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REPRESENTATIONS OF INTEGERS BY CERTAIN POSITIVE
DEFINITE BINARY QUADRATIC FORMS

RAM MURTY AND ROBERT OSBURN

ABSTRACT. We prove part of a conjecture of Borwein and Choi concerning an es-
timate on the square of the number of solutions to n = z2 + Ny? for a squarefree
integer N.

1. INTRODUCTION

We consider the positive definite quadratic form Q(z,y) = 22 + Ny? for a squarefree
integer N. Let ro n(n) denote the number of solutions to n = Q(x,y) (counting signs
and order). In this note, we estimate

Z T‘Q’N(n)

A positive squarefree integer N is called solvable if 22 + Ny? has one form per genus.
Note that this means the class number of the form class group of discriminant —4N
equals the number of genera, 2!, where ¢ is the number of distinct prime factors of N.
Concerning rs n(n), Borwein and Choi [2] proved the following:

Theorem 1.1. Let N be a solvable squarefree integer. Let x > 1 and € > 0. We have
3 2p
ZT2,N(n)2 — N( H >($10g$+a(N)l‘)—|—O(Ni+5x%+5)

n<z p|2N + 1
where the product is over all primes dividing 2N and
logp 2L (1, x-an)
N)=-142vy+ - —
a(N) 7 Z 1 , X—4N) 72 @

\2N

where 7 is the Euler-Mascheroni constant and L(1, x_4n) is the L-function corresponding
to the quadratic character mod —4N.

Based on this result, Borwein and Choi posed the following:

Conjecture 1.2. For any squarefree N,

Zmz\f N*(Hp%fl)xlogm

n<zx p|2N

Our main result is the following.

Theorem 1.3. Let Q(z,y) = 2% + Ny? for a squarefree integer N with —N # 1 mod 4.
Let ro n(n) denote the number of solutions to n = Q(z,y) (counting signs and order).

Then
2p
ZT2N N*(H )xlogx.
p|2Np+ !

n<z
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2 RAM MURTY AND ROBERT OSBURN

2. PRELIMINARIES

We first discuss two key estimates and a result of Kronecker on genus characters.
Then using Kronecker’s result, we prove a proposition relating genus characters to poles
of the Rankin-Selberg convolution of L-functions. The first estimate is a recent result of
Kiihleitner and Nowak [13], namely

Theorem 2.1. Let a(n) be an arithmetic function satisfying a(n) < n€ for every e > 0,
with a Dirichlet series

_smalm) _ (Gk(9)? s
6 =2 55 = @y e o)

where N(s) > 1 and (x(s) is the Dedekind zeta function of some quadratic number field
K, G(s) is holomorphic and bounded in some half plane R(s) > 6, 0 < %, and my, my
are nonnegative integers. Then for x large,

Z a(n) = Ress—1 (F(s)%s) + O(2% (log )3 (log log )™ +™2)

n<z

= Azlogx + Bx + O(:p% (log )3 (log log )1 +m2)

where A and B are computable constants.

For an arbitrary quadratic number field K with discriminant dg, let Ok denote the
ring of integers in K, and 7 (n) the number of integral ideals Z in O of norm N(Z) = n.
From (4.1) in [13], we have

= (rx(n)? (Ck(s))? Csy—1
2 T T ) plll(”p )

Applying Theorem 2.1 with m; = 1 and my = 0, we obtain

n=1

Corollary 2.2. For any quadratic field K of discriminant dg and x large,
Z(TK(n))2 = Ayzlogz + Biz + O(z7 (log 2)° log log ),

n<x

with Ay = %L(l,xdk)2 H
pldx

b

T and By = A1a(N) with a(N) as in Theorem 1.1.

