Research Repository UCD

Title	Representations of integers by certain positive definite binary quadratic forms
Authors(s)	Murty, Ram, Osburn, Robert
Publication date	$2007-12$
Publication information	Murty, Ram, and Robert Osburn. "Representations of Integers by Certain Positive Definite Binary Quadratic Forms" 14, no. 3 (December, 2007).
Publisher	Springer
Item record/more information	http://hdl.handle.net/10197/7947
Publisher's statement	The final publication is available at Springer via http://dx.doi.org/10.1007/s11139-007-9032-x.
Publisher's version (DOI)	$10.1007 /$ s11139-007-9032-x

Downloaded 2023-10-05T14:16:07Z

The UCD community has made this article openly available. Please share how this access benefits you. Your story matters! (@ucd_oa)

© Some rights reserved. For more information

REPRESENTATIONS OF INTEGERS BY CERTAIN POSITIVE DEFINITE BINARY QUADRATIC FORMS

RAM MURTY AND ROBERT OSBURN

Abstract

We prove part of a conjecture of Borwein and Choi concerning an estimate on the square of the number of solutions to $n=x^{2}+N y^{2}$ for a squarefree integer N.

1. Introduction

We consider the positive definite quadratic form $Q(x, y)=x^{2}+N y^{2}$ for a squarefree integer N. Let $r_{2, N}(n)$ denote the number of solutions to $n=Q(x, y)$ (counting signs and order). In this note, we estimate

$$
\sum_{n \leq x} r_{2, N}(n)^{2}
$$

A positive squarefree integer N is called solvable if $x^{2}+N y^{2}$ has one form per genus. Note that this means the class number of the form class group of discriminant $-4 N$ equals the number of genera, 2^{t}, where t is the number of distinct prime factors of N. Concerning $r_{2, N}(n)$, Borwein and Choi [2] proved the following:

Theorem 1.1. Let N be a solvable squarefree integer. Let $x>1$ and $\epsilon>0$. We have

$$
\sum_{n \leq x} r_{2, N}(n)^{2}=\frac{3}{N}\left(\prod_{p \mid 2 N} \frac{2 p}{p+1}\right)(x \log x+\alpha(N) x)+O\left(N^{\frac{1}{4}+\epsilon} x^{\frac{3}{4}+\epsilon}\right)
$$

where the product is over all primes dividing $2 N$ and

$$
\alpha(N)=-1+2 \gamma+\sum_{p \mid 2 N} \frac{\log p}{p+1}+\frac{2 L^{\prime}\left(1, \chi_{-4 N}\right)}{L\left(1, \chi_{-4 N}\right)}-\frac{12}{\pi^{2}} \zeta^{\prime}(2)
$$

where γ is the Euler-Mascheroni constant and $L\left(1, \chi_{-4 N}\right)$ is the L-function corresponding to the quadratic character mod $-4 N$.

Based on this result, Borwein and Choi posed the following:
Conjecture 1.2. For any squarefree N,

$$
\sum_{n \leq x} r_{2, N}(n)^{2} \sim \frac{3}{N}\left(\prod_{p \mid 2 N} \frac{2 p}{p+1}\right) x \log x
$$

Our main result is the following.
Theorem 1.3. Let $Q(x, y)=x^{2}+N y^{2}$ for a squarefree integer N with $-N \not \equiv 1 \bmod 4$. Let $r_{2, N}(n)$ denote the number of solutions to $n=Q(x, y)$ (counting signs and order). Then

$$
\sum_{n \leq x} r_{2, N}(n)^{2} \sim \frac{3}{N}\left(\prod_{p \mid 2 N} \frac{2 p}{p+1}\right) x \log x
$$

2. Preliminaries

We first discuss two key estimates and a result of Kronecker on genus characters. Then using Kronecker's result, we prove a proposition relating genus characters to poles of the Rankin-Selberg convolution of L-functions. The first estimate is a recent result of Kühleitner and Nowak [13], namely

