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REPRESENTATIONS OF INTEGERS BY CERTAIN POSITIVE
DEFINITE BINARY QUADRATIC FORMS

RAM MURTY AND ROBERT OSBURN

Abstract. We prove part of a conjecture of Borwein and Choi concerning an es-
timate on the square of the number of solutions to n = x2 + Ny2 for a squarefree
integer N .

1. Introduction

We consider the positive definite quadratic form Q(x, y) = x2 + Ny2 for a squarefree
integer N . Let r2,N (n) denote the number of solutions to n = Q(x, y) (counting signs
and order). In this note, we estimate ∑

n≤x

r2,N (n)2.

A positive squarefree integer N is called solvable if x2 + Ny2 has one form per genus.
Note that this means the class number of the form class group of discriminant −4N
equals the number of genera, 2t, where t is the number of distinct prime factors of N .
Concerning r2,N (n), Borwein and Choi [2] proved the following:

Theorem 1.1. Let N be a solvable squarefree integer. Let x > 1 and ε > 0. We have
∑

n≤x

r2,N (n)2 =
3
N

( ∏

p|2N

2p

p + 1

)
(x log x + α(N)x) + O(N

1
4+εx

3
4+ε)

where the product is over all primes dividing 2N and

α(N) = −1 + 2γ +
∑

p|2N

log p

p + 1
+

2L′(1, χ−4N )
L(1, χ−4N )

− 12
π2

ζ ′(2)

where γ is the Euler-Mascheroni constant and L(1, χ−4N ) is the L-function corresponding
to the quadratic character mod −4N .

Based on this result, Borwein and Choi posed the following:

Conjecture 1.2. For any squarefree N ,
∑

n≤x

r2,N (n)2 ∼ 3
N

( ∏

p|2N

2p

p + 1

)
x log x

Our main result is the following.

Theorem 1.3. Let Q(x, y) = x2 + Ny2 for a squarefree integer N with −N 6≡ 1 mod 4.
Let r2,N (n) denote the number of solutions to n = Q(x, y) (counting signs and order).
Then ∑

n≤x

r2,N (n)2 ∼ 3
N

( ∏

p|2N

2p

p + 1

)
x log x.

1
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2. Preliminaries

We first discuss two key estimates and a result of Kronecker on genus characters.
Then using Kronecker’s result, we prove a proposition relating genus characters to poles
of the Rankin-Selberg convolution of L-functions. The first estimate is a recent result of
Kühleitner and Nowak [13], namely

Theorem 2.1. Let a(n) be an arithmetic function satisfying a(n) ¿ nε for every ε > 0,
with a Dirichlet series

F (s) =
∞∑

n=1

a(n)
ns

=
(ζK(s))2

(ζ(2s))m1(ζK(2s))m2
G(s)

where <(s) > 1 and ζK(s) is the Dedekind zeta function of some quadratic number field
K, G(s) is holomorphic and bounded in some half plane <(s) ≥ θ, θ < 1

2 , and m1, m2

are nonnegative integers. Then for x large,
∑

n≤x

a(n) = Ress=1

(
F (s)

xs

s

)
+ O(x

1
2 (log x)3(log log x)m1+m2)

= Ax log x + Bx + O(x
1
2 (log x)3(log log x)m1+m2)

where A and B are computable constants.

For an arbitrary quadratic number field K with discriminant dK , let OK denote the
ring of integers in K, and rK(n) the number of integral ideals I in OK of norm N(I) = n.
From (4.1) in [13], we have

∞∑
n=1

(rK(n))2

ns
=

(ζK(s))2

ζ(2s)

∏

p|dK

(1 + p−s)−1.

Applying Theorem 2.1 with m1 = 1 and m2 = 0, we obtain

Corollary 2.2. For any quadratic field K of discriminant dK and x large,∑

n≤x

(rK(n))2 = A1x log x + B1x + O(x
1
2 (log x)3 log log x),

with A1 = 6
π2 L(1, χdK

)2
∏

p|dK

p

p + 1
and B1 = A1α(N) with α(N) as in Theorem 1.1.