The second estimate is a classical result of Rankin [16] and Selberg [17] which estimates

(o)

the size of Fourier coefficients of a modular form. Specifically, if f(z) = Z a(n)e*™ " is
n=1

a nonzero cusp form of weight k& on I'g(N), then

_2
> lan)? = alf, HHz* + 0@*%)
n<x
where @ > 0 is an absolute constant and (f, f) is the Petersson scalar product. In
particular, if f is a cusp form of weight 1, then Z la(n)|? = O(x). One can adapt their

n<x
result to say the following. Given two cusp forms of weight k on a suitable congruence

subgroup of I' = SL(Z), say f(z) = a(n)e?™™* and g(z) = Z b(n)e?™", then
n=1

1

n

Z a(n)b(n)n' =% = Az + O(z

n<x

3
5
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where A is a constant. In particular, if f and g are cusp forms of weight 1, then

Z a(n)b(n) = O(x).
n<zx

We will also use a result of Kronecker on genus characters. Let us first explain some
terminology. Let K = Q(v/d) be a quadratic field of discriminant dg. dy is said to be
a prime discriminant if it only has one prime factor. Thus it must be of the form: —4,
48, +p = 1 mod 4 for an odd prime p. Every discriminant can be written uniquely as
a product of prime discriminants, say dg = P;...P;. Here k denotes the number of
distinct prime factors of dx. Thus dx can be written as a product of two discriminants,
say d = D1 Do in 2F~! distinct ways (excluding order). Now, for any such decomposition
we define a character x p, p, on ideals by
{ Xp,(Np) if pf Dy

XD, (Np) if p Dy
where yq(n) is the Kronecker symbol. This is well defined on prime ideals because
xp(Na) = 11if (a,D) = 1. xp, D, extends to all fractional ideals by multiplicativity.
Hence we have

XD1,Dy (p) =

XDl,Dz I — {:t].}
where I is the group of nonzero fractional ideals of Og. Thus xp,,p, has order two,
except for the trivial character corresponding to dx = dig -1 = 1-dg. Every such
character xp, p, is called the genus character of discriminant dx. As these are different
for distinct factorizations of dx (into a product of two discriminants), we have 2¥~! genus
characters. Kronecker’s theorem (see Theorem 12.7 in [11]) is as follows.

Theorem 2.3. The L-function of K associated with the genus character xp, p, factors
into the Dirichlet L-functions,

L(S’ XD1>D2) = L(S,XD1)L(S’ XDz)'

Let K = Q(v/—N), N squarefree, I as above, and P the subgroup of I of principal

ideals. For a non-zero integral ideal m of Ok, define
Im)={ael:(a,m)=1}
P(m) ={(a) € P:a=1mod m}.

A group homomorphism x : I, — S is an ideal class character if it is trivial on P(m),

ie.
x({a)) =1

for @ = 1 mod m. Thus an ideal class character is a character on the ray class group
I(m),/P(m). Taking the trivial modulus m = 1, we obtain a character on the ideal class
group of K. Note that for K = Q(v/—N) a genus character is an ideal class character of
order at most two.

Let us also recall the notion of the Rankin-Selberg convolution of two L-functions. For
squarefree N, consider two ideal class characters x1, x2 for Q(v/—N) and their associated
Hecke L-series

8

L) = 4
n=1

L o) = Y X2
n=1

which converge absolutely in some right half-plane. We form the convolution L-series by
multiplying the coefficients,
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— Xx1(n)x2(n)
L = S 2
(5, x1 ® x2) n§_1 o
The following result describes a relationship between genus characters x and the orders

of poles of L(s,x ® x). Precisely,

Proposition 2.4. Let x be an ideal class character of Q(v/—N), —N # 1 mod 4, and
L(s, x) the associated Hecke L-series. Then x is a genus character if and only if L(s, x®X)
has a double pole at s = 1.

