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Abstract:  
Laser scanning technology is a fast and reliable method to survey structures. However, the 

automatic conversion of such data into solid models for computation remains a major 

challenge, especially where non-rectilinear features are present. Since, openings and the overall 

dimensions of the buildings are the most critical elements in the computational models, this 

article introduces the Slicing Method as a new, computationally-efficient method for extracting 

overall façade and window boundary points for reconstructing a façade into a geometry 

compatible for computational modelling. After finding a principal plane, the technique slices a 

façade into limited portions, with each slice representing a unique, imaginary section passing 

through a building. This is done along a façade’s principal axes to segregate window and door 

openings from structural portions of the load-bearing masonry walls. The method detects each 

opening area’s boundaries, as well as the overall boundary of the façade, in part, by using a 

one-dimensional projection to accelerate processing. Slices were optimised as 14.3 slices per 

vertical metre of building and 25 slices per horizontal metre of building, irrespective of building 

configuration or complexity. The proposed procedure was validated by its application to three 

highly decorative, historic brick buildings. Accuracy in excess of 93% was achieved with no 

manual intervention on highly complex buildings and nearly 100% on simple ones. 

Furthermore, computational times were less than 3 seconds for data sets up to 2.6 million 

points, while similar existing approaches required more than 16 hours for such datasets.    
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1. Introduction 

 

Laser scanning, also known as Light Detection and Ranging (LiDAR), has become a 

common and reliable tool in applications related to Civil Engineering like urban planning (Wu 

et al., 2015), disaster coordination (Vetrivel et al., 2015), vegetation management (Ferraz, et 

al., 2016), and auto-navigation (Vu et al., 2015). Automatically transforming these largely 

visual models into forms readable by finite element programmes remains a challenge, unless 

significant manual intervention is involved. Thus, their usefulness is hampered for use in the 

engineering community for district-level and city-scale topics such tunnel damage prediction 

(Laefer et al. 2010) and microclimate modelling (Singh and Laefer, 2015). In general, having 

a geometrically accurate, three-dimensional (3D) building model is an essential component for 

computational analysis. This is complicated to achieve economically, because the geometry for 

the vast majority of urban structures is undocumented, and the expense of collecting that data 

through traditional surveying methods is likely to be prohibitive. In such cases, remote-sensing 

technologies can offer a cost-effective alternative (Abayowa et al., 2015). Prominent amongst 

these is laser scanning, which furnishes a rapid means to collect the relevant data from three-

dimensional (3D) objects, including Cartesian coordinates in the x-, y- and z-directions, 

intensity of the reflected laser beam, plus when there is an integrated digital camera, colour 

values [(red-green-blue (RGB)]. These 3D points are collectively referred to as a point cloud. 

The challenge then becomes the extraction of geometries of interest in a way that is accurate 

and technically meaningful and in a format that ultimately is compatible with computational 

modelling software. 

 

Extracting relevant geometrical façade components from LiDAR data is challenging, in 

part due to data collection imperfections including occlusions and general noise. Currently, the 

majority of relevant approaches, while highly effective for visualization, have acute limitations 

with respect to generating input for computational models. Prominent limitations are as 

follows:  (1) having applicability only to simple, rectilinear structures; (2) requiring a priori 

knowledge (e.g. a reference library); (3) necessitating significant manual user involvement; 

and/or (4) being computationally expensive. Presently these issues are impediments to using 

laser scanning to generate city-scale computational models. To begin to addresses these issues, 

this paper introduces the Slicing Method, a new means to rapidly and automatically detect a 

façade’s overall geometry and its openings, even in the presence of non-rectilinear shapes and 

significant façade complexities. 

 

2. Related works 

Building façade extraction tends to involve two major components:  segmentation and 

feature extraction. Segmentation is the process of segregating a group of points belonging to a 

single surface or region. Building segmentation often separates walls from roofs and different 

sides of a building from each other. In contrast, feature extraction involves identifying building 

features (e.g. doors and windows) from patches that resulted from segmentation. Segmentation 

is typically a precursor to feature extraction. Both are long-standing research topics in remote 

sensing as described below.  

 

2.1. Segmentation 

Segmentation has an essential role in the reconstruction of 3D models from laser scanning 

data. While a wide variety of strategies have been developed, the majority use some form of 

model fitting approach (e.g. Schnabel and Klein, 2007 and Awwad et al. 2010), such as the 

well-established Random Sample Consensus (RANSAC) technique introduced by Fischler and 

Bolles (1981). As an example, Boulaassal et al. (2009) integrated the use of RANSAC for wall 

segmentation of planar surfaces. RANSAC iteratively calculates parameters of a potential 
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plane through a dataset with the goal of fitting a surface. Accuracy depends upon the number 

of iterations and the dataset size. Since walls have much higher point densities than openings 

or outliers, this method can extract walls, roofs, and doors that are located on a segmented 

plane. The method successfully extracts planar surfaces of building façades, as long as 

substantial protrusions or complex details are not present. Boulaassal et al. (2009) showed that 

this technique can also be used for boundary detection of segmented planes. 

