Computational approaches to developing short cyclic peptide modulators of protein-protein interactions

Fergal Duffy1,2, Marc Devocelle3, Denis Shields1,2*
1School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland

2Complex and Adaptive Systems Laboratory, University College Dublin, Belfield, Dublin 4, Ireland

3Department of Chemistry, Royal College of Surgeons in Ireland, 123 St. Stephens Green, Dublin 2, Ireland

*Corresponding Author, email denis.shields@ucd.ie

Abstract

Cyclic peptides are a promising class of bioactive molecules potentially capable of modulating  “difficult” targets, such as protein-protein interactions. Cyclic peptides have long been used as therapeutics derived from natural product derivatives, but remain an under-explored class of compounds from the perspective of rational drug design, possibly due to the known weaknesses of peptide drugs in general. 

 While cyclic peptides are non “druglike” by the accepted empirical rules, their unique structure may lend itself to both membrane permeability and proteolytic resistance - the main barriers to oral delivery. The constrained shape of cyclic peptides also lends itself better to virtual screening approaches, and new tools and successes in this area have been recently noted. An increasing number of strategies are available, both to generate and screen cyclic peptide libraries, and best practises and current successes are described within.

This article will describe various computational strategies for virtual screening cyclic peptides, along with known implementations and applications. We will explore the generation and screening of diverse combinatorial virtual libraries, incorporating a range of cyclisation strategies and structural modifications. More advanced approaches covered include evolutionary algorithms designed to aid in screening large structural libraries, machine learning approaches, and harnessing bioinformatics resources to bias cyclic peptide virtual libraries towards known bioactive structures. 

Introduction to Cyclic Peptides

Cyclic peptides are derivatives of linear peptides where the linear peptide has been pinned into a macrocycle by the addition of a chemical bond. This bond can be between amino acid side chains, or the peptide N and C-termini, or a combination of them. Cyclic peptides are of interest as a class of molecules for their ability to mimic specific, high-affinity binding of certain known linear peptides, while potentially avoiding the drawbacks of linear peptides, which include poor oral bioavailability, poor membrane permeability, vulnerability to proteolytic degradation, and lack of a rigid three-dimensional structure.

Cyclic Peptide Structures.
Cyclic peptides are formed through an extra cyclising bond between peptide termini or side chains. There are many possible ways of doing this, described in Table 1. These strategies include disulphide-bonding, where the thiol side chain of two cysteines are bonded, which are common in natural proteins, both interchain (attaching two protein chains) or intrachain (to constrain a portion of a protein chain in a particular structure); and head-tail bonding, where the peptide N-terminus forms a peptide bond with its C-terminus, effectively removing the peptide termini. 

Table 1: Table showing the principle strategies for cyclising peptides.
	Constraint Type
	Description
	Example Structure

	Head-Tail bond
	Any amino acid N-terminus to any amino acid C-terminus
	[image: image1.emf]

	Disulphide bond 
	Two cysteine side chains
	[image: image2.emf]

	Side-Chain to Side-Chain Bond


	Between an amino acid with an amine group side chain (Lysine) and an amino acid with a carboxyl side chain (Aspartic and Glutamic Acid). Depsipeptide bonds between amino acids with a hydroxyl side chain (Serine, Tyrosine, or Threonine) and amino acids with carboxyl side  chains are another possible example
	[image: image3.emf]

	Side-Chain to N-Terminus or C-Terminus  


	Side-Chain to Side-Chain bonds (above) can be achieved when an N-terminal amine and a side chain side-chain carbonxyl, and the C-terminal carboxyl and a side-chain amine. instead of a side chain carboxyl.
	[image: image4.emf]


Different types of constraint are suited to different uses: Disulphide bonds are generally the cheapest and easiest cyclic peptides to synthesise, however they may not be suitable for intracellular targets, due to the reducing environment of the cytosol attacking the S-S bond. Head-tail bonding forces the peptide chain into a tight ring compared with other methods, but is more synthetically difficult.

Generally, a cyclic peptide must be at least four amino acids in length to be practically synthesisable, otherwise the steric strain of forcing the structure into a cyclic shape will be too large. For example, a disulphide bonded Cysteine-Alanine-Cysteine peptide would be extremely difficult to synthesise, however Cysteine-Alanine-Alanine-Cysteine  would be achievable. 

One exception to this are two amino acid head-tail bonded peptides, known as diketopiperazines, where the two peptide bonds form a lactam ring structure. The symmetry between the amino acid backbones allows this tight ring to be formed. Figure 1 shows an example structure. Diketopiperazines are known to have a broad range of biological activities and the unusual lactam ring is a promising drug discovery scaffold1. The diketopiperazine lactam ring is similar to the β-lactam ring present in penicillin and cephalosporin antibiotics, which could be considered a class of cyclised peptide, as they are biosynthesized from a starting tri-peptide of L-Cysteine, D-Valine and L-α-aminoadipic acid, before being modified into their bicyclic β-lactam active form2.

[image: image5.emf]
Figure 1: A Diketopiperazine: Tryptophan-Glutamine head-tail cyclised.
Cyclic Peptides Role in Drug Discovery
Traditionally, drugs are small molecules which bind into a deep protein cavity, affecting the protein's natural function. However, finding small molecules that bind the large, relatively flat surfaces involved in protein interfaces is usually difficult3. Small molecule drugs are typically planar molecules of low molecular weight with simple stereochemistry, and it has been suggested that larger and more complex molecules may be required to effectively target protein-protein interactions4.

Very large molecules may also act as therapeutics, such as antibodies5 and therapeutic proteins6. Proteins and antibodies can be highly effective molecules displaying extremely strong binding affinities to protein surfaces in-vivo. However these therapeutics are limited by their size, which makes oral delivery impossible, hinders bioavailability and solubility, and increases cost7. This points to the desirability of a middle class of molecule that combines the binding ability of proteins with the bioavailability and stability of small molecules. Oligopeptides (those with roughly 2-20 amino acids) seem like a promising choice as they are chemically identical to natural proteins, however their short length means that they often lack protein secondary structural elements such as α –helices and β -sheets. This lack of a defined three dimensional structure can negatively affect peptide stability, and binding affinity8, in part due to the entropic cost of fixing a flexible molecule into a defined shape on binding to a protein, as well as increasing peptides vulnerability to proteolytic cleavage.
Therefore, a class of structurally stable medium size molecules is desirable. This can be accomplished by the use of molecules based around a large ring structure, known as macrocycles9,10. Macrocycles are generally defined as molecules that contain a ring structure of larger than 8-12 atoms, which covers all practically synthesisable cyclic peptides. Cyclic peptides represent an important class of macrocycle, combining the structural constraint of the macrocyclic ring while sharing the natural building blocks of proteins. Other approaches to macrocyclic drugs include those produced from natural products11, synthetic peptidomimetic macrocycles12, and stapled peptides13.