The second estimate is a classical result of Rankin [16] and Selberg [17] which estimates

the size of Fourier coefficients of a modular form. Specifically, if f(z) =
∞∑

n=1

a(n)e2πinz is

a nonzero cusp form of weight k on Γ0(N), then∑

n≤x

|a(n)|2 = α〈f, f〉xk + O(xk− 2
5 )

where α > 0 is an absolute constant and 〈f, f〉 is the Petersson scalar product. In
particular, if f is a cusp form of weight 1, then

∑

n≤x

|a(n)|2 = O(x). One can adapt their

result to say the following. Given two cusp forms of weight k on a suitable congruence

subgroup of Γ = SL2(Z), say f(z) =
∞∑

n=1

a(n)e2πinz and g(z) =
∞∑

n=1

b(n)e2πinz, then

∑

n≤x

a(n)b(n)n1−k = Ax + O(x
3
5 )
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where A is a constant. In particular, if f and g are cusp forms of weight 1, then∑

n≤x

a(n)b(n) = O(x).

We will also use a result of Kronecker on genus characters. Let us first explain some
terminology. Let K = Q(

√
d) be a quadratic field of discriminant dK . dK is said to be

a prime discriminant if it only has one prime factor. Thus it must be of the form: −4,
±8, ±p ≡ 1 mod 4 for an odd prime p. Every discriminant can be written uniquely as
a product of prime discriminants, say dK = P1 . . . Pk. Here k denotes the number of
distinct prime factors of dK . Thus dK can be written as a product of two discriminants,
say dK = D1D2 in 2k−1 distinct ways (excluding order). Now, for any such decomposition
we define a character χD1,D2 on ideals by

χD1,D2(p) =
{

χD1(Np) if p - D1

χD2(Np) if p - D2

where χd(n) is the Kronecker symbol. This is well defined on prime ideals because
χD(Na) = 1 if (a, D) = 1. χD1,D2 extends to all fractional ideals by multiplicativity.
Hence we have

χD1,D2 : I → {±1}
where I is the group of nonzero fractional ideals of OK . Thus χD1,D2 has order two,
except for the trivial character corresponding to dK = dK · 1 = 1 · dK . Every such
character χD1,D2 is called the genus character of discriminant dK . As these are different
for distinct factorizations of dK (into a product of two discriminants), we have 2k−1 genus
characters. Kronecker’s theorem (see Theorem 12.7 in [11]) is as follows.

Theorem 2.3. The L-function of K associated with the genus character χD1,D2 factors
into the Dirichlet L-functions,

L(s, χD1,D2) = L(s, χD1)L(s, χD2).

Let K = Q(
√−N), N squarefree, I as above, and P the subgroup of I of principal

ideals. For a non-zero integral ideal m of OK , define
I(m) = {a ∈ I : (a,m) = 1}

P (m) = {〈a〉 ∈ P : a ≡ 1 mod m}.
A group homomorphism χ : Im → S1 is an ideal class character if it is trivial on P (m),

i.e.
χ(〈a〉) = 1

for a ≡ 1 mod m. Thus an ideal class character is a character on the ray class group
I(m)�P (m). Taking the trivial modulus m = 1, we obtain a character on the ideal class
group of K. Note that for K = Q(

√−N) a genus character is an ideal class character of
order at most two.

Let us also recall the notion of the Rankin-Selberg convolution of two L-functions. For
squarefree N , consider two ideal class characters χ1, χ2 for Q(

√−N) and their associated
Hecke L-series

L(s, χ1) =
∞∑

n=1

χ1(n)
ns

L(s, χ2) =
∞∑

n=1

χ2(n)
ns

which converge absolutely in some right half-plane. We form the convolution L-series by
multiplying the coefficients,
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L(s, χ1 ⊗ χ2) =
∞∑

n=1

χ1(n)χ2(n)
ns

.

The following result describes a relationship between genus characters χ and the orders
of poles of L(s, χ⊗ χ). Precisely,

Proposition 2.4. Let χ be an ideal class character of Q(
√−N), −N 6≡ 1 mod 4, and

L(s, χ) the associated Hecke L-series. Then χ is a genus character if and only if L(s, χ⊗χ)
has a double pole at s = 1.

Proof. Suppose χD1,D2 is a genus character of discriminant −4N , and L(s, χD1,D2) =
∞∑

n=1

bi(n)
ns

. By Theorem 2.3 and Exercise 1.2.8 in [14] (see the solution), we have

∞∑
n=1

bi(n)2

ns
=

L(s, χ2
D1

)L(s, χ2
D2

)L(s, χD1χD2)
2

L(2s, χ2
D1

χ2
D2

)
.

Note that

L(s, χ2
D1

) = ζ(s) ·
∏

p|D1

(1− p−s),

L(s, χ2
D2

) = ζ(s) ·
∏

p|D2

(1− p−s),

L(s, χD1χD2)
2 = L(s, χ−4N )2,

and

L(2s, χ2
D1

χ2
D2

) = ζ(2s) ·
∏

p|D1D2

(1− p−2s).