 

   Another highly influential technique is that proposed by Wang et al. (2004), which is based 

on an octree indexing structure. In that approach, planar clustering was employed for 3D 

segmentation by splitting points into small planes (based on characteristics such as average 

height, average intensity, and shape orientation) and subsequently merging neighbouring 

planes that have similar normal vectors. Although, the method is relatively successful for rough 

segmentation, it cannot be used for complicated façades. Another octree-based approach was 

introduced by Vu et al. (2014), in which a region-growing algorithm was introduced to segment 

points into large, coarse surface patches by incrementally grouping adjacent voxels (3D cells) 

based on them having similar normal vectors and residual values (the quadratic mean of the 

orthogonal distances from the points to their best-fit plane). The procedure then considered the 

points inside the voxels, rather than outliers or unwanted points. To accelerate the process, only 

points belonging to voxels adjacent to incomplete segment boundaries (around each group of 

voxels) were considered as candidates for merging. That segmentation method was able to 

quickly extract different planes of a building’s façades for both terrestrial and aerial laser 

scanning data. However, the scalability and robustness of the method have yet to be 

demonstrated. 

 

Contemporaneous to that, Chen et al. (2014) proposed an automatic and threshold-free 

evaluation system that offers an object-based technique for roof extraction. The enhanced 

algorithm performs well, even in the presence of noisy data and roofs covered in vegetation. 

However, the method has to date not applied to façades, which are arguably often geometrically 

much more complicated than roofs. Also in 2014, Lari and Habib (2014) used principal 

component analysis to identify the points that belong to unique planar, linear or cylindrical 

surfaces. Next, they automatically selected the proper representation model of the detected 

elements. Then, the results were corrected by implementing cylindrical neighbourhoods that 

utilized estimation of local point density variations along their surfaces. Finally, the outputs 

were improved utilizing the characteristic attributes of the segmented elements. This work 

introduced a robust and new approach for the identification, parameterization, and 

segmentation of walls, roofs, and other groups of points having the same geometrical features. 

However, the segmented features are too rough and general for detecting openings and overall 

façade boundaries with great accuracy. 

 

 

2.2. Feature detection 

 

After successful segmentation, feature extraction is often pursued. This is a popular topic. 

The following represents only a sampling of recent contributions. For this, Wang et al. (2004) 

used a simple classification method based on planar attributes, which was limited to horizontal 

and vertical planes (e.g. roofs, ground surfaces and walls). Later Bendels et al. (2006) attempted 

to detect holes in point clouds by calculating the distance of each point to all of its neighbouring 

points by combining an angle and a shape criterion. The proposed approach was successful for 

holes that were either a part of a small object or that happened due to occlusions, reflectance, 

or transparency during data acquisition. The method’s main drawback is its computational 

intensity due to its need to calculate all of the points’ distances to each other and to find the 
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normal that is determined as the eigenvector corresponding to the smallest eigenvalue of the 

weighted covariance matrix of the points. The method also needs some human intervention for 

such things as window frame removal.   

 

Simultaneously, Pu and Vosselman (2006) proposed a fully automatic approach to extract 

building façade features from terrestrial LiDAR, which involved first segmenting a point cloud 

into planar patches, then used a set of rules (i.e. ontologies) based on common construction 

attributes (e.g. size, position, direction and topology). After this, each segment was compared 

by fitting polygons to these constraints for feature classification. The method works well, 

except for windows, because of insufficient data. Therefore, the authors developed a 

subsequent hole-based window extraction method (Pu and Vosselman 2007), which is 

effective, as long as the buildings are relatively simple and conform to the architectural styles 

from which the matching rules were derived.   

 

Shortly thereafter, Becker and Haala (2007) introduced a method for solid model 

reconstruction, which involved integrating terrestrial images with laser scanning data. The 

resulting models were highly realistic returning even the crossbars of window frames. The 

technique, however, requires a sufficiently high density of laser scanning data to have a 

resolution comparable to that of a photograph. Otherwise, an unstable matching and orientation 

process is likely to occur.   

 

Subsequently, Pu and Vosselman, (2009) identified façade features (e.g. doors and 

windows) for building façade reconstruction from terrestrial LiDAR by extending their 

ontological work (e.g. walls are usually large areas, which are mostly vertical planes with an 

intersection with a ground plane). The technique is better suited for more complicated façades 

than previous efforts. However, the method still relies on a priori information and user 

intervention to amend the final results. While visually successful, the technique is limited by 

(1) the devised rules having to cover all cases; (2) a heavy reliance on human intervention; (3) 

challenges with large protrusions; and (4) a dependency on a Delaunay Triangulation (DT) to 

generate a Triangular Irregular Network (TIN) for searching close neighbour points and 

detecting holes, which is highly time consuming for large datasets. 