Theorem 2.1. Let $a(n)$ be an arithmetic function satisfying $a(n) \ll n^{\epsilon}$ for every $\epsilon>0$, with a Dirichlet series

$$
F(s)=\sum_{n=1}^{\infty} \frac{a(n)}{n^{s}}=\frac{\left(\zeta_{K}(s)\right)^{2}}{(\zeta(2 s))^{m_{1}}\left(\zeta_{K}(2 s)\right)^{m_{2}}} G(s)
$$

where $\Re(s)>1$ and $\zeta_{K}(s)$ is the Dedekind zeta function of some quadratic number field $K, G(s)$ is holomorphic and bounded in some half plane $\Re(s) \geq \theta, \theta<\frac{1}{2}$, and m_{1}, m_{2} are nonnegative integers. Then for x large,

$$
\begin{gathered}
\sum_{n \leq x} a(n)=\operatorname{Res}_{s=1}\left(F(s) \frac{x^{s}}{s}\right)+O\left(x^{\frac{1}{2}}(\log x)^{3}(\log \log x)^{m_{1}+m_{2}}\right) \\
=A x \log x+B x+O\left(x^{\frac{1}{2}}(\log x)^{3}(\log \log x)^{m_{1}+m_{2}}\right)
\end{gathered}
$$

where A and B are computable constants.
For an arbitrary quadratic number field K with discriminant d_{K}, let \mathcal{O}_{K} denote the ring of integers in K, and $r_{K}(n)$ the number of integral ideals \mathcal{I} in \mathcal{O}_{K} of norm $N(\mathcal{I})=n$. From (4.1) in [13], we have

$$
\sum_{n=1}^{\infty} \frac{\left(r_{K}(n)\right)^{2}}{n^{s}}=\frac{\left(\zeta_{K}(s)\right)^{2}}{\zeta(2 s)} \prod_{p \mid d_{K}}\left(1+p^{-s}\right)^{-1}
$$

Applying Theorem 2.1 with $m_{1}=1$ and $m_{2}=0$, we obtain
Corollary 2.2. For any quadratic field K of discriminant d_{K} and x large,

$$
\sum_{n \leq x}\left(r_{K}(n)\right)^{2}=A_{1} x \log x+B_{1} x+O\left(x^{\frac{1}{2}}(\log x)^{3} \log \log x\right)
$$

with $A_{1}=\frac{6}{\pi^{2}} L\left(1, \chi_{d_{K}}\right)^{2} \prod_{p \mid d_{K}} \frac{p}{p+1}$ and $B_{1}=A_{1} \alpha(N)$ with $\alpha(N)$ as in Theorem 1.1.
The second estimate is a classical result of Rankin [16] and Selberg [17] which estimates the size of Fourier coefficients of a modular form. Specifically, if $f(z)=\sum_{n=1}^{\infty} a(n) e^{2 \pi i n z}$ is a nonzero cusp form of weight k on $\Gamma_{0}(N)$, then

$$
\sum_{n \leq x}|a(n)|^{2}=\alpha\langle f, f\rangle x^{k}+O\left(x^{k-\frac{2}{5}}\right)
$$

where $\alpha>0$ is an absolute constant and $\langle f, f\rangle$ is the Petersson scalar product. In particular, if f is a cusp form of weight 1 , then $\sum_{n \leq x}|a(n)|^{2}=O(x)$. One can adapt their result to say the following. Given two cusp forms of weight k on a suitable congruence subgroup of $\Gamma=S L_{2}(\mathbb{Z})$, say $f(z)=\sum_{n=1}^{\infty} a(n) e^{2 \pi i n z}$ and $g(z)=\sum_{n=1}^{\infty} b(n) e^{2 \pi i n z}$, then

$$
\sum_{n \leq x} a(n) \overline{b(n)} n^{1-k}=A x+O\left(x^{\frac{3}{5}}\right)
$$

where A is a constant. In particular, if f and g are cusp forms of weight 1 , then $\sum_{n \leq x} a(n) \overline{b(n)}=O(x)$.