Properties of Cyclic Peptides.
Conformational Constraint.
The advantageous properties of cyclic peptides principally come from their relatively fixed three dimensional shape compared to linear peptides. A regular peptide will have three rotatable bonds for each amino acid along the peptide backbone (N - Cα, Cα - C, C  - N). By contrast, the backbone flexibility of a cyclic peptide is drastically reduced (although not totally eliminated). 

The key theoretical advantage of conformational constraint is improved specificity. All natural peptides share an identical backbone structure, and chemical variety is provided by side chain groups, meaning that all natural proteins and peptides are chemically very similar. Since protein-protein and protein-ligand binding involves shape complementarity to a protein surface or fitting a defined hydrophobic pocket, a flexible peptide may shape itself to fit many possible substrates. While this increases the likelihood of affecting the target protein of interest, it also increases the likelihood of off-target effects, which are not generally desirable.  21% of failures in Phase III clinical trials between 2007 and 2012 were caused by safety issues14, which carry huge costs, in terms of both money and human effort. A more conformationally constrained molecule can therefore be better suited to drug discovery efforts.

The affinity with which a molecule binds to its target is defined by the enthalpy and entropy of binding. Enthalpy is the term that reflects the strength of the interactions of a ligand with its target - hydrogen bonding, salt bridges, hydrophobic desolvation, and Van der Waals' forces all contribute to this energy, and it is the more intuitive force to understand. Entropy reflects the preference of both ligand and target structures to be in a more “disordered”, low-energy state. It also reflects the critical contribution to binding energy that comes from disturbing the network of water molecules around a binding site, which is still poorly understood15. It is entropically unfavourable to force a flexible molecule into a rigidly defined shape, such as that required to fit into a protein binding site. Thermodynamically, binding is favoured when the combination of enthalpy and entropy changes experienced when a molecule binds to a protein leads to a lower energy state, releasing energy. Binding can be principally influenced by enthalpy, entropy, or a combination of both, and approved drugs exist that are both primarily enthalpic and entropic binders16. A molecule that is chemically constrained into a specific shape avoids the entropic penalty that a similar flexible molecule must pay on binding to a target, and therefore, constrained molecules can make higher affinity binding partners. It is possible for a structurally constrained molecule that does not completely fill a binding pocket to bind more strongly to a protein pocket than  a more flexible molecule that can rotate to completely fill the pocket, due to avoiding the entropic penalty of desolvating water molecules, and adding more flexible functional groups to the molecule17.

Bioavailability.
One of the biggest, if not the biggest single, issue facing peptide drugs is bioavailability. The human body has evolved a complex set of biological machinery for producing, controlling, and regulating peptides, and using peptides to regulate biological processes. The centrality of peptides to biological function is both the reason for peptides' huge power to affect biological processes, and hence the therapeutic interest in peptides; and also their Achilles' heel for use as drugs, because unless the peptides are delivered directly to their target, the body can recognise and limit peptide distribution very effectively. Strategies to evade these control mechanisms have been dealt with in detail elsewhere18, so here we will focus on methods most applicable to cyclic peptides.

The favoured delivery method for drugs is by the oral route19, because it does not require constant medical supervision, and is associated with high rates of patient compliance with their treatment, as compared with alternatives, such as injection.  The drawback being that drugs must be absorbed into the bloodstream through the gut to be distributed around the body, and, if the drug is targeted at the brain, cross the blood-brain barrier also.

Bioavailability generally refers to the fraction of the administered drug that reaches the circulatory system, as a fraction of the dose administered dose. Peptide drugs generally exhibit very poor bioavailability, due to two factors: the difficulty of crossing biological membranes, such as the membranes and junctions of the epithelial intestinal cells, and being degraded by the large cohort of specialised peptidase and protease enzymes residing in the gut. Both of these factors can be combated somewhat with the use of cyclic peptides, some of which are orally bioavailable, but there is not as of yet a general strategy for the production of orally bioavailable cyclic peptide drugs.

Membrane Permeability.
Difficulty in crossing hydrophobic biological membranes is associated with molecular size, number of hydrogen-bond donors and acceptors, and the log octanol-water partition coefficient of the molecule (logP(o/w)), summarised by Lipinski in a set of empirical rules20. Cyclic peptides are usually large molecules that fall outside these accepted guidelines for an orally bioavailable molecule, therefore they must explore other strategies for membrane permeability, compared with small molecule drugs.

Focusing on permeability through the intestinal membrane, there are a few routes that a molecule can take: passively penetrating and diffusing transcellularly through the intestinal epithelial cells; passing paracellularly through the tight junctions that link the cells; and carrier mediated transport, where the molecule is encapsulated by a cell vesicle that can travel through the cell using the cell's evolved secretion machinery.

One theorised method of developing membrane-penetrating cyclic peptides is to design a peptide that can internally satisfy its own hydrogen bonds, effectively masking these hydrophilic groups from the hydrophobic membrane. Rezai et al21 used this hypothesis to successfully develop membrane permeating cyclic peptides based on a cyclo[Leu-Leu-Leu-Leu-Pro-Tyr] sequence, predicted to potentially adopt an internally hydrogen bonded configuration.  They also showed that membrane diffusion rates corresponded with the degree of intramolecular hydrogen bonding. It has been also observed, inspired by the natural cyclic peptide therapeutic ciclosporin22 that selective  N-methylation of backbone amide groups in cyclic peptides can improve membrane  permeability by “hiding” hydrophilic amides, and this has been used to develop cyclic hexapeptides with cell permeabilities similar to testosterone23.  Combining these two insights, peptides have been designed that are partially internally hydrogen bonded, with the remaining free backbone amides N-methylated  to give an even greater degree of membrane permeability24. There are drawbacks to this method: to employ this strategy a candidate cyclic peptide must adhere to a restricted conformational space, not necessarily suited to binding to a biological target. Another drawback is that the effect of N-methylation on the peptide backbone can affect the affinity and selectivity of the peptide, although it has also been seen to increase specificity through conformational constraint25,26. 