 

More recently, Truong-Hong and Laefer (2011) introduced the Façade Delaunay (FD) 

method in part based on DT to extract boundary points of a façade and its openings. In that 

method, a data point was considered a boundary point, if the point was an end point of a 

triangle’s side having a length larger than a predefined length threshold. The study reported 

that a threshold by 0.15m was adequate to detect sufficient boundary points for further 

processing, which reconstructed the complete 2D building façade. However, since the process 

needs to examine all triangles in the mesh, the process is highly time-consuming with large 

data sets. In addition, the method may require a user-defined length threshold depending upon 

the data density and building form. Furthermore, Truong-Hong and Laefer (2011) also 

introduced a condition to eliminate boundary points of unrealistic holes. A hole was considered 

unrealistic, if its characteristics (height, length and a ratio of height over length) differed from 

those typically found in building construction based on values proposed by Becker and Haala 

(2007) and Pu and Vosselman (2007). 

 

Then Truong-Hong et al. (2013) used an angle criterion to detect boundary points with a 

kd-tree to accelerate searching k-nearest neighbour (kNN) points of a candidate boundary 

point. The method also implemented a boundary coherence algorithm (Bendels et al. 2006) to 

eliminate incorrect boundary points. The algorithm was highly robust and accurate in extracting 

boundary points but requires a user-defined number of kNNs. Similar to the drawbacks of the 
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work by Truong-Hong and Laefer (2012), the searching boundary point process is 

cumbersome, as it must check all points in the data set.   

 

To reduce processing times, Truong-Hong and Laefer (2014) then introduced the Façade 

Voxel (FV) technique. In that method, only data points around a façade’s boundaries and its 

openings were considered as candidate boundary points. The candidate points were extracted 

from full voxels around a façade’s boundaries and openings. The probability of the angle at the 

candidate boundary point and of a triangle’s perimeter, where the triangle was created from the 

candidate boundary point and its neighbour points and the centre point, was considered as the 

condition for boundary point determination. Notably, an initial voxelization bounding an input 

data set was subdivided into 4 smaller voxels, until the voxel size was no larger than a 

predefined threshold (0.2m). Then the voxel was classified as either full or empty; the centre 

point can be an arbitrary point within the convexhull of the candidate points. The method 

significantly improved processing times of previous work by the authors, while still providing 

sufficient data points for building reconstruction.  

 

3. Proposed method  
 

To overcome some of the above-listed deficits (i.e. handling non-rectilinear elements and 

reducing computational time) for masonry structures, a new method is proposed to extract 

façade boundaries and any openings within (e.g. window and doors). This class of buildings 

was selected as they represent the bulk of the building stock for which there are no as-built 

drawings. The method includes 3 main steps. First, each façade is roughly segmented using a 

planar RANSAC algorithm. Points outside of the plane are then removed; non-planar points 

often appear due to noise, vegetation, and interior spaces detected through windows. This 

segmentation may include curved and protruded features. Second, the segmented façade is 

sliced horizontally or vertically. Each slice passes through a portion of a wall and all of its 

affiliated features (e.g. decorative protrusions, windows, frames). Since glass cannot reflect the 

laser beams back to the scanner, if a slice encounters a window, a gap should appear. A gap 

may also appear if data are missing due to an occlusion; in this paper occlusions are not 

considered. In the proposed approach each gap causes a slice to be divided into two clusters. 

In general, the number of clusters in each slice is equal to the number of gaps plus one. As 

windows frames would cause small clusters compared to the rest of the slice, a threshold could 

be established for their removal. Ultimately, such a step could be extremely helpful in the 

removal of such non-structural elements as window crossbars. However, this has not been 

implemented herein. Generally, window with curtains or shades and recessed doors, are not 

problematic as they are on a recessed plane and not considered due to the initial planar 

segmentation. If the number of points on the recessed curtains is too plentiful (in comparison 

to neighbouring points), then the fitted RANSAC plane may unintentionally shift a few 

centimetres backwards behind the real façade. However, given the rest of the procedure, the 

impact on opening detection is likely to be negligible and could be corrected by changing the 

thresholding for the RANSAC step, if the problem appeared. To accelerate computation, in this 

step the y-axis is assigned as the new, local, vertical axis (from the ground skyward). The x-

axis is along the façade (either to the left or right), and the z-axis points either inward or 

outward from the façade. In the third step, extreme points of each slice are extracted to create 

facade and opening area boundaries (Fig. 1). The entire procedure is then repeated, either 

horizontally or vertically depending upon the initial decision. 
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Fig. 1. Slicing Method Process 

 

The method can be formulated by a set of points P = {p1, p2, p3…, pi . . .  pM} ⊂ ℝ3 in the 

point cloud, which in the first step is segmented with a RANSAC algorithm from the façade 

into N planar or non-planar segmented parts {PL1, PL2 … , PLi … PLN}. Each PLi corresponds 

to a set of 3D co-planar points. Afterwards, PLi is divided into M number of slices S={S1, S2, 

S3 …, Sj …  , SQ}. 