We will also use a result of Kronecker on genus characters. Let us first explain some terminology. Let $K=\mathbb{Q}(\sqrt{d})$ be a quadratic field of discriminant $d_{K} . d_{K}$ is said to be a prime discriminant if it only has one prime factor. Thus it must be of the form: -4 , $\pm 8, \pm p \equiv 1 \bmod 4$ for an odd prime p. Every discriminant can be written uniquely as a product of prime discriminants, say $d_{K}=P_{1} \ldots P_{k}$. Here k denotes the number of distinct prime factors of d_{K}. Thus d_{K} can be written as a product of two discriminants, say $d_{K}=D_{1} D_{2}$ in 2^{k-1} distinct ways (excluding order). Now, for any such decomposition we define a character $\chi_{D_{1}, D_{2}}$ on ideals by

$$
\chi_{D_{1}, D_{2}}(\mathfrak{p})= \begin{cases}\chi_{D_{1}}(N \mathfrak{p}) & \text { if } \mathfrak{p} \nmid D_{1} \\ \chi_{D_{2}}(N \mathfrak{p}) & \text { if } \mathfrak{p} \nmid D_{2}\end{cases}
$$

where $\chi_{d}(n)$ is the Kronecker symbol. This is well defined on prime ideals because $\chi_{D}(N \mathfrak{a})=1$ if $(\mathfrak{a}, D)=1$. $\chi_{D_{1}, D_{2}}$ extends to all fractional ideals by multiplicativity. Hence we have

$$
\chi_{D_{1}, D_{2}}: I \rightarrow\{ \pm 1\}
$$

where I is the group of nonzero fractional ideals of \mathcal{O}_{K}. Thus $\chi_{D_{1}, D_{2}}$ has order two, except for the trivial character corresponding to $d_{K}=d_{K} \cdot 1=1 \cdot d_{K}$. Every such character $\chi_{D_{1}, D_{2}}$ is called the genus character of discriminant d_{K}. As these are different for distinct factorizations of d_{K} (into a product of two discriminants), we have 2^{k-1} genus characters. Kronecker's theorem (see Theorem 12.7 in [11]) is as follows.

Theorem 2.3. The L-function of K associated with the genus character $\chi_{D_{1}, D_{2}}$ factors into the Dirichlet L-functions,

$$
L\left(s, \chi_{D_{1}, D_{2}}\right)=L\left(s, \chi_{D_{1}}\right) L\left(s, \chi_{D_{2}}\right)
$$

Let $K=\mathbb{Q}(\sqrt{-N}), N$ squarefree, I as above, and P the subgroup of I of principal ideals. For a non-zero integral ideal \mathfrak{m} of \mathcal{O}_{K}, define

$$
\begin{gathered}
I(\mathfrak{m})=\{\mathfrak{a} \in I:(\mathfrak{a}, \mathfrak{m})=1\} \\
P(\mathfrak{m})=\{\langle a\rangle \in P: a \equiv 1 \bmod \mathfrak{m}\}
\end{gathered}
$$

A group homomorphism $\chi: I_{\mathfrak{m}} \rightarrow S^{1}$ is an ideal class character if it is trivial on $P(\mathfrak{m})$, i.e.

$$
\chi(\langle a\rangle)=1
$$

for $a \equiv 1 \bmod \mathfrak{m}$. Thus an ideal class character is a character on the ray class group $I(\mathfrak{m}) / P(\mathfrak{m})$. Taking the trivial modulus $\mathfrak{m}=1$, we obtain a character on the ideal class group of K. Note that for $K=\mathbb{Q}(\sqrt{-N})$ a genus character is an ideal class character of order at most two.