We have
∞∑

n=1

bi(n)2

ns
=

ζ(s)2L(s, χ−4N )2

ζ(2s)

∏

p|2N

(1 + p−s)−1

and thus a double pole at s = 1.
Conversely, let χ be an ideal class character of K = Q(

√−N) and suppose L(s, χ⊗χ)
has a double pole at s = 1. Now χ is an automorphic form on GL1(AK). By automorphic
induction (see [1]), χ is mapped to π, a cuspidal automorphic representation of GL2(AQ).
Note that π is reducible as, otherwise, L(s, π ⊗ π) has a simple pole at s = 1 ([1], page
200). As K is a quadratic extension of Q, we must have π = χ1 + χ2 where χi are
Dirichlet characters. As L(s, χ) = L(s, π) (see [1]) and thus L(s, χ⊗ χ) = L(s, π ⊗ π),

L(s, π ⊗ π) = L(s, χ⊗ χ) =
L(s, χ2

1)L(s, χ2
2)L(s, χ1χ2)2

L(2s, χ2
1χ

2
2)

.

Now L(s, χ ⊗ χ) has a double pole at s = 1 if and only if either χ1 = χ2, χ2
2 6= 1, and

χ2
1 6= 1 or χ2

1 = 1, χ2
2 = 1, and χ1χ2 6= 1. The latter implies χ is a genus character. We

now need to show that the former also implies that χ is a genus character. Note that

L(s, χ) =
∏
p

(
1− χ(p)

N(p)s

)−1
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and

L(s, χ1 + χ2) =
∏
p

(
1− χ1(p)

ps

)−1 ∏
p

(
1− χ2(p)

ps

)−1

.

As L(s, χ) = L(s, π) and L(s, π) = L(s, χ1 + χ2), we compare Euler factors to get

χ1(p) + χ2(p) =
{

0 if p is inert in K

χ(p) + χ(p) if p splits in K.

For p inert in K, this yields χ1(p) = −χ2(p) and so χ2(p) = χ1(p) = −χ2(p) which
implies χ2

2(p) = −1 and so χ2(p) = ±i. Now consider the following equation whose sum
sieves the inert primes

1
2

∑

p≤x

p prime

(
1−

(−4N

p

))
χ2

2(p) = −π(x).

Here π(x) is the number of primes between 1 and x. Thus

1
2

∑

p≤x

p prime

χ2
2(p)− 1

2

∑

p≤x

p prime

(−4N

p

)
χ2

2(p) = −π(x).

As χ2
2 6= 1, we have by the prime ideal theorem,

∑

p≤x

χ2
2(p) = o(π(x)) and so

∑

p≤x

(−4N

p

)
χ2

2(p) ∼ π(x).

This implies
(
−4N

p

)
χ2

2(p) = 1. If p splits in K, then χ2
2(p) = 1 and so χ2(p) = ±1. A

similar argument works for χ1 and so we also have χ1(p) = ±1 if p splits in K.
Again comparing the Euler factors in L(s, χ) and L(s, π), the values of χ(p) must

coincide with the values of χ1(p) and χ2(p), that is, χ(p) = ±1. Now χ(p) = χ([p]) where
[p] is the class of p in the ideal class group of K. By the analog of Dirichlet’s theorem for
ideal class characters, we know that in each ideal class C there are infinitely many prime
ideals which split. Thus χ(C) = ±1 and hence is of order 2. This implies χ is a genus
character.

¤
Remark 2.5. By Proposition 2.4, if χ is a non-genus character, then L(s, χ⊗ χ) has at
most a simple pole at s = 1.

3. Proof of Theorem 1.3

Proof. As −N 6≡ 1 mod 4, the discriminant of K = Q(
√−N) is −4N . We also assume

that t is the number of distinct prime factors of N and so the discriminant −4N has t+1
distinct prime factors.