Proof. Suppose Xp,.p, is a genus character of discriminant —4N, and L(s, xp,,p,) =

St

. By Theorem 2.3 and Exercise 1.2.8 in [14] (see the solution), we have

i bi(n)®  L(s,xB,)L(s, xD,) L(s, XD, XD»)?

n=1 n? L(QS, X2D1 X2D2)
Note that
L(s,x3,) =Cs)- [T —p"),
p|D1
L(s,x3,) =C(s)- [J@=p™),
p|D2
L(S7XD1XD2)2 = L(57X—4N)2a
and
L(2s.xbh x5, =C2s)- [ a-p).
p|D1D>
‘We have

o= bi(n)? _ C(s)°L(s, x—an)? eyl
; ns ¢(2s) plgv(1+p )

and thus a double pole at s = 1.

Conversely, let y be an ideal class character of K = Q(v/—N) and suppose L(s, x ® x)
has a double pole at s = 1. Now x is an automorphic form on GL;(Ak). By automorphic
induction (see [1]), x is mapped to 7, a cuspidal automorphic representation of GL2(Ag).
Note that 7 is reducible as, otherwise, L(s, 7 ® m) has a simple pole at s = 1 ([1], page
200). As K is a quadratic extension of Q, we must have 7 = x1 + x2 where y; are
Dirichlet characters. As L(s,x) = L(s,7) (see [1]) and thus L(s,x ® x) = L(s, 7 ® m),

L(Sa X%)L(S, X%)L(sa X1X2)2
L(25,X7x3)

Now L(s,x ® x) has a double pole at s = 1 if and only if either x; = X2, X3 # 1, and
X?#1lor x2=1,x3 =1, and y1x2 # 1. The latter implies x is a genus character. We
now need to show that the former also implies that x is a genus character. Note that

_ (p) \ 7
pon) =TT (1= w5)

L(s,mr@m) =L(s,x®x) =
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and

L(s,x1+ x2) = H (1 -

p

N\t 2(p)\ !
)y

As L(s,x) = L(s,m) and L(s,7) = L(s, x1 + X2), we compare Euler factors to get

m@+m@{

0 if pis inert in K
x(p) + x(p) if p splits in K.

For p inert in K, this yields x1(p) = —x2(p) and so x2(p) = x1(p) = —x2(p) which

implies x2(p) = —1 and so x2(p) = +i. Now consider the following equation whose sum
sieves the inert primes
1 —4N
3 2 (1-(7))dm = —n).
p<w
p prime

Here 7(x) is the number of primes between 1 and x. Thus

2 305 X (C)80) = @),

p<z p<z p

p prime p prime

As x% # 1, we have by the prime ideal theorem, Z X2(p) = o(w(z)) and so

p<z

> (CE)30) ~ ()

p<z p

This implies (%)X%(p) = 1. If p splits in K, then x3(p) = 1 and so x2(p) = £1. A
similar argument works for x; and so we also have x;(p) = %1 if p splits in K.

Again comparing the Euler factors in L(s,x) and L(s,7), the values of x(p) must
coincide with the values of x1(p) and x2(p), that is, x(p) = £1. Now x(p) = x([p]) where
[p] is the class of p in the ideal class group of K. By the analog of Dirichlet’s theorem for
ideal class characters, we know that in each ideal class € there are infinitely many prime
ideals which split. Thus x(€) = £1 and hence is of order 2. This implies x is a genus
character.

a

Remark 2.5. By Proposition 2.4, if y is a non-genus character, then L(s, x ® x) has at
most a simple pole at s = 1.

3. PROOF OF THEOREM 1.3

Proof. As —N # 1 mod 4, the discriminant of K = Q(v/—N) is —4N. We also assume
that ¢ is the number of distinct prime factors of N and so the discriminant —4N has ¢+ 1
distinct prime factors.