An alternative approach to improving membrane permeability is covalent attachment of a polyethylene glycol (PEG) group to the peptide. PEG is considered a biocompatible attachment, suitable for improving pharmacological properties of peptides27. It has been successfully used to add oral bioavailability to insulin28, and Chen et al29 have created PEGylated cyclic peptides based on the RGD (Arginine-Glycine-Aspartic acid) integrin binding motif that showed improved pharmacokinetics over non-modified peptides. 

 There has also been work done on peptide delivery by harnessing the body's own peptide transport systems: the PEPT1 and PEPT2 transporters are able to naturally take up di- and tri-peptides, and a variety of different hydrophilic peptidomimetic drugs30. Certain macromolecules may also move through the cell via receptor mediated endocytosis, and peptide conjugation to vitamin B12 has been shown to be capable of moving the peptide through the gut lining31.

Proteolytic Resistance.
Proteases, or peptidases, break down peptides by binding a specific recognition site. Proteases act by binding to a specific sequence, or set of sequences along the peptide backbone, and breaking the peptide backbone at a specified location. There are a very large number of known proteases, the MEROPS32 protease database lists 703 known and putative peptidases in human alone. One class of proteases are the exopeptidases, which cleave either the N-terminal or C-terminal amino acid from a peptide chain. Cyclic peptides, since they lack a natural C or N-terminal, are naturally protected from these peptidases.

The catalytic action of a protease depends on the precise layout of the residues involved in catalysis at the enzyme active site. For example, in the case of serine proteases such as chymotrypsin, there are three amino acids, histidine, serine, and aspartic acid involved catalysing the breakup of the peptide bond, which are precisely spaced in the active site33. The peptide must fit into the protease active site in the correct orientation for proteolytic degradation to occur, and the specificity of a particular enzyme is determined by how well it recruits the peptide to the active site. Recruiting the peptide is done with a specific peptide binding site that directs the peptide to the active site. Conformational restraint, or non-natural amino acids can prevent proper recognition of peptides by the proteases34,35. The incorporation of non-natural, D-enantiomer amino acids is commonly used in cyclic peptides, and has been shown to prevent protease recognition in both linear36 and cyclic peptides37. Bacteria have even evolved cyclic peptides as natural protease inhibitors38.

 Despite this, cyclic peptides are not guaranteed to be resistant to the whole spectrum of proteases. Another option to prevent proteolytic degradation is protecting the peptide by chemically modifying it to be cleaved into the active form in the gut: i.e. a prodrug (reviewed by Wang et al39). Alternatively, drug delivery can be designed to go in between, rather than through the gut epithelial cells where there are few proteases40, which may be assisted by using a tight-junction modulator compound41. 

The body's proteolytic system may also be worked around using a specially formulated slow-release system. Here, the peptide is packaged in a synthetic substance which is slowly degraded by proteases. This degradation releases the contained peptides, which are active for a short time before they are, in turn, degraded. However, the synthetic slow release formulation lengthens the delivery period to maintain a constant low dose of active peptide in the bloodstream, despite the rapid clearance of the peptide.

Recently, Amiram et al42 have described a slow release peptide formulation that can be completely biologically synthesised in an E. coli expression system, which is effective for 120 times longer than an injection of the native peptide drug, and avoids the difficult and expensive step of manufacturing synthetic microparticles to act as a slow release system.

Cyclic Peptides and Protein-Protein and Protein-Peptide Interactions.
Protein-protein interactions (PPIs) pose difficulties for traditional small molecules, due to the large, shallow interfaces that typify these interactions. Historically, small molecule drugs have been developed as analogues of cellular metabolites or hormones that sit in the well-defined hydrophobic pockets that are the protein's active sites , modulating signalling or enzymatic activity. This has raised questions over the suitability of traditional small molecules to modulate protein-protein interactions, due to the fundamentally different nature of protein-protein interaction surfaces, and protein binding pocket chemistry43. Despite this, small molecule protein-protein interaction inhibitors have been identified, reviewed here3, those with structural information available are curated in the 2P2I database44.

A typical protein-protein interaction surface is roughly 1600 Å2, and there are known complexes with surfaces areas five times larger45, which presents a very large surface for a cyclic peptide to cover. However, the binding energy for a protein-protein interaction is not evenly spread over the contact surface, and generally is focused on a few “hot-spots” that provide most of the binding energy46. Additionally, protein-protein surfaces are not fixed surfaces, but have dynamic shapes, characterised by transient pockets and a degree of flexibility47. Protein-protein x-ray structures can be misleading here, as they can only show a static interaction surface, but it is an important consideration in drug design. Cyclic peptides are at an advantage compared to small molecules when designing modulators of protein-protein interactions: they are constructed from the same natural building blocks as the protein's biological binding partner; they are typically larger than average small molecules, which allows them to cover more of the hot-spot features; and they can conformationally mimic key features or epitopes of one half of a protein binding surface to out-compete the natural protein binding partner. This approach has been used to develop cyclic peptide mimics of reverse turns (or β-turns as they are sometimes known)48,49.  These turn structures have been recognised as ligands for over one hundred G-protein coupled receptors50. Fasan et al51 have used an α-helical cyclic peptide to inhibit the interaction of the p53 tumour suppressor protein with its regulatory partner HDM2, when small molecule approaches did not work.

Domain-motif interactions, where a globular protein binds to a short sequence (3-15 amino acids) of a disordered protein are an interesting subclass of protein-protein interactions. These short sequences are known as Short Linear Motifs (SLiMs), also known as Eukaryotik Binding Motifs (ELMs), that can act as domain binding locations, protein targeting signals, post-translational modification sites, or cleavage sites. The ELM52 database records currently known examples. These might also be seen as protein-peptide interactions, rather than protein-protein interactions, due to the small size of the SLiM sequence binding to the protein. Linear motif interactions are smaller than most protein-protein interactions making them more tractable for designing drugs than typical protein-protein interactions. One of the best known classes of bioactives derived from a known SLiM motif are cyclic peptides mimicking the RGD motif, which is selective for the αV family of integrins. This has led to the development of Cilingetide53, a drug under investigation for treatment of angiogenesis. Cyclic peptides have also been developed incorporating the RGD-related related NGR motif, for targeting anti-tumour compounds to tumours54. Peptide compounds have also been developed that target the SH3 domain55.