 

   Sj (P):  P → { Pi (xi, yi, zi) ∈ P | if j ≠ h ⇔  Sj(P) ⋂ Sh(P) = ∅ }                                          (1) 

 

Then, each slice is projected onto a locally defined X-axis. This means that the y-value of every 

point of each slice would be a constant number equal to Eq. (2):  

 
∀ Pi (xi, yi, zi) ∈  Sj ; yi = c                                                                                                  (2) 

 

Following that, the cumulative dataset of the projected points along each line is considered. 

The distance of each point in the line is calculated, with respect to its two closest neighbours 

(1 prior and 1 subsequent) using Eqs. (3) and (4): 

 

𝑑𝑖 = √(𝑥𝑖  − 𝑥𝑖−1) 2 + (𝑦𝑖 − 𝑦𝑖−1)2 + (𝑧𝑖 − 𝑧𝑖−1)2    
∵  (𝑦𝑖 = 𝑦𝑖−1 & 𝑧𝑖  = 𝑧𝑖−1)
→                             (3) 

 

After projecting each slice, the y and z values of those points that belong to the same slice in 

Eq. (3) are equal. Therefore, the required distance (dj) can be calculated in one-dimension in 

Eq.4. Also, Pk are points that are in slice Sj: 

 

𝑑𝑗 = √(𝑥𝑖 − 𝑥𝑖−1) 
2 |  𝑖 ≥  2, 3 . . . , 𝐾  &  𝑃𝑘 ∈  𝑆𝑗                                                        (4) 
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Gaps are detected by establishing which points have affiliated distances that are greater than 

twice the median distance of points along that line (Eq. (5)). Each gap separates the slice into 

two different clusters as two groups (1 prior and 1 subsequent) {G1, G2, G3, …, Gv} (Eq. 6 

and 7). 

𝑎𝑓𝑡𝑒𝑟 𝑎𝑟𝑟𝑎𝑛𝑔𝑖𝑛𝑔 𝑎𝑙𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠 (𝑑𝑖) 𝑖𝑛 𝑜𝑟𝑑𝑒𝑟 
→                                  Median = {

(
𝑛 + 1

2
) 𝑡ℎ 𝑑𝑗,                  𝑛 odd

[(
𝑛

2
)𝑡ℎ 𝑑𝑗+ (

𝑛

2
+ 1)𝑡ℎ 𝑑𝑗 ]

2
, 𝑛 even

         (5) 

        if dj > 2 × 𝑀𝑒𝑑𝑖𝑎𝑛(  𝑑1, 𝑑2… , 𝑑𝑘 )  ⇒ Sj = G1 ∪ G2                                                                             (6) 

 

and for general case: Sj = G1 ∪ G2 ∪…∪ GV                                                                                                    (7) 

 

Arguably, the proposed approach is applicable to all point clouds of sufficient density, 

irrespective of the data source (airborne or terrestrial laser scanning or imagery). 

 

3.1. Step-by-step implementation 

 

In this section, a simple rectangular façade with one opening (a window) is selected to 

illustrate the proposed method in a step-by-step manner. The procedure commences by 

segmenting all candidate points – defined as those co-located on a single surface. For most flat 

façades, the planar form of RANSAC is used. RANSAC’s non-planar form is used for curved 

and heavily reticulated façades. RANSAC passes an imaginary surface through the façade. As 

long as RANSAC can detect the surface, the algorithm can operate correctly. This means that 

the façade need not be rectilinear along its boundaries nor exclusively planar. For planar 

RANSAC, the detected plane is considered as the façade, and all points outside a buffer zone 

of 20 cm are removed; the threshold can be as large as the average façade protrusion or can 

vary in accordance to the level of noise in the data. Since, this plane is infinite on all sides, its 

orientation around the z-axis is unimportant. The only crucial parameter is its offset position 

with regard to the origin of the z-axis. 

 

To simplify calculations, the coordinate system is now reassigned as a local one using the 

lowest y-point as the origin and orienting the x-direction along the façade (Fig. 2a). Next, the 

façade is sliced into equal layers to distinguish solid areas (e.g. bricks, stone, or mortar) from 

the openings (e.g. a window) and recessed portions (e.g. a door). Theoretically, the thickness 

of each slice could vary. However, for simplicity sake, a uniform slice thickness is selected. 

More slices will capture geometrically smaller features and improve accuracy of the boundary 

points but at the expense of computational speed. Determining the optimum number of slices 

will be discussed later in the section 5.  

 

Figure 2b shows the horizontal slicing results. For better visualisation, each cluster is 

portrayed with a randomly assigned colour. After slicing, each slice is projected along its lower 

bound x-axis to reduce computational time; data projection greatly accelerates the distance 

calculation step, as the problem is reduced by one dimension [Eqs. (3) and (4)].  If a distance 

is bigger than twice the median distance [Eqs. (5) and (6)], a gap has been detected. Since gaps 

are a function of openings and occlusions, their positions and sizes cannot be predetermined.  

