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Abstract—Inertial measurement units (IMUs) may be used
during exercise performance to assess form and technique. To
maximise practicality and minimise cost a single-sensor system is
most desirable. This study sought to investigate whether a single
lumbar-worn IMU is capable of identifying seven commonly
observed squatting deviations. Twenty-two volunteers (18 males,
4 females, age: 26.09±3.98 years, height: 1.75±0.14m, body mass:
75.2±14.2 kg) performed the squat exercise correctly and with 7
induced deviations. IMU signal features were extracted for each
condition. Statistical analysis and leave one subject out classifier
evaluation were used to assess the ability of a single sensor
to evaluate performance. Binary level classification was able to
distinguish between correct and incorrect squatting performance
with a sensitivity of 64.41%, specificity of 88.01% and accuracy of
80.45%. Multi-label classification was able to distinguish between
specific squat deviations with a sensitivity of 59.65%, specificity
of 94.84% and accuracy of 56.55%. These results indicate that
a single IMU can successfully discriminate between squatting
deviations. A larger data set must be collected and more complex
classification techniques developed in order to create a more
robust exercise analysis IMU-based system.

I. INTRODUCTION

Incorrect exercise performance (i.e. faulty exercise form
and technique) may result in ineffective training, inadequate
rehabilitation, as well as increasing the likelihood of train-
ing induced injuries. This is especially pertinent for athletes
who train with free-weights [1]. Training induced injuries
are frequently caused by excessive tissue loading as a re-
sult of aberrant exercise form and technique [2]. Therefore,
feedback on exercise performance is an important consid-
eration to ensure that athletes perform prescribed exercises
correctly. Traditionally this feedback has been provided on-
site by professional strength and conditioning (S&C) coaches
or rehabilitation staff. However, such direct supervision and
individualized feedback on exercise performance is not always
a possibility, as is the situation when a large number of athletes
are training simultaneously [3]. Furthermore, it has also been
challenging to provide objective exercise performance data
to athletes in this environment with most assessments being
subjective in nature.

To date marker-based motion analysis systems have been
used to provide objective data relative to exercise performance
[4]. However, there are a number of limitations with such an
approach; set-up is time intensive, the equipment is expensive
and the application of markers may hinder normal athletic

movement [2], [5]. Furthermore, this type of analysis is
typically performed in specialised research or commercial mo-
tion analysis laboratories. These environments may artificially
constrict, simplify or influence the movement patterns of those
being tested [6]. Therefore, these marker-based systems have
not tended to be accepted into routine practice.

Recent technological advances support the use of inertial
measurement units (IMUs) as a viable option for the assess-
ment and quantification of exercise performance beyond the
motion analysis laboratory [2]. These IMUs offer a number
of potential advantages over traditional marker-based systems;
they are small, inexpensive, easy to set-up and enable the
assessment of human movement in an unconstrained envi-
ronment [7]. Accelerometers and gyroscopes are becoming
an increasingly popular method of assessing and quantifying
human movement as they are present in many smartphones.
This means that these ubiquitous technologies may have the
potential to measure human movement and provide feedback
relative to the quality of the movement performed [8].

IMUs have been used in a number of different ways from
measuring energy expenditure [9] to gait analysis [10] to
medical monitoring [11]. These sensors have also been used
in the athletic arena in sports such as skiing [12] and golf
[13]. Recently the utilization of IMUs as a method of tracking
gym and rehabilitation exercises has been investigated. Lin
and colleagues [14] evaluated data obtained from IMUs at
the hip, knee and ankle during a number of lower limb
exercises. Data from the IMUs were used to estimate joint
angles; with the authors comparing the IMU derived joint
angles to those quantified via a marker-based motion analysis
capture system. The authors concluded that these joint angles
were accurate when compared to those obtained via the more
traditional methodology. However, the quality of the exercise
performance was not classified. Pernek and colleagues [8]
used accelerometers to assess exercise performance during
gym-based resistance type exercises. They assessed movement
quality based on the speed of exercise performance. However,
different exercise goals may require varying movement speeds
and as such, the assessment of movement quality based on
speed alone does not offer a holistic way of evaluating exercise
technique.