Protein-peptide interactions, of which SLiMs are a subset, comprise an estimated 15-40% of the interactions in the cell56. This makes them an extremely attractive template for cyclic peptide drug development. The PepX57 database curates a set of protein-binding peptides. Cyclic peptides cannot always be used to mimic a linear peptide, as linear peptides often bind in an extended linear conformation58 incompatible with the geometry of a cyclic peptide. Nevertheless, the set of protein binding peptides contains promising targets for cyclic peptides, such as protease inhibitors59.

Currently used Cyclic Peptides /  Cyclic Peptides as Drugs.
By searching the ChEMBL60 database of bioactive drug-like molecules for approved drug structures, we can identify cyclic peptide like drugs. Here we define “cyclic peptide-like” as those compounds with at least a dipeptide in a macrocycle as a substructural component (i.e. those matching the SMARTS61 pattern N;r;!r3;!r4;!r5;!r6;!r7]CC(=O)[N;r;!r3;!r4;!r5;!r6;!r7]CC=O. Drugs are given a United Stated Adopted Name (USAN) which is based on a rough nomenclature that consists of a series of “stems”, which are usually suffixes, but can be prefixes or infixes that relate drugs to broad chemical families based on structure or activity.  The current list of USAN stems can be found at http://www.ama-assn.org/ama1/pub/upload/mm/365/stem-list-cumulative.pdf.

Table 2 summarises the activity of these drugs as inferred from their name. From this table, it is clear that cyclic peptide antibacterials and antifungals dominate the list. The term “peptide drugs”  covers compounds with a wide variety of activity, and includes compounds such as Octreotide, a somostatin mimic62, Linaclotide, a peptide agonist of guanylate cyclase 2C used for treating abdominal pain for IBS sufferers63, Davalintide, an amylin-mimetic peptide to reduce food intake64, and Cilengitide, an angiogenesis inhibitor53. Despite the bias of cyclic peptide structures towards antibiotic action, it is clear that cyclic peptide drugs exist with a wide range of biological activities.

Table 2: Activities of cyclic peptide drugs inferred from the stem of the United States Adopted Name
	Activity Type. 
	USAN Stems.
	Number of Cylic Peptide Drugs.

	Antibacterials 


	-planin, -mycin, -myxin, -vancin, -tracin, -cetin, -cidin, -cycline, -ganan, -tricin  
	31 

	Peptide drug 
	-tide 
	26 



	Oxytocin antagonists and derivatives  
	-siban, -tocin 
	9



	Vasoconstrictors  
	-pressin


	6

	Antifungals  
	-fungin 

	5

	Immunosuppresants 

 
	-sporin,  -dar 
	5

	Depsipeptide derivitives  
	-depsin 

	1

	Prehormones or hormone-release stimulating peptides 


	-relin 

	1

	Enzyme Inhibitor and growth hormone derivative 


	som- -stat

	1

	Tachykinin receptor antagonists 


	-tant 
	1

	Antivirals 
	-vir-


	1


The size distribution of peptide drugs is shown in Figure 2. Figure 2 (a) shows the typical molecular weight distribution of all drug molecules - it can clearly be seen that drug molecular weights between 200 and 600 predominate - consistent with known guidelines for oral drug availability. Figure 2 (b)shows the weight distribution for approved “cyclic peptide-like” drugs, as defined above. It is clear that cyclic peptide drugs are a great deal larger than typical drugs, with cyclic peptide drug molecular weights lying primarily between 1000 and 2000.  Figure 2 (b) also includes  some disulphide-bonded proteins that have been approved as drugs,  such as Insulin (m.w: 5916) and Mirostepin (m.w: 8848).

[image: image6.emf]
Figure 2: Histrograms showing the molecular weight distributions of (a) all drugs and (b) approved cyclic peptide drugs only.
To further illustrate the properties of cyclic peptide drugs, Figure 3 shows example cyclic-peptide drug structures, one from each activity type with more than one representative in Table 2. Figure 3 illustrates the variation in bioactive cyclic peptides, all of them have the typical central peptide-backbone macrocycle, but it varies in size, from 5 backbone amino acids in the case of Octreotide Figure 3 (c)) and Lypressin ( Figure 3 (d) to 12 backbone amino acids in the case of Ciclosporin (Figure 3 (f)).

While the cyclic peptide ring is more or less the same between peptides, it can play an important role in binding: for example, it has been shown65 that there exist several hydrogen bond contacts between the ciclosporin backbone and human cyclophilin A (its therapeutic target). This suggests that the cyclic peptide backbone is more than an inactive scaffold, given biological relevance by its side chain groups.

[image: image7.emf]
Figure 3: Example cyclic structures for each activity class of cyclic peptides with more than one representative in Table 2
Biological Methods for Cyclic Peptide Screening
To contrast with computational cyclic peptide screening methods, it is useful to briefly introduce the main methods for identifying diverse and complex bioactive peptide and cyclic-peptide structures.

Genetically Encoded de-novo Peptide Libraries.
Phage display is a technology that takes advantage of certain members of the filamentous phage virus family, most commonly the  M13 phage that have the ability to display non-native peptides on its surface coat proteins to generate and assay large peptide libraries for binding to a biological macromolecule66. Phage display represents a biological method of rapidly generating large random peptide and cyclic peptide libraries. To create a phage-display peptide library, random oligonucleotides are  inserted into the coding sequence of one of the coat proteins. The phage is inserted into bacteria, usually E. coli, where the phage begins replicating and is released, displaying the random peptide on its surface. Phage are selected by binding to an immobilised target protein, with the non-binders being washed away. This process is repeated several times to identify strong binders and the binding phage can then be sequenced to retrieve the binding peptide sequence.  Phage display enables the display of libraries of 1010 peptides simultaneously67, with typical peptide sizes between 5 and 20 residues68, and has been used to successfully identify high-affinity disulphide-bonded cyclic peptides69. 

 Another method of genetically encoding peptides is via the SICLOPPS70 technique (split intein-mediated circular ligation of peptides and proteins),  which allows production of any head-tail bonded cyclic peptides inside a eukaryotic cell.  This technique has been used to express and screen a library of head-tail cyclic peptides in yeast cells that yielded cyclic peptides that specifically reduce the toxicity of human α-synuclein71.