Given the quadratic form Q(x, y) = x2 +Ny2, we consider the associated Epstein zeta
function (see [7], [12], [18], or [19])

ζQ(s) =
∑

x,y 6=0

1
(x2 + Ny2)s

=
∞∑

n=1

r2,N (n)
ns

.
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for <(s) > 1. Now for K = Q(
√−N), we have Dedekind’s zeta function

ζK(s) =
∑

a

1
N(a)s =

∞∑
n=1

an

ns

where the sum is over all nonzero ideals a of OK . We now split up ζK(s), according to
the classes ci of the ideal class group C(K), into the partial zeta functions (see page 458
of [15])

ζci
(s) =

∑
a∈ci

1
N(a)s

so that ζK(s) =
h−1∑

i=0

ζci
(s) where h is the class number of K. In our case K = Q(

√−N)

is an imaginary quadratic field and so by [6] (Theorem 7.7, page 137), we may write

ζK(s) =
h−1∑

i=0

ζQi(s)

where Qi is a class in the form class group. Note that in this context, Q(x, y) corresponds
to the trivial class c0 in C(K) and so ζc0(s) = ζQ(x,y)(s). Now let χ be an ideal class
character and consider the Hecke L-function for χ, namely

L(s, χ) =
∑

a

χ(a)
N(a)s

where a again runs over all nonzero ideals of OK . We may now rewrite the Hecke L-
function as

L(s, χ) =
h−1∑

i=0

χ(ci)ζci(s).

And so summing over all ideal class characters of C(K), we have

∑
χ

χ(c0)L(s, χ) =
h−1∑

i=0

ζci(s)
( ∑

χ

χ(c0)χ(ci)
)
.

The inner sum is nonzero precisely when i = 0. As χ(c0) = 1 we have ζc0(s) =
1
h

∑
χ

L(s, χ). Thus

ζc0(s) = 1
h (L(s, χ0) + L(s, χ1) + · · ·+ L(s, χh−1)).

As χ0 is the trivial character, L(s, χ0) = ζK(s). We now compare nth coefficients, yielding

r2,N (n) = 1
h (an + b1(n) + · · ·+ bh−1(n))

where an is the number of integral ideals of OK of norm n and the bi’s are coefficients of
weight 1 cusp forms (see the classical work of Hecke [9], [10] or [3]). From the modern
perspective, this is straightforward. Each L(s, χi), 1 ≤ i ≤ h − 1, can be viewed as an
automorphic L-function of GL1(AK) and by automorphic induction (see [1]) they are
essentially Mellin transforms of (holomorphic) cusp forms, in the classical sense. We now
have
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∑

n≤x

r2,N (n)2 =
1
h2

( ∑

n≤x

an
2 +

∑

i
n≤x

bi(n)2 + 2
∑

i
n≤x

anbi(n) +
∑

i 6=j
n≤x

bi(n)bj(n)
)
.

By the Rankin-Selberg estimate, 2
∑

i
n≤x

anbi(n),
∑

i6=j
n≤x

bi(n)bj(n) are equal to O(x). By

Corollary 2.2,

1
h2

∑

n≤x

an
2 =

1
h2

(
A1x log x + B1x + O(x

1
2 (log x)3 log log x)

)
.

We now must estimate
∑

i
n≤x

bi(n)2. Let us now assume that the first 2t − 1 terms arise

from L-functions associated to genus characters. By Proposition 2.4 and Nowak’s proof
of Theorem 2.1 (which uses Perron’s formula and the residue theorem), we obtain

∑

n≤x

bi(n)2 = A1x log x + B1x + O(x)

with A1 and B1 as in Corollary 2.2. As this estimate holds for each i such that 1 ≤ i ≤
2t − 1, the term A1x log x appears 2t times in the estimate of

∑

n≤x

r2,N (n)2. By Remark

2.5, the remaining terms
∑

n≤x

bi(n)2 for 2t − 1 < i ≤ h− 1 are all O(x). Thus

∑

n≤x

r2,N (n)2 =
1
h2

[(
2t 6

π2
L(1, χ−4N )2

∏

p|2N

p

p + 1

)
x log x + O(x)

]
+ O(x).

By (4.11) in [8] (or equation (8), page 171 in [5]), we have L(1, χ−4N ) = hπ√
N

and so

∑

n≤x

r2,N (n)2 =
3
N

( ∏

p|2N

2p

p + 1

)
x log x + O(x).

The result then follows.
¤

Remark 3.1. It should be possible to obtain the second term in the asymptotic formula.
By a careful application of the Rankin-Selberg method, one should obtain an error term
of the form O(xθ) with θ < 1. The remaining case −N ≡ 1 mod 4 requires more subtle
analysis due to the fact that for K = Q(

√−N), Z[
√−N ] is not the maximal order of K.

It involves the study of L-series attached to orders. Using the techniques in [4] and [12],
we will take this and sharper error terms up in some detail in a forthcoming paper.
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