Let us also recall the notion of the Rankin-Selberg convolution of two L-functions. For squarefree N, consider two ideal class characters χ_{1}, χ_{2} for $\mathbb{Q}(\sqrt{-N})$ and their associated Hecke L-series

$$
\begin{aligned}
& L\left(s, \chi_{1}\right)=\sum_{n=1}^{\infty} \frac{\chi_{1}(n)}{n^{s}} \\
& L\left(s, \chi_{2}\right)=\sum_{n=1}^{\infty} \frac{\chi_{2}(n)}{n^{s}}
\end{aligned}
$$

which converge absolutely in some right half-plane. We form the convolution L-series by multiplying the coefficients,

$$
L\left(s, \chi_{1} \otimes \chi_{2}\right)=\sum_{n=1}^{\infty} \frac{\chi_{1}(n) \chi_{2}(n)}{n^{s}}
$$

The following result describes a relationship between genus characters χ and the orders of poles of $L(s, \chi \otimes \chi)$. Precisely,
Proposition 2.4. Let χ be an ideal class character of $\mathbb{Q}(\sqrt{-N}),-N \not \equiv 1 \bmod 4$, and $L(s, \chi)$ the associated Hecke L-series. Then χ is a genus character if and only if $L(s, \chi \otimes \chi)$ has a double pole at $s=1$.

Proof. Suppose $\chi_{D_{1}, D_{2}}$ is a genus character of discriminant $-4 N$, and $L\left(s, \chi_{D_{1}, D_{2}}\right)=$ $\sum_{n=1}^{\infty} \frac{b_{i}(n)}{n^{s}}$. By Theorem 2.3 and Exercise 1.2 .8 in [14] (see the solution), we have

$$
\sum_{n=1}^{\infty} \frac{b_{i}(n)^{2}}{n^{s}}=\frac{L\left(s, \chi_{D_{1}}^{2}\right) L\left(s, \chi_{D_{2}}^{2}\right) L\left(s, \chi_{D_{1}} \chi_{D_{2}}\right)^{2}}{L\left(2 s, \chi_{D_{1}}^{2} \chi_{D_{2}}^{2}\right)}
$$

Note that

$$
\begin{aligned}
& L\left(s, \chi_{D_{1}}^{2}\right)=\zeta(s) \cdot \prod_{p \mid D_{1}}\left(1-p^{-s}\right), \\
& L\left(s, \chi_{D_{2}}^{2}\right)=\zeta(s) \cdot \prod_{p \mid D_{2}}\left(1-p^{-s}\right), \\
& L\left(s, \chi_{D_{1}} \chi_{D_{2}}\right)^{2}=L(s, \chi-4 N)^{2}
\end{aligned}
$$

and

$$
L\left(2 s, \chi_{D_{1}}^{2} \chi_{D_{2}}^{2}\right)=\zeta(2 s) \cdot \prod_{p \mid D_{1} D_{2}}\left(1-p^{-2 s}\right)
$$

We have

$$
\sum_{n=1}^{\infty} \frac{b_{i}(n)^{2}}{n^{s}}=\frac{\zeta(s)^{2} L\left(s, \chi_{-4 N}\right)^{2}}{\zeta(2 s)} \prod_{p \mid 2 N}\left(1+p^{-s}\right)^{-1}
$$

and thus a double pole at $s=1$.
Conversely, let χ be an ideal class character of $K=\mathbb{Q}(\sqrt{-N})$ and suppose $L(s, \chi \otimes \chi)$ has a double pole at $s=1$. Now χ is an automorphic form on $G L_{1}\left(\mathbb{A}_{K}\right)$. By automorphic induction (see [1]), χ is mapped to π, a cuspidal automorphic representation of $G L_{2}\left(\mathbb{A}_{\mathbb{Q}}\right)$. Note that π is reducible as, otherwise, $L(s, \pi \otimes \pi)$ has a simple pole at $s=1$ ([1], page 200). As K is a quadratic extension of \mathbb{Q}, we must have $\pi=\chi_{1}+\chi_{2}$ where χ_{i} are Dirichlet characters. As $L(s, \chi)=L(s, \pi)$ (see [1]) and thus $L(s, \chi \otimes \chi)=L(s, \pi \otimes \pi)$,