Cyclic Peptides derived from Natural Sources.
The primary advantage of cyclic peptides derived from natural sources is the idea that evolution has already done the work of selecting a set of bioactive peptide scaffolds that can be taken advantage of for drug discovery purposes. Natural sources contain a rich diversity of cyclic peptide, and cyclic peptide like structures. Natural cyclic peptides come from two principal sources - they can be synthesised, like proteins, from DNA, or they can be non-ribosomal peptide natural products, synthesised by specialised nonribosomal peptide synthetases in microorganisms like bacteria and fungi which can incorporate a great variety of non-natural amino acids and post translational modifications and possess a vast chemical diversity11. Non-ribosomal cyclic peptides are the principal source of cyclic peptide antibiotic structures such as Tyrocidine72 and Daptomycin73. The cyanotoxins, hugely potent natural toxins produces by cyanobacteria, have many cyclic peptide examples, such as microcystins74, which inhibit protein phosphatases type 1 and 2A, and nodularins75. Nonribosomal cyclic peptides also include anti-cancer drugs, such as the epothilones76.

Compared to the non-ribosomal natural product cyclic peptides, bioactive genetically encoded cyclic peptides are somewhat under-explored. There are many studies involving cyclic peptide analogues of a particular protein loop or peptide motif, such as the previously mentioned RGD cyclic peptides, which mimic an integrin recognition motif26, but relatively few taking an existing cyclic portion of a protein “as-is”. One example are the serine protease inhibitor cyclic peptides based on a disulphide-bonded reactive site loop of the Bowman-Birk protease inhibitors77. 

Virtual Screening of Cyclic Peptides.
Virtual Screening Methods.
Virtual screening refers to a set of computational methods that aim to identify active molecules for a biological target based on similarity to known active ligands, or by complementarity to a binding surface. Virtual screening methods can be broken down into two main categories: Ligand-based and Structure-based screening. 

Ligand-based screening is based around the observation that molecules similar to already known ligands will have similar biological activity. Therefore, potentially active molecules for a particular target can be identified by their similarity to the known ligand(s). Ligand based screening methods include fingerprinting methods, pharmacophore matching, and shape-based matching. Common ligand based screening methods are described in Table 3. Ligand based screening methods can be extremely quick, especially those that reduce a molecule to a bit-string of 0's and 1's representing its chemical properties, as comparing bit-strings is very fast computationally. Bit-strings can be pre-calculated for large libraries of candidate compounds, allowing them to be easily re-screened against many true ligand structures. Despite the lack of structural information on the target protein, ligand based methods have been shown to be just as accurate as structure based methods78, although this may be down to an imperfect understanding of how to design a docking scoring function that works well across diverse target types79.

Table 3: Common ligand-based screening methods.
	Method
	Description
	Examples

	Molecular Fingerprints
	The molecule is represented by a bit-string where each bit represents either the presence or absence of a chemical fingerprint (Structure-based) or the bit-string is based on assigning a numerical value to the atomic and bonding properties of linear substructures of the molecule and passing the results through a hash function to create a bit-string (Hash-based). Comparing two molecules is done by calculating the number of shared “on" bits in the fingerprints and dividing that by the total “on” bits in both keys (the Tanimoto score).


	MACCs keys 80 (Structure based),

Daylight fingerprints 81(Hash-based)



	Shape Matching
	The similarity of two molecules is compared based on their three dimensional shape, either by aligning 3D structures of the molecules and calculating the root mean squared deviation (RMSD), or by comparing statistical measures of molecular shape.


	USR82,

USRCAT83,

ROCS84,

PhaseShape85.



	Pharmacophore Matching
	The molecule is broken into a set of points or volumes representing a particular chemical feature, such as a hydrogen bond donor/acceptor, +/- charge, lipophilic regions and aromatic groups. A query pharmacophore model can be built from features of a known ligand known to be important for binding, and the matching score is based on a feature volume overlap score between the query pharmacophore and the candidate ligand features


	Pharao86, MOE87,

Pharmer88,

Catalyst89.




Structure-based screening is based on exploiting the known three-dimensional structure of the target and the topology of its ligand binding surface to design or choose possible active molecules, often by attempting to “dock” the prospective ligand molecule into a predefined binding site on the target. Docking generally consists of two steps, iteratively repeated: pose generation, also known as the search stage, and scoring. Pose generation is the act of computationally positioning the ligand within the defined binding site, when it is then scored, using a specialised scoring algorithm, to predict how good the pose is. This is generally repeated until a set limit of time or number of rounds of posing and scoring has been met, and the best score, or set of scores is returned, along with predicted binding conformations. Table 4 gives a short synopsis of common scoring algorithms, and Table 5 explains the pose generation algorithms. Docking approaches can also be divided into rigid and flexible approaches - rigid docking is very fast, but less accurate. Rigid body docking has been used by Mosca et al90 to accurately identify interacting proteins in the  Saccharomyces cerevisiae interactome. Generally, when using virtual screening to find protein ligands, a flexible ligand - static protein, or static protein backbone model is used. Yuriev at al91 have reviewed different docking approaches and challenges in detail.

Table 4: Description of various docking scoring algorithms. Note that many docking programs,

	Scoring Algorithm
	Description
	Example Implementations

	Empirical
	Count up the number of favourable interactions between ligand and target, or calculate the change in solvent accessible surface area to rank docking poses.


	Sybyl

FlexXScore 92,

Autodock Vina93


	Molecular Mechanical
	Use a molecular mechanical force field, such as AMBER to estimate binding affinities based on Van der Waals, hydrogen bond, and charged contacts.


	DOCK 94


	Knowledge Based
	Assesses docking score based on the statistical similarity of docked conformations to known protein ligand structures, such as those in the Protein Data Bank 95
	eHITs96, Sybyl

PMF92



Table 5: Description of various docking pose generations algorithms.
	Pose generation algorithm
	Description
	Example Implementations

	Systematic Sampling
	The computational space is systematically explored by rotating flexible bonds. This may be followed by sampling a diverse subset of the generated structures


	MOLSDOCK97


	Incremental Construction
	The molecule is assembled within the constraints of the defined docking site,from fragments of the input molecule.


	DOCK94,

E-novo98


	Genetic Algorithms
	The ligand conformations in the docking site are represented as a “gene" and using the docking score as the fitness function, they are mutated, recombined, and rescored iteratively


	Autodock499


	Monte Carlo
	Ligand poses are randomly modified and locally optimised.