 

Finally, after detecting gaps and clustering all projected slices, the points are transferred 

back to their original positions, but each point retains its assigned cluster label. Figure 2b shows 

the data of each slice projected as a single horizontal line segment line positioned along the 

slice’s lowermost boundary. Split lines are shown in unique colours according to their original 

slice colour. Prior to repeating the procedure with vertical slices, the final step involves 
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identifying boundary points. This is done by picking the outermost points (minimum and 

maximum) of each projected cluster. In this paper, the last 1 cm of the projected line was used 

as a threshold for boundary point identification; threshold selection is discussed further in 

Section 5. Once the vertical border points (black dots in Fig. 2d) and horizontal border points 

(black dots in Fig. 2b) are identified, the extreme points of each cluster are assigned as border 

points of a specific opening or for the entire structure Fig. 2e.  
  

(a)   Initial Point Cloud with Local Coordinate (b)  Data Horizontally Sliced into 10 Portions 

 
 

(c)  Projected Horizontal Slices (d)  Data Vertically Sliced into 16 Portions 

 

(e) Final Extracted Boundary Points 

Fig. 2. Step-By-Step Illustration of the Boundary Detection Around a Single Window 

+Slice 4 is Marked within the Dashed Box in Fig. 2b show the input into step in Fig. 2c 

 

4. Algorithm validation 

The approach was applied to three buildings where aerial and terrestrial data were merged. 

The aerial data came from a RIEGL Q680i with a final projected ground density of 336 pts/m2 

(ground projection) where multiple aerial strips were merged. This was then combined with 

data from a terrestrial scan obtained with a Leica P20 unit. The merged dataset was used to 

produce a high-density data set with minimum façade occlusions. The final average density of 

each façade was calculated by dividing the projected area of each façade (m2) by all collected 

data points on that particular façade (pts). The algorithms were implemented in MATLAB© 

2015, and the data were processed using an Intel® Core™ i7-4770 CPU @ 3.4 GHz system, 

X 
Y 

Z 
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with an nVIDIA Riva TNT graphics board with 12.0 GB RAM under a 64-bit Windows10 

configuration.  

 

The three buildings were from Dublin, Ireland’s city centre. Case 1 is a three-story 

masonry building of 42 m2 (Fig. 3). The building has large protrusions around the openings 

and curved window tops on the top two floors. Case 2 (Fig. 4) is of a similar type and scale 

(three-story masonry building of 108 m2) but with more complicated façade features and no 

vertical window alignment (thus preventing the application of many model or procedurally 

driven techniques). Case 3 is a much larger structure (877 m2) with a highly complicated border 

shape, rounded doors, and prominent window frames (Fig. 5). This structure is one of Dublin’s 

oldest built in around 1700 A.D. (Christine, 2006).   

 

    

 

(a) Original 

Point Cloud 

(b) 

Horizontal 

Slices 

(c) Vertical 

Slices 

(d) Extracted 

Boundaries 

Fig. 3. Case 1, 13 Westmoreland Street 

 

  

  

(a)  

Original Point 

Cloud 

(b) 

Horizontal 

Slices 

(c) 

Vertical 

Slices 

(d)  

Extracted 

Boundaries 

Fig. 4. Case 2, 14 Westmoreland Street 
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Fig. 5. Case 3, Rubrics Building 

 

          To evaluate the accuracy of the results, all of the detected boundary points were 

segmented using the label connected components method (LCC) proposed by Haralock and 

Shapiro (1991). LCC is a fast and robust method that segments point groups that are closer to 

each other than its other neighbours. The LCC method is applied only to the boundary points. 

This will separate each opening from its neighbour. For each segmented opening (windows 

and doors), points were substituted with circumscribed polygons that were generated with 

convex hulls, as shown in Fig. 6b. Overall façade boundary points were connected to each other 

using a concave hull algorithm, as shown in Fig. 6c. Next, all circumscribed polygons (of 

opening and overall boundaries) were imported into AutoCAD 2016 and overlapped onto 

independently derived, measured drawings (referred to herein as the reference model). The 

actual obtained areas were derived from the overall boundaries that are created from the 

concave hull minus the opening areas (orange areas in Fig. 6 (c)). Comparison of the results 

with measured drawings is shown in more details for a set of randomly selected windows (Fig. 

7 and Table 1). Finally, the accuracy was defined by calculating the area of the substituted 

polygons divided by area shown on the reference model (Table 2).                                                         

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

(a) Detected 

Boundaries 

Points 

(b) Circumscribed Polygons 

Inserted Using Convex Hull 

(c) Circumscribed 

Polygon Applied 

Across the Façade 

Using Concave Hull 

Minus Openings 

(d) Measured 

Drawing 

Fig. 6. Evaluation of Case 1 

 

  

(a) Original Point Cloud (b) Horizontal Slices 

  

(c) Vertical Slices (d) Extracted Boundaries 
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Boundary Points Measured Drawing 

  

Case 1:  13 Westmoreland 

  

Case 2:  14 Westmoreland 

  

Case 3:  Rubrics 

Fig. 7. Sample Boundary Points versus Reference 

Models 

 

 

 

 

 

 

 

Table 1. Comparison of Extracted and Measured Areas from Reference Models 
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Cases Name 