$$
L(s, \pi \otimes \pi)=L(s, \chi \otimes \chi)=\frac{L\left(s, \chi_{1}^{2}\right) L\left(s, \chi_{2}^{2}\right) L\left(s, \chi_{1} \chi_{2}\right)^{2}}{L\left(2 s, \chi_{1}^{2} \chi_{2}^{2}\right)}
$$

Now $L(s, \chi \otimes \chi)$ has a double pole at $s=1$ if and only if either $\chi_{1}=\overline{\chi_{2}}, \chi_{2}^{2} \neq 1$, and $\chi_{1}^{2} \neq 1$ or $\chi_{1}^{2}=1, \chi_{2}^{2}=1$, and $\chi_{1} \chi_{2} \neq 1$. The latter implies χ is a genus character. We now need to show that the former also implies that χ is a genus character. Note that

$$
L(s, \chi)=\prod_{\mathfrak{p}}\left(1-\frac{\chi(\mathfrak{p})}{N(\mathfrak{p})^{s}}\right)^{-1}
$$

and

$$
L\left(s, \chi_{1}+\chi_{2}\right)=\prod_{p}\left(1-\frac{\chi_{1}(p)}{p^{s}}\right)^{-1} \prod_{p}\left(1-\frac{\chi_{2}(p)}{p^{s}}\right)^{-1}
$$

As $L(s, \chi)=L(s, \pi)$ and $L(s, \pi)=L\left(s, \chi_{1}+\chi_{2}\right)$, we compare Euler factors to get

$$
\chi_{1}(p)+\chi_{2}(p)=\left\{\begin{array}{l}
0 \text { if } p \text { is inert in } K \\
\chi(\mathfrak{p})+\overline{\chi(\mathfrak{p})} \text { if } p \text { splits in } K .
\end{array}\right.
$$

For p inert in K, this yields $\chi_{1}(p)=-\chi_{2}(p)$ and so $\overline{\chi_{2}(p)}=\chi_{1}(p)=-\chi_{2}(p)$ which implies $\chi_{2}^{2}(p)=-1$ and so $\chi_{2}(p)= \pm i$. Now consider the following equation whose sum sieves the inert primes

$$
\frac{1}{2} \sum_{\substack{p \leq x \\ p \text { prime }}}\left(1-\left(\frac{-4 N}{p}\right)\right) \chi_{2}^{2}(p)=-\pi(x)
$$

Here $\pi(x)$ is the number of primes between 1 and x. Thus

$$
\frac{1}{2} \sum_{\substack{p \leq x \\ p \text { prime }}} \chi_{2}^{2}(p)-\frac{1}{2} \sum_{\substack{p \leq x \\ p \text { prime }}}\left(\frac{-4 N}{p}\right) \chi_{2}^{2}(p)=-\pi(x)
$$

As $\chi_{2}^{2} \neq 1$, we have by the prime ideal theorem, $\sum_{p \leq x} \chi_{2}^{2}(p)=o(\pi(x))$ and so

$$
\sum_{p \leq x}\left(\frac{-4 N}{p}\right) \chi_{2}^{2}(p) \sim \pi(x)
$$

This implies $\left(\frac{-4 N}{p}\right) \chi_{2}^{2}(p)=1$. If p splits in K, then $\chi_{2}^{2}(p)=1$ and so $\chi_{2}(p)= \pm 1$. A similar argument works for χ_{1} and so we also have $\chi_{1}(p)= \pm 1$ if p splits in K.