	Autodock Vina93



One of the advantages of the virtual screening approach is the availability of many high quality software packages available, both commercial, such as MOE87,  OEChem100, the Schrödinger101 suite of programmes, Accelrys Discovery Studio89 and open-source toolkits such as RDKit102, OpenBabel103, and the Chemistry Development Kit104 (CDK). A group promoting open-source virtual screening tools, The Blue Obelisk105 maintains a list of open source screening tools. Commercial virtual screening approaches generally provide a complete graphical environment, with a graphical workbench ready to immediately screen, while the open-source equivalents are often programming toolkits that require the user to construct their workflow using a computer scripting language such as Python. There have been efforts to make more user-friendly open-source screening tools, such as the Knime106 workbench.

Screening Virtual Cyclic Peptide Libraries.
Combinatorial Library Generation.
In order to begin a virtual screening campaign, there are two basic requirements: a target, which is generally the surface of a biological macromolecule, usually a protein, but there are other options including DNA and RNA structures; and a library of candidate compounds. There are several sources of diverse pre-prepared small molecule virtual libraries, such as those curated by the ChEMBL and ZINC107 databases, and pharmaceutical companies generally curate their own compound collections. For cyclic peptide compounds, the most straightforward method of assembling a library is by combinatorial generation, where a number of basic building blocks are assembled into a set of compounds, such as amino acid building blocks for cyclic peptides. This is a little explored approach, although Burns et al108 have successfully used docking of cyclic peptide virtual libraries to find RNA binding partners.

A key advantage of virtual compound generation is the ease of including exotic amino acids and modifications that may be difficult or expensive to synthesise. It is then only necessary to synthesise compounds that are among the top hits. A huge chemical diversity of amino acid structures are commercially available, for example on the ZINC database, but may be cost prohibitive to use in high-throughput screening, due to synthesis costs. Virtual libraries allow basic validation of possible compounds before any complex chemistry takes place. We have developed CycloPs109, software designed for the generation of virtual libraries of cyclic peptides, which can incorporate a variety of cyclic peptide constraint strategies, as well as user-defined amino acid structures, (allowing, for example, the inclusion of amino acids including post-translational modifications in the library), and the ability to filter out cyclic peptides likely to be difficult to synthesise.

Structural Optimisation.
In general, virtual screening methods can be 2 or 3 dimensional. 2D approaches represent the molecule as a mathematical graph structure of atoms joined by bonds, and calculate molecular similarity based on substructures in these graphs, or by the various possible paths through the graph. In contrast, three dimensional virtual screening approaches, such as pharmacophore matching, use the actual predicted three-dimensional shape of the molecule to score hits. For this, the three-dimensional shape of the compound in solution must be predicted.  Due to the conformational restraint of cyclic peptides, accurate solvation structures may be predicted: an example being the work of Goldtzvik et al110, who used the DEEPSAM structure prediction algorithm from the Tinker111 molecular modelling package to accurately predict the solution structures of a set of five small cyclic peptides. However, the potential conformational change upon binding of a cyclic peptide to its target means that it is useful to predict a range of likely conformations for a cyclic peptide to be used in any rigid-body virtual screening step, rather than attempting to predict one single shape. Molecules with large numbers of rotatable bonds are difficult to model computationally, both in terms of calculating all possible three-dimensional conformations, and in identifying the biologically relevant ones. However the constrained central ring structure of cyclic peptides makes these calculations considerably faster and less error prone than the corresponding linear peptide, and is a key reason for the feasibility of virtual screening of cyclic peptides in contrast to linear peptides.

Conformer generation is a standard step in virtual screening, and most of the software packages mentioned above will have built-in routines to accomplish this task. Care must be taken when selecting a conformer generation algorithm as some conformer generation software designed for small molecules including Confab112 generate conformers by systematically rotating flexible bonds, and are not capable of varying macrocyclic rings. Suitable cyclic peptide software for generating cyclic peptide conformers include loop prediction software in the Protein Local Optimisation Program113 which been successfully used to accurately predict the solution structures of cyclic hexapeptides21. 

Also, in their recent assessment of the quality of various currently available conformer generation software packages, Ebejer et al114 recommend an approach using the RDKit102 cheminformatics library, that combines stochastic conformer generation and subsequent optimisation that can generate diverse, low-energy conformations, including varying ring structures.




Screening.
Cyclic peptides are larger, and more three dimensional than druglike small molecules, which are typically planar molecules without complex stereochemistry or structure4. For this reason, it seems more appropriate to use three dimensional screening methods,  despite the fact that, in general, two dimensional virtual screening methods have proved as effective as three dimensional methods for  small molecules115.  Cyclic peptides are often very structurally similar, with a large shared peptide backbone,  and a defined set of side chain groups that reduces the power of substructural searches to discriminate between structures.  For example, a fingerprint based approach will not be able to discriminate between two cyclic peptides with a different sequence, but the same amino acid composition (such as CGVPRRC and CRVGPRC), despite potentially very different activities. Methods to use include docking, or three dimensional pharmacophore matching. Pharmacophore matching is a ligand based screen, with key pharmacophore points taken from a 3D structure of a known ligand interacting with the protein target, but is also possible to include structural information by the use of exclusion volumes, where the candidate molecule must match the key pharmacophore features of the known ligand, while staying out of the exclusion volumes, which are used to avoid hits that would have steric clashes with the protein target.

Validating Peptide Hits.
Virtual screening is not capable of proving biological activity, so it is usually desirable to assay the top hits of a virtual screening campaign. With the advances in peptide synthesis techniques since the invention of solid phase peptide synthesis in 1963116,117, and consequent fall in price of peptide synthesis, it is now possible to order custom peptides at a reasonable cost from many suppliers. 

Peptide Arrays.
The SPOT synthesis technique118 has allowed the development of peptide arrays,  which allows the synthesis of thousands of peptides on membrane sheets, enabling high throughput follow-on screens. Peptide arrays were originally developed for use in antibody epitope mapping, but they are flexible enough to be used for many applications. The use of peptide arrays for studying protein-protein interactions has been reviewed by Katz119 et al,  with the same techniques translating over to protein-peptide interactions. The basic technique involves incubating the array with a chemically or fluorescently tagged binding partner, or incubation with a protein of interest followed by a fluorescently tagged secondary antibody, before removing the unbound substrate and visualising the results. Results from peptide arrays are semi-quantitative - i.e. they can distinguish between strong binding, weak binding and no binding, but do not provide a precise measure of binding affinity. Inserting control peptides of known binding affinity onto the array will allow estimation of binding affinity by comparing the signal strength of known and unknown binders.
Virtual Screening vs. High-Throughput Screening.
The main competitor to virtual screening is high throughput screening. High throughput screening involved automated compound handling using variations on the traditional 96 well plate - often with thousands of wells, each of which will contain one or more individual assays. Current approaches can screen up to 100,000 compounds a day120, and can use extremely tiny volumes of reactants, at a low cost per molecule screened. However, the equipment itself is expensive, usually found only in industry, with a few academic exceptions121.