Extracted 

Boundary Points 
Reference Model 

Accuracy 

)|2/Area1|(Area 
Height x 

Width 

(m) 

Area1 

(m2) 

Overall 

Height& 

Width(m) 

Height x 

Width 

(m) 

Area2 

(m2) 

Overall 

Height& 

Width(m) 

Case 1 1.27x1.00 2.62 16.88x6.1 1.30x1.00 2.40 17x6.2 91.60% 

Case 2 1.69x0.69 1.60 22.19x5.69 1.70x1.00 1.70 22.5x6.2 94.11% 

Case 3 2.49x1.10 1.19 15.91x70.38 2.5x1.00 1.26 16x70 94.44% 

 

 

Table 2. Case Information and Slicing Method Outcomes 

 

Data 

Façade 

Dimensions 

[Height (m) x 

Length (m)] 

 

Area 

(m2) 

Number of 

Available 

Points 

Average  

Point 

Density 

(pts / m2) 

Number of 

Horizontal 

Slices 

Number of 

Vertical 

Slices 

Time of 

Boundary 

Detection 

(Sec) 

Accuracy 

(%) 

Case 1 17x6.2 105.4 1,543,312 14,698 250 100 0.613 96.8 

Case 2 22.5x6.2 139.5 1,496,958 10,730 250   80 0.879 95.3 

Case 3 16x70 1,120 2,631,757   2,349 200 500 2.530 93.1 

 

The required calculation time reported in Table 2 is only the summation of the vertical and 

horizontal slicing procedure plus the detection of the boundary points. The time needed for 

importing and reading the data into the algorithm was excluded. Since, the height of the three 

buildings are almost the same, the optimum number of horizontal slices for each case was 

highly similar (200 or 250). Because the buildings differed significantly in length, the number 

of vertical slices varied significantly:  from 80 to 500. Accuracy ranged from nearly 93% to 

almost 96%. Processing times were less than 1 second for the 2 smaller buildings and only 2.5 

seconds for Case 3 which was nearly 10 times larger and required a much greater number of 

slices and data points (almost 1.2 million more points more than the first 2 cases). While the 

accuracy was very high, the technique is not perfect. However, part of the loss of accuracy is 

due to imperfections in the initial point cloud, as will be discussed in the next section. 

 

 

5. Discussion 

  

 This section will discuss three major topics related to the ultimate success of the Slicing 

Method procedure. The first is the optimum number of slices with respect to the accuracy of 

the results and the time of calculation. The second is the required data density, and the third is 

the data coverage.   

 

5.1. Optimum number of slices 

The number of slices can influence both the calculation time and the accuracy of the 

detected boundaries. This parameter can be illustrated by looking at a simple window (Fig. 9). 

This window is one of many that appears in Fig. 2. This subset of the data has 15,695 points 

with an average density of 2,308 pts/m2. When a 10 slice division was compared to a 50 slice 

one, there was only a negligible 0.021 sec difference in processing times (0.040 sec vs 0.061 

sec) for the slicing and boundary detection portion of the algorithm.  

 

The accuracy was strongly influenced by the number of slices. The number of slices versus 

the output accuracy in each of the three cases is shown in Fig. 10. The optimum number of 

slices was taken as the maximum achievable accuracy, which was in excess of 92%. To obtain 

these optimal values, an initial number of vertical slices was assumed. The number of 
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horizontal slices was then optimised. Based on those outputs, the number of vertical slices was 

subsequently re-optimised. The process was repeated until convergence occurred. According 

to Fig. 9, beyond the optimum number of slices (both horizontal and vertical), there was a 

noticeable loss of accuracy with the addition of further slices. This phenomenon happened 

because of three main reasons: 

 

a. Since the thin slices pass through obstructions on the windows (i.e. cross bars or 

reflective stickers), the algorithm cannot detect where a gap starts and ends as the 

slice appears continuous.  

 

b. Thin slices cause very small clusters that may be removed by the SM algorithm as 

outliers.  

 

c. The small number of points will give a small value of median that is almost equal to 

the mean of the individual distances (due to the discrete nature of the data) and cannot 

show where the big gaps are located. This effect is shown in Fig. 8.   

250 Slices 900 Slices 

  

  

Fig. 8. Comparison of results 

of 250 and 900 Slices 
 

 For horizontal slices, the optimum number was in the range of 200 to 250 slices. Beyond 

that point there was a loss of accuracy, despite an allocation of additional computational 
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resources in the form of processing additional slices. The similarity in the optimal number of 

horizontal slices across the 3 cases was due to the fact that all of the buildings were about the 

same height (17 m - 22.5 m). When the number of slices was considered with respect to the 

building heights, this value was calculated from Eq. 8. The result was 7cm for the horizontal 

slices was 4cm for the vertical ones. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Comparative Application of Slicing Method on a Simple Window with 10 and 50 

Slices 

 

In contrast to the high similarity in the number of horizontal slices, the optimal number of 

vertical slices varied greatly – from 80 to 1,100, as the buildings differed significantly in width 

(from 6.2 to 70 m), but when considered as a function of building width, the results from the 3 

cases were highly similar around 4 cm or 25 slices per horizontal meter of building (Table 2). 