Again comparing the Euler factors in $L(s, \chi)$ and $L(s, \pi)$, the values of $\chi(\mathfrak{p})$ must coincide with the values of $\chi_{1}(p)$ and $\chi_{2}(p)$, that is, $\chi(\mathfrak{p})= \pm 1$. Now $\chi(\mathfrak{p})=\chi([\mathfrak{p}])$ where $[\mathfrak{p}]$ is the class of \mathfrak{p} in the ideal class group of K. By the analog of Dirichlet's theorem for ideal class characters, we know that in each ideal class \mathfrak{C} there are infinitely many prime ideals which split. Thus $\chi(\mathfrak{C})= \pm 1$ and hence is of order 2 . This implies χ is a genus character.

Remark 2.5. By Proposition 2.4, if χ is a non-genus character, then $L(s, \chi \otimes \chi)$ has at most a simple pole at $s=1$.

3. Proof of Theorem 1.3

Proof. As $-N \not \equiv 1 \bmod 4$, the discriminant of $K=\mathbb{Q}(\sqrt{-N})$ is $-4 N$. We also assume that t is the number of distinct prime factors of N and so the discriminant $-4 N$ has $t+1$ distinct prime factors.

Given the quadratic form $Q(x, y)=x^{2}+N y^{2}$, we consider the associated Epstein zeta function (see [7], [12], [18], or [19])

$$
\zeta_{Q}(s)=\sum_{x, y \neq 0} \frac{1}{\left(x^{2}+N y^{2}\right)^{s}}=\sum_{n=1}^{\infty} \frac{r_{2, N}(n)}{n^{s}}
$$

for $\Re(s)>1$. Now for $K=\mathbb{Q}(\sqrt{-N})$, we have Dedekind's zeta function

$$
\zeta_{K}(s)=\sum_{\mathfrak{a}} \frac{1}{N(\mathfrak{a})^{s}}=\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}
$$

where the sum is over all nonzero ideals \mathfrak{a} of \mathcal{O}_{K}. We now split up $\zeta_{K}(s)$, according to the classes c_{i} of the ideal class group $C(K)$, into the partial zeta functions (see page 458 of [15])

$$
\zeta_{c_{i}}(s)=\sum_{\mathfrak{a} \in c_{i}} \frac{1}{N(\mathfrak{a})^{s}}
$$

so that $\zeta_{K}(s)=\sum_{i=0}^{h-1} \zeta_{c_{i}}(s)$ where h is the class number of K. In our case $K=\mathbb{Q}(\sqrt{-N})$ is an imaginary quadratic field and so by [6] (Theorem 7.7, page 137), we may write

$$
\zeta_{K}(s)=\sum_{i=0}^{h-1} \zeta_{Q_{i}}(s)
$$

where Q_{i} is a class in the form class group. Note that in this context, $Q(x, y)$ corresponds to the trivial class c_{0} in $C(K)$ and so $\zeta_{c_{0}}(s)=\zeta_{Q(x, y)}(s)$. Now let χ be an ideal class character and consider the Hecke L-function for χ, namely

$$
L(s, \chi)=\sum_{\mathfrak{a}} \frac{\chi(\mathfrak{a})}{N(\mathfrak{a})^{s}}
$$

where \mathfrak{a} again runs over all nonzero ideals of \mathcal{O}_{K}. We may now rewrite the Hecke Lfunction as

$$
L(s, \chi)=\sum_{i=0}^{h-1} \chi\left(c_{i}\right) \zeta_{c_{i}}(s)
$$

And so summing over all ideal class characters of $C(K)$, we have

$$
\sum_{\chi} \bar{\chi}\left(c_{0}\right) L(s, \chi)=\sum_{i=0}^{h-1} \zeta_{c_{i}}(s)\left(\sum_{\chi} \bar{\chi}\left(c_{0}\right) \chi\left(c_{i}\right)\right)
$$