Taylor and colleagues [15] attempted to more accurately
evaluate exercise performance using IMUs. Five body worn



accelerometers were used to evaluate three lower limb single
joint exercises (standing hamstring curl, straight leg raise and
reverse hip abduction) in healthy college students. The authors
were able to discriminate correct from incorrect exercise per-
formance, with their subsequently developed exercise classifier
exhibiting an overall average accuracy of 80% for standing
hamstring curl, 65% for reverse hip abduction and 62% for
straight leg raise. These results were based on leave-one-
subject-out cross-validation (LOSOCV) testing. However, they
only recorded data from nine participants and the use of a non-
expert in labelling correct or incorrect exercise performance
was a methodological limitation.

The same authors built on this work in 2012 [16] and eval-
uated the use of multi-label classifiers to assess exercise per-
formance in patients with knee osteoarthritis using five IMUs.
On this occasion each IMU contained a tri-axial gyroscope
as well as an accelerometer. Again their classifiers displayed
high accuracy (86%), sensitivity (84%) and specificity (99%)
in detecting errors that can occur during the performance of the
exercises investigated. However, the overall results and their
wider extrapolation are limited by the small participant sample
size (n = 8). Furthermore, the exercises utilized were all single
joint exercises (standing hamstring curl and straight leg raise)
and the number of sensors used may not always be practical.
While these exercises may be used in a clinical population
during the early stage of rehabilitation they are likely to be
inadequate as the rehabilitation progresses or for higher-level
conditioning.

Velloso and colleagues [3] have also attempted to evaluate
the quality of exercises using IMUs. They defined exercise
quality as “the adherence to the execution of an activity to
its specification”. They evaluated two upper limb single joint
exercises (biceps curl and lateral raise). Using a leave-one-
subject-out testing protocol they obtained an overall recog-
nition performance of 78.2%. The authors also reported that
participants responded favourably to feedback that aided with
the correct completion of the exercises. A recent study by
Giggins et al [7] suggested that a single IMU may be used to
identify poor technique in five of seven single joint exercises
investigated (heel slide, straight leg raise, knee extension, hip
abduction and hip extension). However, these results were
based solely on statistical analysis with the absence of classifier
evaluation. A follow up study by the same authors [17] showed
that a single IMU worn on the thigh could achieve on average
82% sensitivity, 72% specificity and 83% accuracy in binary
classification across the seven exercises and 49% sensitivity,
77% specificity and 61% accuracy in multi-class classification
across a subset of four of the exercises. These results were
based on LOSOCV testing.

A number of studies have demonstrated the viability of
multiple IMUs to assess and quantify exercise performance
[8], [14]. More recent research has also shown that it may be
possible to evaluate these exercises more comprehensively [3],
[15], [16], and possibly with a single IMU [7], [17]. This study
differs from previous work in the field as it aims to evaluate if
a single body-worn IMU is capable of distinguishing between
seven levels of performance in a compound exercise (i.e. body
weight squat). This may have the potential for applications in
the areas of injury screening, S&C and rehabilitation.

II. METHODS

This study was undertaken to determine if a single IMU
can discriminate between different levels of squat performance
and identify poor exercise technique. Data were acquired from
participants as they completed the squat with normal technique
for 10 repetitions. IMU data were then acquired while the same
exercise was completed for three repetitions with commonly
observed deviations from correct technique.

A. Participants

Twenty two healthy volunteers (18 males, 4 females,
age: 26.09±3.98 years, height: 1.75±0.14m, body mass:
75.2±14.2kg) were recruited for the study. No participant had
a current or recent musculoskeletal injury that would impair
their squat performance. All participants had prior experience
with the squat exercise and regularly used it as part of their
own training regime for at least one year. Each participant
signed a consent form prior to completing the study. The
University Human Research Ethics Committee approved the
study protocol.