In addition, the point cloud density does not influence the optimum slice thickness, as it is the 

function of overall dimension of façade. Density only affects the median of the points’ distance. 

Therefore, if the openings (gaps) are bigger than the median, the SM may fail to detect the 

opening, but the number of slices does not change.   

 

  

(a) 10 Horizontal Slices (b) 50 Horizontal Slices 

  

(c) 10 Vertical Slices (d) 50 Vertical Slices 

 

 

(e) Boundary Points from 10 Slices (f)  Boundary Points from 50 Slices 
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Figure 11 shows the number of slices versus time of calculation for the slicing and 

boundary point identification portion of the algorithm for each case. For the horizontal slices, 

the number of slices in Cases 1 and 2 were relatively independent of time. In contrast, Case 3 

had a clear time-based dependency. However, as the actual expenditure in computation was 

only a further 0.4 sec between the most extreme cases (10 slices versus 600), the dependency 

can be considered as negligible. Therefore, only output accuracy should be a consideration for 

selecting the number of slices.  

 

                                                           

 

         

 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑂𝑝𝑡𝑖𝑚𝑢𝑚 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 𝑜𝑓 𝑠𝑙𝑖𝑐𝑒𝑠 =
 𝑊𝑖𝑑𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑎𝑐𝑎𝑑𝑒 

𝑂𝑝𝑡𝑖𝑚𝑢𝑚 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑙𝑙 𝑠𝑙𝑖𝑐𝑒𝑠
=

{
(1700 𝑐𝑚)/(250 )   ≅ 7 𝑐𝑚,                  𝑓𝑜𝑟 𝐻𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 𝑆𝑙𝑖𝑐𝑒𝑠
(620 𝑐𝑚)/(150 )   ≅ 4 𝑐𝑚,                         𝑓𝑜𝑟 𝑉𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑆𝑙𝑖𝑐𝑒𝑠

                                   (8) 

 

  

(a) Horizontal Slices (b) Vertical Slices 

 

Fig. 10. Accuracy of Detecting an Opening with Respect to Number Slices 
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(a) Horizontal Slices (b) Vertical Slices 

 

Fig. 11. Accuracy of Detecting an Opening with Respect to Number Slices 

 

5.2. Data density 

The second important input parameter for the Slicing Method is data density of the point 

cloud. To establish a minimum viable data density, a sensitivity study was undertaken where 

the data were randomly degraded, and the outputs were compared (Fig. 12). While, this does 

not show a required minimum density, boundary detection was still largely achievable (with 

accuracy of 84.2%) at 175 pts/m2. At 31 pts/m2 an accuracy of 43% was achieved. With 

decreasing densities degradation first appears around the windows and ultimately around the 

façade boundaries. The SM may fail with very low density (lower than 31 pts/m2). An absolute 

minimum cannot be stated, because it depends on require accuracy, shape of openings 

(rectangular of irregular curved), size of opening and windows cross bars inside of openings.  

 

To benchmark the Slicing Method directly against other window and façade detection 

methods, the SM method was tested against 3 similar methods identified in the literature:  the 

Façade Delaunay (FD) [Truong‐Hong, et al. 2011], the Façade Angle (FA) [Truong‐Hong, et 

al. 2013], and the Façade Voxel (FV) [Truong‐Hong and Laefer, 2014]. The datasets used by 

the authors of those methods were significantly simpler, as the building boundaries and 

openings were strictly rectilinear (Fig. 13). The outputs of those three methods were reported 

based on running on a Precision Workstation T5400 Intel(R) Pentium (R) Xeon (8CPU) 2GHz 

with 8190Mb RAM. While not identical to the authors’ machine. the processing capacities are 

not wholly dissimilar. The comparative results are shown in Table 3. In each case, the SM 

approach was at a minimum four orders of magnitude faster, while achieving at least equivalent 

accuracy. The vast improvement in speed is because each of the three comparative methods 

consider each data point with respect to all of its neighbours in 2D, while the SM procedure 

considers only a point’s two closest neighbours in one dimension.  

 

The lowest density used with the FA, FD and FV algorithms by the original authors was 

175 pts/m2 and generated accuracies of 92% to 98% when applied to Cases A, B and C in 

figure 13. In contrast, at that density the Slicing Method generated accuracies of 97% to 99%.  

The SM method was found to be able to extract boundary points at a 43.4% accuracy level with 

densities as little as 31 pts/m2 for even more complicated planar masonry buildings. In 

summary, since the required quality of the outcomes will dictate the needed input densities, 

there is no absolute minimum density that can be stated as a general rule. However, a density 
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of 130 pts/m2 is recommended to achieve at least a 90% accuracy for the kinds of building 

presented herein. 