Given the quadratic form Q(z,y) = 22 + Ny?, we consider the associated Epstein zeta
function (see [7], [12], [18], or [19])

Cals)= Y (x2+Ny

z,y#0

3

n=1



6 RAM MURTY AND ROBERT OSBURN

for R(s) > 1. Now for K = Q(v/—N), we have Dedekind’s zeta function

o0

1 an,
CK(S):ZW:ZE

where the sum is over all nonzero ideals a of Ox. We now split up (x(s), according to
the classes ¢; of the ideal class group C'(K), into the partial zeta functions (see page 458
of [15])

1
Cei(8) = Z N(a)®

acc;

h—1
so that (x(s) = Z e, (s) where h is the class number of K. In our case K = Q(v/—N)
i=0

is an imaginary quadratic field and so by [6] (Theorem 7.7, page 137), we may write

h—1
CK(S) = Z CQi (S)

where Q; is a class in the form class group. Note that in this context, Q(z,y) corresponds
to the trivial class ¢y in C(K) and so (¢, (5) = (Q(z,y)(5). Now let x be an ideal class
character and consider the Hecke L-function for y, namely

L(s,x) = ]\?((Z))

where a again runs over all nonzero ideals of Ox. We may now rewrite the Hecke L-
function as

h—1

L(S, X) = Z X(Ci)gci (5)

=0

And so summing over all ideal class characters of C'(K'), we have

h—1
S R(eo)L(s,x) = 3 e () 3o Xleo)x(en))-
X =0 X

The inner sum is nonzero precisely when ¢ = 0. As X(co) = 1 we have (. (s) =
%ZL(S,X). Thus
X

<co(8) = %(L(& XO) + L(SaXI) et L(&thl))'
As X0 is the trivial character, L(s,xo) = (x(s). We now compare n'” coefficients, yielding
ra,n (1) = g (an +bi(n) + -+ bp_1(n))

where a,, is the number of integral ideals of Ok of norm n and the b;’s are coefficients of
weight 1 cusp forms (see the classical work of Hecke [9], [10] or [3]). From the modern
perspective, this is straightforward. Each L(s,x;), 1 < i < h — 1, can be viewed as an
automorphic L-function of GL1(Ak) and by automorphic induction (see [1]) they are
essentially Mellin transforms of (holomorphic) cusp forms, in the classical sense. We now
have
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Z 7"21N(n)2 — % ( Z an2 + Z bz(n)Q +2 Z anbz(n) + Z bl(n)bj (n))

n<z n<x i i#£]
= = n<z n<a hizA

By the Rankin-Selberg estimate, 2 g anbi(n), g bi(n)b;(n) are equal to O(z). By
i i)
n<w n<x

Corollary 2.2,

% Z an? = % (Alazlogx + Bz + O(x% (log )3 log log x))

n<zx

We now must estimate Z bi(n)?. Let us now assume that the first 2¢ — 1 terms arise

K3
n<x
from L-functions associated to genus characters. By Proposition 2.4 and Nowak’s proof
of Theorem 2.1 (which uses Perron’s formula and the residue theorem), we obtain

Z bi(n)? = Ayjzlogz + Bix + O(x)
n<z

with A; and B as in Corollary 2.2. As this estimate holds for each 4 such that 1 < i <
2t — 1, the term A;xlogx appears 2! times in the estimate of Z 7"271\[(71)2. By Remark

n<x
2.5, the remaining terms Z bi(n)? for 28 —1 < i < h —1 are all O(z). Thus
n<x
S raw(n)? = [<2tEL(1,X_4N)2 [1 -2 )etoge +0()] +O(@).
= h? m |2Np+1
nlx p

By (4.11) in [8] (or equation (8), page 171 in [5]), we have L(1, x_4n) = 2= and so

VN
Zm,N(n)Q = %( H pzfl)xlongrO(x).

n<z p|2N

The result then follows.
O

Remark 3.1. It should be possible to obtain the second term in the asymptotic formula.
By a careful application of the Rankin-Selberg method, one should obtain an error term
of the form O(z?) with # < 1. The remaining case —N = 1 mod 4 requires more subtle
analysis due to the fact that for K = Q(v/—N), Z[v/—N] is not the maximal order of K.
It involves the study of L-series attached to orders. Using the techniques in [4] and [12],
we will take this and sharper error terms up in some detail in a forthcoming paper.
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