The purpose of both methods is to filter down a large library of compounds into a shortlist of active or “lead-like” compounds which can be used as the basis for more rational design or optimisation methods. The key disadvantage of virtual screening compared with high-throughput screening is that virtual screening can only predict which compounds are likely to be active, but high-throughput screening provides direct, physical evidence of activity. The main advantages of virtual screening are the cost of computational power, which is rapidly plummeting in an age of increasing computer performance, and harnessing graphical processing units (GPUs) for very fast parallel processing, which can result in a 260-fold increase in screening speed compared to a traditional CPU122. Virtual screening is benefiting from the vast resources that have been poured into improving general purpose computing power for all users, in contrast to the specialised equipment required for high throughput screening.

Using Evolutionary Algorithms to Screen Large Cyclic Peptide Libraries.
A major stumbling block in computationally screening combinatorial cyclic peptide libraries is the issue of the exponential explosion in the number of peptide structures. Figure 2 shows that a typical therapeutic cyclic peptide has a molecular weight of between 600 - 2000 Da. With the mean amino-acid weight being 120 Da, this corresponds to a typical therapeutic cyclic peptide size between 5 - 16 amino-acids, ignoring potential post-translational modifications. To fully explore the set of head-tail 10-mer cyclic peptides combinatorially would require generating over 1013 cyclic peptide structures - a prohibitively large amount. 

There are several options to attack the problem of combinatorial explosion, such pre-selecting a restricted library of amino-acids, limiting the number of variable positions (for example, varying 4 positions on an 8-mer cyclic peptide). The choices of amino-acids and variable position would ideally be guided by the biological or chemical properties of the protein interface of interest.

A more advanced approach to screening large combinatorial spaces is the use of evolutionary algorithms. Evolutionary algorithms comprises a set of computational techniques that can efficiently explore very large problem spaces: instead of trying to comprehensively test all possible solutions, evolutionary algorithms seek to iteratively improve a population of candidate solutions, in a manner analogous to natural evolution. This approach has the advantage of avoiding premature optimisation to local minima by the incorporation of mutation, and using a selection algorithm that chooses high-fitness genes, but not necessarily the very highest fitness genes. 

Evolutionary algorithms (also known as genetic algorithms) are often used in virtual screening as a method of efficiently exploring ligand flexibility in docking123–125. The idea of using a evolutionary algorithm approach to screen combinatorial libraries is not new126, and this approach has been previously applied to designing de-novo molecules from fragments127,128, or by pseudo-retrosynthesis, where a molecule is broken up into building blocks which can then be recombined129. This approach is equally well suited to peptide design130–132.

Applying Evolutionary Algorithms to Cyclic Peptides
An evolutionary algorithm starts with a random population of “genes” that undergo selection based on a user-defined fitness function. After the selection step, the population undergoes recombination and mutation to create the next generation. The process repeats itself, either for a number of pre-defined rounds or until the evolutionary fitness converges to a stable value.

Table 6 describes the different method implementations that can be used for the selection, mutation and recombination stages of the evolutionary algorithm. In the case of cyclic peptides, it is convenient to encode cyclic peptides as a sequence string, which can be converted into a chemical structure using a tool such as CycloPs109, for use in the fitness function. The fitness function can be almost any biologically relevant score, such as the output from the virtual screening techniques described above. A suitable fitness function is one that provides a meaningful, numerical, measurement of how “good” each peptide is which can be used to compare peptides across the whole virtual population of peptides. Figure 4 outlines the basic procedure for running an evolutionary algorithm.

Thus, genetic algorithms for cyclic peptides are very similar to genetic algorithms applied to any set of features represented as a linear string, with the exception that recombination events typically are limited to double reciprocal recombinations in order to keep the size constraints of the peptides within a controlled range.

Selecting the Fitness Function
Generally, the most application-specific and computationally expensive step in an evolutionary algorithm will be the calculation of the fitness function after each round of selection133. Therefore, choosing the most appropriate function is vital if the algorithm is to converge on an optimal solution in an acceptable amount of time. 

The randomness inherent the evolutionary algorithm allows the algorithm to avoid getting stuck in the local minima that characterise the solution spaces of real, complex problems. However, evolutionary algorithms do have limits. While they are efficient at exploring large problem spaces and avoiding local minima, it is very unlikely that an evolutionary algorithm will consistently discover the optimal solution to a problem. Evolutionary algorithms have the power to provide approximate solutions to problems that may be very difficult or impossible to exactly solve (such as finding the most potent drug for a particular target). An appropriate fitness function should be an accurate measure of how good any particular solution is to a problem.

The natural fitness functions for screening cyclic peptides are the same programs used for virtual screening of cyclic peptide libraries, including the pharmacophore screening86,87,89,134, shape matching82–85 and docking92–99 programs previously mentioned. Deciding upon the most suitable approach to calculating the fitness is likely to be a process of trial and error, balancing the computational time required for each calculation with the desired generation size, and assessing which virtual screening implementation is most suited to the particular problem under investigation, as the performance of a docking program, for example, is highly dependent on the individual binding site135.

Table 6: Methods of Applying Evolutionary Algorithms to Cyclic Peptide Discovery. Based on algorithms described in136–138. Note that this is not an exhaustive list of all appropriate algorithms.
	Evolutionary Process.
	Description.
	Implementations.

	Selection
	Individuals from a population are selected based on their fitness. To avoid local minima, it is generally desirable to not simply select the top scoring peptides, but to choose a diverse panel of peptides with above-average scores.


	Proportional selection: Peptides are selected, with a likelihood of selection weighted by their fitnesses.

Linear rank selection: Peptides are ranked according to their fitness, and selected in rank order.

Binary tournament selection: Peptides are assigned random pairings, the paired peptide with the higher fitness is selected.

Q-tournament selection: All peptides participate in “Q" number of tournaments, and the peptides with the most wins are selected

	Recombination
	To produce the next generation of peptides, after fitness evaluation and selection, selected peptides are shuffled and recombined in various ways


	Single, double, and multi-point crossover: Two parent peptides are cleaved at one, two or n randomly chosen points, and alternating parts of each sequence are used to create the child peptides.
Distance bisector crossover: Two parent peptides are split at the halfway point, and recombined.