B. Exercise Technique and Deviations

Participants completed the initial squat with good form
as described by the National Strength and Conditioning As-
sociation (NSCA) guidelines [p.320-322] [18]. This involved
participants holding their chest up and out with the head tilted
slightly up. As participants moved down into the squat position
they were instructed to allow their hips and knees to flex
while keeping their torso to floor angle relatively constant.
Furthermore, they were required to keep their heels on the floor
and knees aligned over their feet. Participants were required to
continue flexing at the hips and knees until their thighs were
parallel to the floor. As they moved upward a flat back was to
be maintained and they were instructed to keep their chest up
and out. Hips and knees were to be extended at the same rate
with heels on floor and knees aligned over feet. Participants
then extended their hips and knees to reach starting position.

The deviations from the aforementioned correct technique
that were completed were knee valgus (KVL), knee varus
(KVR), weight shift right (WSR), weight shift left (WSL),
knees to far forward (KTF), heels elevated (HE) and bent over
(BO). These are outlined in table 1.

TABLE I: List and description of squat exercise performance.

Deviation Explanation
N Normal squat

KVL Knees coming together during downward phase
KVR Knees coming apart during downward phase

WSR
Excessive lean to right hand side during entire

squat exercise

WSL
Excessive lean to left hand side during entire

squat exercise
KTF Knees ahead of toes during downward phase
HE Heels off ground during entire squat exercise

BO
Excessive flexion of hip and torso during entire

squat exercise



C. Experimental Protocol

A pilot study was used to determine an appropriate sam-
pling rate and the ranges for the accelerometer and gyroscope
on board the IMU (SHIMMER, Shimmer research, Dublin,
Ireland). In the pilot study squat data was collected at 512Hz.
A Fourier transform was then used to detect the characteristic
frequencies of the signal which were all found to be less
than 20Hz. Therefore, a sampling rate of 51.2Hz was deemed
appropriate for this study based upon the Nyquist criterion. The
Shimmer IMU was configured to stream tri-axial accelerometer
(±16G), gyroscope (±500o/s) and magnetometer (±1Ga) data
with the sensor ranges chosen also based upon data from the
pilot study. The IMU was calibrated for these specific sensor
ranges using the Shimmer 9DoF Calibration.

When participants arrived to the laboratory the testing
protocol was explained to them. Following this they completed
a ten minute warm-up on an exercise bike maintaining a power
output of 100W at 75-85 revolutions per minute. Next the IMU
was secured on the participant at the level of the 5th lumbar
vertebra using an elasticated strap. This sensor placement was
selected based on clinical judgement as to the location that
would most likely identify deviations and is shown below
in Figure 1. The orientation and location of the IMU was
consistent for all study participants.

Participants were then instructed on how to complete the
squat with good form and biomechanical alignment as outlined
in the NSCA guidelines as explained in section B. They
completed ten repetitions with this good form. Once the squat
had been completed with normal technique the participant
was instructed to complete the exercise with the deviations
specified in table 1. They completed three repetitions of
each deviation. Verbal instructions and a demonstration were
provided to all participants and they were allowed a trial to
ensure they were comfortable completing the deviations. All
squats were completed using body weight only. A Chartered
Physiotherapist was present throughout all data collection to
ensure the squat had been completed as instructed.

D. Data Analysis

Data were low-pass filtered at fc=20 Hz using a Butter-
worth filter of order n=8 in order to remove high frequency
noise and ensure all data analysed related to each participants
movement as confirmed using the Fourier transform during
the pilot study. For each repetition of the exercise a total
of fifteen features were extracted from the IMU to allow for
statistical analysis. These were maximum, minimum and range
of the acceleration (accel) signals in X, Y and Z planes and
maximum and minimum angular velocity (gyro) in X, Y and
Z planes. Initially a repeated measures t test was considered as
an appropriate comparison between the eight squat conditions.
However, it was shown using a normal quantiles plot that the
difference between the means of any two conditions did not
follow the Gaussian distribution (Figure 2) and thus the data is
not normally distributed. Therefore, the non-parametric pair-
wise Wilcoxon signed-rank test was used to analyse whether
there was a difference in the IMU parameters between the
various squat techniques. A P value <0.05 was considered
statistically significant. Bonferroni adjustments were not used
as in this case it would be unnecessary and could have

Fig. 1: Shimmer IMU placement and orientation. Sensor axes
shown. A clockwise rotation about an axis is a positive

angular velocity for the corresponding gyroscopic signal.

increased the likelihood of Type II errors, hiding real changes
in the signal features from being considered significant [19].