 

    

(a) 2500 pts/m2 

Accuracy 

96.2% 

Time 0.25 sec 

(b) 400  pts/m2    

Accuracy 

91.0% 

Time 0.09 sec                             

(c) 175 pts/m2   

Accuracy 

84.2% 

Time 0.08 sec                            

(d) 31 pts/m2   

Accuracy 

43.4%  

Time 0.08 sec                            

Fig. 12. Results from Various Average Density 

 

Table 3. Comparative Data Outputs from Façade Angle (FA), Façade Delaunay (FD), 

Facade Voxel (FV) and the Slicing Method (SM) 

Data 
FA 

Accuracy  

FD 

Accuracy 

FV 

Accuracy 

SM 

Accuracy  
FA Time FD Time FV Time SM Time  

2 Anne St. 100% 99.6% 99.6% 99.5% 2.4 hr 2.5 hr 8 min 0.38 sec 

5 Anne St. 94.4% 94.4% 96.7% 98.1% 50 min 1 hr 10 min 0.50 sec 

2 Westmoreland 97.1% 98.5% 97% 97.8% 16 hr 16.6 hr 42 min 0.61 sec 

 
 

5.3. Data coverage 

A third crucial characteristic of data acquisition that can affect the quality of the results is data 

coverage. This includes protrusion-based shadows (unexpected holes) on the façade. To show 

the impact of this phenomenon on the Slicing Method, close ups are provided for Case 2 in Fig. 

14. The occlusions at the uppermost and first level due to the angle of data were repaired and 

populated with synthetic points in Fig. 14b. The accuracy went from 94.8% to 98.1%. 

 

The FA, FD and FV methods were applied previously to three cases to which the Slicing 

Method has now been applied to enable direct comparison (Fig 13). When comparing the 

Slicing Method to the current state of the art for data driven techniques, three things become 

apparent. The first relates to the extended capabilities of this technique over other published 

techniques with respect to the tremendous speed of the procedure coupled with the capacity to 

detect curved window and façade boundaries. Lastly no manual preparation, a priori 

information, or user-selected thresholds are needed. 
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Case A 

2 Anne St. 

Case B 

5 Anne St. 

Case C 

2 Westmoreland 

   
(a) Data Size = 

264,931 points 
(b) Data Size = 

191,851 points 

(c) Data Size =  

650,306 points 

 

   

(d) Building Size = 

12.2 x 5.1 from 

measured drawing 

(e) Building Size =  

13.2 x 4.9 from 

measured drawing 

(f) Building Size =  

17.1 x 19.2 from 

measured drawing 

 

   
(g) SM derived 

boundaries Case A 

(h) SM derived 

boundaries Case B 

(i) SM derived boundaries Case C 

 

Fig. 13. Comparative Data Output 

 

 

This is not say that the method is without limitations. First, occlusions interfere with proper 

boundary detection, and if an occlusion is as large as the smallest real opening (i.e. window), 

problems are likely to emerge (an issue previously identified by Truong-Hong and Laefer, 

2013). Second, if cross bars on the windows are sufficiently thick to be co-located on the façade 

plane, the algorithm may not be able to distinguish them from the facade, instead of as 

unwanted points inside of openings. Most likely, this latter point can be addressed with small 
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modifications in the feature detection portion of the algorithm. Finally, as demonstrated in Fig. 

14a, even with very high density data, there are still further opportunities for boundary 

detection refinement through the introduction of a further post-processing step, which could 

greatly facilitate the use of much lower density datasets. This is important, because although 

the speed of the technique is not negatively impacted by very dense datasets, such datasets may 

not always be available in mobile and/or aerial laser scanning. Furthermore, a client may not 

want to expend the resources for acquiring such density either with respect to the acquisition 

time or in regard to the burden of data storage and management.    
 

  

(a) Original Point Cloud (b) Result 

 

 

 

 

  

 

(c) Corrected Point Cloud (d)  Result 

Fig. 14. Original Point Cloud versus Repaired Data Set Outcomes for Case 2 

 

 

 

 

6. CONCLUSION 

 This paper introduced the Slicing Method that was developed to quickly detect free-form 

openings and overall boundaries from structures with out-of-plane protrusions and complex 

façades. The method involves three main steps. First, each façade is roughly segmented using 

a RANSAC-based algorithm. Second, the segmented façade is sliced horizontally or vertically, 

with each slice passing through a portion of a wall and all of its affiliated features. If a slice 

encounters a window other discontinuity, the slice is divided into two clusters. Third, the data 

from each slice is projected onto a line from which the extreme points are harvested to create 

facade and window boundaries. The Slicing Method represents a major breakthrough in the 

following: (1) identifying the actual geometries for non-rectilinear openings; (2) accurately 

extracting complicated facade boundaries; and (3) minimizing the computational resources 
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needed. This was achieved with no reliance on a priori information, user-selected threshold, or 

manual user involvement. When benchmarked against three highly ornate masonry structures, 

the method consistently achieved at least 93% accuracy in only 2.5 seconds with datasets of 

2.6 million points. When the Slicing Method was then tested against three other recent methods 

using only rectilinear structures, the computation time was at least four orders of magnitude 

faster.  
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