The inner sum is nonzero precisely when $i=0$. As $\bar{\chi}\left(c_{0}\right)=1$ we have $\zeta_{c_{0}}(s)=$ $\frac{1}{h} \sum_{\chi} L(s, \chi)$. Thus

$$
\zeta_{c_{0}}(s)=\frac{1}{h}\left(L\left(s, \chi_{0}\right)+L\left(s, \chi_{1}\right)+\cdots+L\left(s, \chi_{h-1}\right)\right)
$$

As χ_{0} is the trivial character, $L\left(s, \chi_{0}\right)=\zeta_{K}(s)$. We now compare $n^{t h}$ coefficients, yielding

$$
r_{2, N}(n)=\frac{1}{h}\left(a_{n}+b_{1}(n)+\cdots+b_{h-1}(n)\right)
$$

where a_{n} is the number of integral ideals of \mathcal{O}_{K} of norm n and the b_{i} 's are coefficients of weight 1 cusp forms (see the classical work of Hecke [9], [10] or [3]). From the modern perspective, this is straightforward. Each $L\left(s, \chi_{i}\right), 1 \leq i \leq h-1$, can be viewed as an automorphic L-function of $G L_{1}\left(\mathbb{A}_{K}\right)$ and by automorphic induction (see [1]) they are essentially Mellin transforms of (holomorphic) cusp forms, in the classical sense. We now have

$$
\sum_{n \leq x} r_{2, N}(n)^{2}=\frac{1}{h^{2}}\left(\sum_{n \leq x} a_{n}{ }^{2}+\sum_{\substack{i \\ n \leq x}} b_{i}(n)^{2}+2 \sum_{\substack{i \\ n \leq x}} a_{n} b_{i}(n)+\sum_{\substack{i \neq j \\ n \leq x}} b_{i}(n) b_{j}(n)\right)
$$

By the Rankin-Selberg estimate, $2 \sum_{\substack{i \\ n \leq x}} a_{n} b_{i}(n), \sum_{\substack{i \neq j \\ n \leq x}} b_{i}(n) b_{j}(n)$ are equal to $O(x)$. By
Corollary 2.2,

$$
\frac{1}{h^{2}} \sum_{n \leq x}{a_{n}}^{2}=\frac{1}{h^{2}}\left(A_{1} x \log x+B_{1} x+O\left(x^{\frac{1}{2}}(\log x)^{3} \log \log x\right)\right)
$$

We now must estimate $\sum_{\substack{i \\ n \leq x}} b_{i}(n)^{2}$. Let us now assume that the first $2^{t}-1$ terms arise from L-functions associated to genus characters. By Proposition 2.4 and Nowak's proof of Theorem 2.1 (which uses Perron's formula and the residue theorem), we obtain

$$
\sum_{n \leq x} b_{i}(n)^{2}=A_{1} x \log x+B_{1} x+O(x)
$$

with A_{1} and B_{1} as in Corollary 2.2. As this estimate holds for each i such that $1 \leq i \leq$ $2^{t}-1$, the term $A_{1} x \log x$ appears 2^{t} times in the estimate of $\sum_{n \leq x} r_{2, N}(n)^{2}$. By Remark 2.5, the remaining terms $\sum_{n \leq x} b_{i}(n)^{2}$ for $2^{t}-1<i \leq h-1$ are all $O(x)$. Thus

$$
\sum_{n \leq x} r_{2, N}(n)^{2}=\frac{1}{h^{2}}\left[\left(2^{t} \frac{6}{\pi^{2}} L\left(1, \chi_{-4 N}\right)^{2} \prod_{p \mid 2 N} \frac{p}{p+1}\right) x \log x+O(x)\right]+O(x)
$$

By (4.11) in [8] (or equation (8), page 171 in [5]), we have $L\left(1, \chi_{-4 N}\right)=\frac{h \pi}{\sqrt{N}}$ and so

$$
\sum_{n \leq x} r_{2, N}(n)^{2}=\frac{3}{N}\left(\prod_{p \mid 2 N} \frac{2 p}{p+1}\right) x \log x+O(x)
$$

The result then follows.