Following promising results from the statistical analysis,
classification work was completed. In order to improve the
set of features for classification four additional signals were
calculated from the filtered accelerometer, gyroscope and mag-
netometer signals. These were; pitch, roll, yaw computed using
the gradient descent algorithm described by Madgwick et. al
[20] and the overall acceleration magnitude. The maximum,
minimum and range of acceleration X, Y, and Z, gyroscope
X, Y and Z and the four additional signals were extracted for
each repetition of each exercise condition. This resulted in a
total of 30 features describing each repetition of each squat
condition.

Initially binary classification was evaluated to establish
if a single IMU worn on the lumbar region of the spine
can distinguish between correct and incorrect performance of
the squat exercise. All repetitions of normal performance of
the squat were labelled ’0’ and all repetitions of the squat
performed with one of the deviations as outlined in table 1
were labelled ’1’. As supervised learning methods are suitable
for labelled data, a back-propagation neural network (BP N-N)
classifier was used was used to perform classification. Each
classifier was trained and tested using leave-one-subject-out
cross-validation (LOSOCV) and results were presented using
the accuracy, sensitivity and specificity metrics. Accuracy mea-
sures the overall effectiveness of a classifier and is computed
by taking the ratio of correctly classified examples and the
total number of examples available. Sensitivity measures the
effectiveness of a classifier at identifying a desired label, while
specificity measures the classifiers ability to detect negative
label [15]. Binary classification efficacy was established based
on computing these measures for each number of hidden
neurons in the range (1-30). Following this the optimal number
of hidden neurons for The BP N-N classifier was established.



Finally multi-label classification was evaluated on the IMU
data set to investigate if the single IMU could be used to
discriminate between correct performance of the squat exercise
and each of the seven deviations from correct technique as
described in table 1. All repetitions of normal performance of
the squat remained labelled as ’0’ and each of the different
deviations were labelled ’1-7’. A BP N-N classifier was also
used for the multi-label classification. The optimal number of
hidden neurons was found and the classifier was evaluated
following the same procedure as that used for the binary
classifier.

III. RESULTS

Figure 2 plots the quantiles of the difference of the means
between two conditions (normal vs knees coming together)
with the quantiles of the Gaussian distribution. If the data are
normally distributed they will lie close to a sloped straight line.
The plot shows that the data are not normally distributed. A
similar result can be seen comparing any two other conditions.
Therefore a non-parametric test was required to assess the
signal differences between all of the squat conditions.

Fig. 2: Q-Q plot comparing mean difference between N
(normal) & KVL (knee valgus) and the normal quantiles plot

Table 2 summarises the pairwise Wilcoxon signed-rank
tests between each exercise condition. The column and row
titles refer to the exercise technique being completed as
described in the methodology in table 1. Each cell shows the
number of features that were found to be significantly different
between the two conditions being compared. A total of 15
features were compared (maximum, minimum and range of the
accel signals in X, Y and Z planes and maximum and minimum
of gyro signals in X, Y and Z planes). A P value <0.05 was
considered statistically significant. For example there was one
significantly different feature between WSL and WSR (valley
gyro Y). 250 of the 420 pairwise Wilcoxon signed-rank tests
returned statistically significant results.

Figure 3 shows an example boxplot for the mean valley
of gyroscope X. BO shows a large significant difference

from all other squat conditions with a P value of 3.82×10−6

when compared with WSR and a P value of 1.91×10−6

when compared with all six other squat conditions. HE is
significantly different from all conditions except KTF for this
feature. KVR is significantly different from BO, HE, KVL
and KTF but not N, WSL or WSR. Overall 23 of the 28
comparisons were significantly different. As can be seen in
figure 3, there is overlap between the mean valleys for all the
squat conditions. Similar boxplots can be seen for all of the
analysed features.