Uniform Crossover: Each position within the parent sequences is assigned a random probability score. If this score exceeds a certain threshold, the amino-acids are swapped.

Unchanged: Peptides are not recombined. This method can be used in combination with any of the above methods.

	Mutation
	Amino-acids within the peptide sequence can be randomly mutated to another amino-acid.


	Basic mutation: Each amino-acid in the peptide has a small % chance of being randomly replaced with another

AA Class mutation: Each amino-acid in the peptide has a small % chance of being replaced with an amino acid from another chemical class (polar, non-polar, positive charge, negative charge)


[image: image8.emf]
Figure 4: Evolutionary algorithm procedure for cyclic peptide screening.
Bioinformatic Discovery of Bioactive Cyclic Peptides
Biological Cyclic Peptide Libraries.
An alternative approach to combinatorial virtual libraries is assembling cyclic peptide libraries from biological sources, by exploiting the diversity of cyclic peptides that have developed through evolution in the genome, or as natural products. 

Natural cyclic peptides provide a useful source of guidance for virtual screening. Focusing libraries on structures based on those found in nature is a method of stacking the deck of peptides towards bioactivity while retaining manageable numbers of structures.

Harnessing protein structural information, either generated in-house, or available from public structural biology resources such as the Protein Data Bank has been used to find “self-inhibitory” peptides, where a peptide derived from a protein-protein interface inhibits the formation of that interface, and it has been observed that many protein-protein interaction surfaces are dominated by short segments of peptides139. More recently, this approach was used to identify peptides that inhibit viral membrane fusion140. While these studies principally examined short linear peptides, the same principles can be used to identify cyclic peptides, either by cyclising bioactive linear peptides to improve bioavailability, or by searching for bioactive peptides with natural cyclic shapes, derived from loop or turn regions of protein secondary structure. A well-known examples of the use of cyclic peptides to mimic protein loops are the RGD peptides26. The RGD tripeptide motif is a cell attachment β-turn motif found in numerous proteins, and cyclic peptides containing this motif have been shown to inhibit integrin αVβ3 activity, which plays an important role in tumour metastasis.

Along with structural bioinformatics approaches, harnessing evolutionary protein sequence data can be used to identify highly conserved short peptide sequences (implying biological relevance) likely to participate in a protein-protein interaction of interest. This type of bioinformatics approach has been previously successfully used to identify peptides from signalling rich juxtamembrane regions that have the ability to modulate platelet function141. This sort of analysis provided a rich set of template sequence which may be developed into bioactive motifs, from which libraries of cyclic peptides may be derived.

Machine Learning Approaches.
Machine learning techniques involve developing a computational screen based on known data, where a computer develops a model based on generalising from the known data in order to be able to accurately classify any new data. Supervised learning is form of machine learning where known data known to belong to a  certain “class” (e.g. binder/non-binder) is computationally processed to infer a computational model that can then classify further examples. Supervised learning algorithms includes approaches such as artificial neural networks and support vector machines142.

These techniques have been successfully for a wide variety of peptide classification tasks, including  signal peptide prediction143, predicting novel antibacterial peptides144, improving the ability of flexible peptide docking to discern binding peptides145 and classifying peptides into binders and non-binders based on quantitative structure-activity relationship (QSAR) descriptors for the peptides146.

However, despite the power and success of these methods, effectively using these methods to predict bioactive peptides requires a large amount of peptide activity data  to act as a training set147, which must be determined in vitro. This requires significant laboratory work to be done prior to any computational screening.

Conclusions.
Despite their promise for use in applications not well suited to traditional small molecules, virtual screening of cyclic peptides, and peptides in general, is not a well explored area. This is possibly due to the known difficulties in computationally modelling peptide structures, and the known drawbacks of peptides as drugs. Cyclic peptides are computationally more tractable than linear peptides, and present the possibility of overcoming some of the drawbacks of linear peptides.

There have  been successes and proofs-of-concept showing the power and utility of virtual screening applied to cyclic peptides. Recently Norris et al148 have shown the ability of docking to predict the affinity of angiotensin converting enzyme (ACE) inhibitory dipeptides, but did not consider larger peptides due the large number of rotational bonds. Cyclic peptides may somewhat avoid these issues, and Arbor et al149 have successfully created a virtual library of cyclic tetrapeptides that closely mimic known three-dimensional structures of reverse-turns. There have been new developments in peptide docking with the introduction of Rosetta FlexPepDock150, which has been shown to be able to retrieve near-native peptide conformations in a variety of docking experiments. It is, however, significantly more computationally expensive than other docking approaches. London et al151 have used this approach to test peptides binding to Bcl-2, and validated their results using peptide arrays. Mandal et al have used docking to model the interaction of conformationally constrained phosphopeptides to the SH2 domain of the signal transducer and activator of transcription 3 (Stat3) protein - involved in aberrant growth in malignant tumour cells152.

In contrast to the lack of cyclic peptide virtual screening studies, there exist numerous studies using virtual screening to identify nonpeptidic bioactives based on pharmacophores derived from bioactive peptides and cyclic peptides, including Urotensin II receptor antagonists153, the somostatin receptor and thrombin receptor mimetics154. These pharmacophore models have been shown to have the power to produce true hits, and must be seen as attractive for cyclic peptide screening. There are also many examples of high-throughput screening using peptide libraries, such as screening cyclic peptide antibiotics155, of peptide  integrin inhibitors156, and binding to human leukocyte antigen (HLA) class I molecules157. Most of these structures are well characterised, with crystal structures including binding partners available, and these structures are also accessible to virtual screening approaches.

Cyclic peptides sit in a niche between typical small molecules and larger peptides and antibodies, with some of the potential advantages and disadvantages of both. Virtual screening has not quite reached its potential, likely due to our incomplete knowledge of the fundamental nature of ligand binding158, and must be used with an awareness of its fundamental limitations, but the pharmacophore matching and conformational prediction techniques have reached a point where their application to cyclic peptides has shown its power. Perhaps due to the general distaste for peptide drugs, non-peptidic compounds have seemed to be the historical first choice for developing therapeutics based on a natural bioactive peptide. This implies a possible amount of low-hanging fruit for developing cyclic peptide analogues instead. There is a wealth of peptide-protein activity data available that can be harnessed and virtual screening is a fast way of getting started.
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