Remark 3.1. It should be possible to obtain the second term in the asymptotic formula. By a careful application of the Rankin-Selberg method, one should obtain an error term of the form $O\left(x^{\theta}\right)$ with $\theta<1$. The remaining case $-N \equiv 1 \bmod 4$ requires more subtle analysis due to the fact that for $K=\mathbb{Q}(\sqrt{-N}), \mathbb{Z}[\sqrt{-N}]$ is not the maximal order of K. It involves the study of L-series attached to orders. Using the techniques in [4] and [12], we will take this and sharper error terms up in some detail in a forthcoming paper.

References

[1] J. Arthur and L. Clozel, Simple algebras, base change, and the advanced theory of the trace formula, Annals of Math. Studies, Vol. 120, (1990), Princeton University Press.
[2] J. Borwein, K.K. Choi, On Dirichlet Series for sums of squares, The Ramanujan Journal, special issues for Robert Rankin, Vol. 7, 1-3, 97-130.
[3] D. Bump, Automorphic forms and representations, Cambridge Studies in Advanced Mathematics, 55, Cambridge University Press, 1997.
[4] R. Chapman, A. van der Poorten, Binary Quadratic Forms and the Eta Function, Number theory for the millennium, I (Urbana, IL, 2000), 215-227, A K Peters, Natick, MA, 2002.
[5] H. Cohn, Advanced Number Theory, Dover Publications, Inc., New York, 1980.
[6] D. Cox, Primes of the Form $x^{2}+n y^{2}$, John Wiley \& Sons, Inc, New York, 1989.
[7] P. Epstein, Zur Theorie allgemeiner Zetafunction, Math. Ann. 56, (1903), 615-644.
[8] E. Grosswald, Representations of Integers as Sums of Squares, Springer-Verlag, 1985.
[9] E. Hecke, Zur theorie der elliptischen modulfunktionen, Math. Ann. 97 (1926), 210-242.
[10] E. Hecke, Über das verhalten von $\sum_{m, n} e^{2 \pi i \tau \frac{\left|m^{2}-2 n^{2}\right|}{8}}$ und ähnlichen funktionen bei modulsubstitutionen, J. Reine Angew. Math. 157 (1927), 159-170.
[11] H. Iwaniec, Topics in Classical Automorphic Forms, Graduate Studies in Mathematics, Vol. 17, Amer. Math. Soc., Providence, RI, 1997.
[12] E. Kani, Epstein Zeta-functions and Hecke L-functions, preprint.
[13] M. Kühleitner, W.G. Nowak, The average number of solutions to the Diophantine equation $U^{2}+V^{2}=W^{3}$ and related arithmetic functions, preprint available at http://front.math.ucdavis.edu/math.NT/0307221
[14] R. Murty, Problems in Analytic Number Theory, Graduate Texts in Mathematics, Vol. 206, SpringerVerlag, Berlin, 2001.
[15] J. Neukirch, Algebraic Number Theory, Grundlehren vol. 322, Springer Verlag, New York, 1999.
[16] R.A. Rankin, Contributions to the theory of Ramanujan's function $\tau(n)$ and similar functions. II. The order of the Fourier coefficients of integral modular forms, Proc. Cambridge Philos. Soc. 35 (1939), 357-373.
[17] A. Selberg, Bemerkungen über eine Dirichletsche Reihe, die mit der Theorie der Modulformen nahe verbunden ist, Archiv. Math. Natur. B 43 (1940), 47-50.
[18] A. Selberg, S. Chowla, On Epstein's zeta function, J. Reine Angew. 227 (1967), 86-110.
[19] C.L. Siegel, Advanced Analytic Number Theory, Tata Institute of Fundamental Research, Bombay, 1980.

Department of Mathematics \& Statistics, Queen's University, Kingston, Ontario, Canada K7L 3N6

E-mail address: murty@mast.queensu.ca
E-mail address: osburnr@mast.queensu.ca

