally   
investigations of their hydro-thermo-mechanical and creep/relaxation behaviour deserve 
attention.   
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