The classification results are shown in table 3. These results
are based on a total of 30 features describing each repetition
(maximum, minimum and range of accel X, Y, and Z, maxi-
mum, minimum and range of gyro X, Y and Z, pitch, roll, yaw
and the overall accel magnitude). The first column presents
the efficacy scores obtained using binary classification with 6
hidden neurons used for the BP N-N classifier. Considering
the small size of the data set used, relatively high average
efficacy scores were achieved. Observations in test set of data
were classified accurately on average of 80.45% of the time,
with 64.41% mean sensitivity, 88.01% mean specificity and a
mean positive likelihood ratio of 5.37. The efficacy scores of
the multi-label classification scores for the BP N-N classifier
with 15 hidden neurons are shown in the second column
of table 3. Moderate average efficacy scores were achieved
with an average of 56.55% of observations in test set being
classified with the correct label (0-7). The other efficacy scores
were 59.65% mean sensitivity, 94.84% mean specificity and
an average positive likelihood ratio of 11.6. Some deviations
were detected with reasonably high sensitivity, for instance
KVL achieved a score of 79.1% and BO a score of 88.67%.
However, sensitivity scores were poor for WSL, WSR and
KVR with results ranging from 15-45%. Moderate scores were
achieved for KTF and HE 66.5% and 72.1% respectively.

TABLE II: Results of pairwise Wilcoxon signed-rank tests.
Each cell shows the number of features that were found to

be significantly different (P<0.05) between the two
conditions being compared. Fifteen features were analysed

between each exercise condition.

BO HE KVR KVL KTF N WSL

HE 10

KVR 9 7

KVL 7 8 6

KTF 8 9 6 5

N 7 9 5 8 7

WSL 14 12 7 13 11 13

WSR 13 12 7 13 11 12 1



Fig. 3: Boxplot for valley, gyroscope (X) across all squat
conditions studied. Correct performance and 7 deviations

were compared.

TABLE III: Mean LOSOCV results of binary and multi-label
classifier

Binary Classification

(Correct or Incorrect)

Multi-Label Classification

(Correct or Specific Deviation)

Sensitivity (%) 64.41 59.65

Specificity (%) 88.01 94.84

Accuracy (%) 80.45 56.55

+ Likelihood Ratio 5.4 11.56

IV. DISCUSSION

The aim of this study was to investigate if a single IMU
placed on the lumbar spine can distinguish between varying
levels of squat performance. Statistical analysis showed at least
one sensor signal feature could identify differences between all
eight of the squat exercise conditions examined, as described
in table II. Binary classification indicated correct and incorrect
squat performance could be identified with 80% accuracy, 64%
sensitivity and 88% specificity. A multi-label classifier was
able to distinguish between the eight different squat conditions
(correct squat technique and the seven deviations as outlined in
table 1) with 57% accuracy, 60% sensitivity 95% specificity.
This serves as preliminary evidence that a single IMU may
be an effective method of monitoring multi-joint exercise
performance in both rehabilitation and S&C contexts.

As IMUs are small, inexpensive, and easy to use they
are ideally positioned to aid with the quantification of hu-
man movement. Furthermore, their portability facilitates the

acquisition of human movement data beyond the laboratory
setting, which may provide a more realistic assessment of
an individual′s movement patterns [7]. The aforementioned
advantages have resulted in a number of researchers inves-
tigating their utility in rehabilitation sessions and during the
performance of gym-based exercises. However, to the authors′
knowledge this study is the first to determine if a single
body-worn IMU can successful detect deviations from correct
technique during performance of the squat exercise.

Using a LOSOCV method of testing Taylor et al [15]
achieved overall accuracy of 80% for standing hamstring curl,
65% for reverse hip abduction and 62% for straight leg raise.
However, the authors used a total of five IMUs to achieve this.
The classification results presented in table III are comparable
to this work while having the added benefit of using only one
IMU. Taylor and colleagues [16] built on these results in 2012
using a number of different methods to classify human motion
quality. Their highest accuracy for the standing hamstring curl
was 86% and for the straight leg raise was 90%. However the
authors used a 10 fold cross validation method which would
be expected to give better results than the LOSOCV method
used for classification in this paper.

A multiple IMU set-up was also used by Velloso and
colleagues [3]. The authors achieved an overall recognition rate
of 78.2% using LOSOCV in dumbbell biceps curl exercise.
The exercise was performed with five variations using a total
of four sensors. Unfortunately, multiple sensor systems are
more expensive and less practical for users than single sensor
systems. Therefore, the transferability of such a set-up to
routine practice is questionable.

The results presented in this study are comparable to those
achieved by Giggins et al [17]. Here the authors achieved 82%
sensitivity, 72% specificity and 83% accuracy in binary classi-
fication in seven exercises and 49% sensitivity, 77% specificity
and 61% accuracy in multi-class classification across a subset
of four of the exercises. However, like in [3] the exercises
completed were single joint exercises such as heel slides
and knee extension. It is common for athletes and patients
undergoing rehabilitation to move beyond these single joint
exercises relatively early in their conditioning or rehabilitation
programmes. Multi-joint movements also form an essential
component of many screening tools such as the Functional
Movement Screen. Therefore it is vital that the sensors are able
to detect deviations from correct technique in commonly used
multi-joint movements. Due to the added complexity of multi-
joint compound exercises compared to single-joint exercises,
more deviations from correct technique can occur making it
harder for a single IMU to detect these deviations. This work
has shown that it is possible to detect deviations in multi-joint
exercises using a single IMU.

To the authors′ knowledge, this research is the first to detect
a large number of deviations from correct technique in a multi-
joint exercise using a single body-worn IMU. A single-sensor
system that can monitor and evaluate performance of multi-
joint exercises would be a cost-effective and practical way
to provide relevant feedback to individuals whilst performing
such exercises. Such information could aid clinicians and
coaches′ assessment of exercise performance. This could prove
particularly useful in providing movement analysis where the
coach or clinician is not present for example in home-based



rehabilitation, S&C programmes for teams or screening a large
number of athletes simultaneously. This information could
also be incorporated into stand-alone biofeedback systems that
could be used directly by the people whilst exercising. Such
feedback systems could potentially minimise the likelihood of
poor form when people exercise alone and train them in correct
exercise technique without a clinician or coach. Furthermore,
such systems could also be used to provide automated objective
data for screening tools such as the Functional Movement
Screen [21].

There are number of contextual factors in this investiga-
tion which must be considered. There was no gold-standard
3-dimensional motion capture system used to confirm that
each deviation did occur. However, deviations were confirmed
through visual observation by a Chartered Physiotherapist.
Furthermore, a gold-standard 3-dimensional motion capture
system may also influence the participants′ movement patterns
due to its bulky set up. When deviations occur naturally, the
exact way in which they occur may differ compared to when
a participant deliberately performs the deviation. Additionally,
the seven deviations studied is not a non-exhaustive list of all
those which can occur during the squat exercise.

The results presented in table II and III show great potential
for a single-sensor system to analyse multi-joint exercise. To
fulfil this potential, future work is required. More sophisticated
classification techniques may be used to develop more accurate
classification systems. Supervised machine learning algorithms
using features such as those described in this study and addi-
tional features may be an effective method. These additional
features may also be used to detect specific deviations such
as WSL, WSR and KVR more effectively. The next step
will be to train both supervised and unsupervised machine
learning algorithms and compare their accuracy, efficiency
and sensitivity in the classification of multi-joint exercise
technique. In order to improve such measures it is appropriate
to build a larger data set. The data set will also include other
multi-joint exercises such as the lunge and deadlift as well
as common deviations from correct form in these exercises.
This will hopefully allow for the development of classification
systems for these exercises.

The data analysis presented in this paper serves as a
promising foundation to the continuing investigation as to
whether a single IMU worn on the lumbar region of the
spine can identify deviations from correct form in multi-joint
exercises. If proven to be effective in doing so, a single
sensor system may be used to provide more objective data
on movement to clinicians and coaches. It may also form the
basis to biofeedback systems that could be used in movement
screening, rehabilitation and S&C contexts.
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