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Fast Adaptive Minorization-Maximization Procedure

for Beamforming Design of Downlink NOMA

Systems
Oisin Lyons, Muhammad Fainan Hanif, Markku Juntti, Fellow, IEEE, and Le-Nam Tran, Senior Member, IEEE

Abstract—We develop a novel technique to accelerate
minorization-maximization (MM) procedure for the non-
orthogonal multiple access (NOMA) weighted sum rate maxi-
mization problem. Specifically, we exploit the Lipschitz continuity
of the gradient of the objective function to adaptively update the
MM algorithm. With fewer additional analysis variables and low
complexity second-order cone program (SOCP) to solve in each
iteration of the MM algorithm, the proposed approach converges
quickly at a small computational cost. By numerical simulation
results, our algorithm is shown to greatly outperform known
solutions in terms of achieved sum rates and computational
complexity.

Index Terms—5G, NOMA, majorization-minimization, algo-
rithm acceleration.

I. INTRODUCTION

Fifth generation (5G) networks are expected to provide a

complete paradigm shift in contemporary wireless services.

The minimum technical requirements of 5G systems have been

approved in International Mobile Telecommunications-2020

(IMT-2020) [1]. Specifically, IMT-2020 promises to provide

superior performance in the three cases of utilization including

mobile broadband, low latency communications, and massive

machine type communications [1]. 3rd Generation Partnership

Project (3GPP) has been working on 5G standardization fol-

lowing the time guidelines of International Telecommunication

Union Radiocommunication Sector (ITU-R) with Release 16

scheduled in late 2019 [2]. The concept of non-orthogonal

multiple access (NOMA) is being considered as a promising

multiple access technique for 5G new radio (NR) to meet the

benchmarks set in IMT-2020 [3].

Extensive research has been carried out on various aspects

of 5G and non-orthogonal multiple access (NOMA) systems

[4], [5]. Power allocation for a two user NOMA system

with fairness under consideration was studied in [6]. Notice-
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ably, Hanif et al. [7] used minorization-maximization (MM)1

strategy to solve sum rate maximization in the downlink of

multiple-input single-output (MISO) NOMA. The approach in

[7] relies heavily on introduction of additional variables thus

making it slow and computationally expensive. The secrecy

sum rate maximization problem for a NOMA network where

each user is equipped with a single antenna was considered

in [9]. Yang et al. conducted a performance analysis and

optimization theoretic study of space division multiple access

NOMA with limited feedback in [10]. From the perspective

of optimal channel assignment, power allocation for sum rate

maximization with two user NOMA was studied in [11]. In

[12], Zhang et al. used geographical information to perform

multi-group multicast operation with NOMA. In their recent

work, Zhu et al. [13] proposed beamforming design to maxi-

mize the weighted sum rate for MISO NOMA based on a rank

constrained formulation.

Contributions: In this correspondence, we consider the

weighted sum rate maximization problem for downlink MISO

NOMA systems. We note that the known solutions are highly

complex and the algorithmic efficiency has not been the

primary focus of these designs. To this end, we address the

issue of devising a computationally efficient algorithm for the

considered problem. Our major contributions include: a) ob-

taining an equivalent formulation of the main problem without

introducing a large number of additional analysis variables; b)

exploiting the MM approach to produce a simplified convex

problem solved in the nth step of the proposed algorithm; c)

accelerating the iterative algorithm by prudently using the Lip-

schitz continuous gradient property of the objective function;

and d) last but not least, conducting numerical experiments to

demonstrate the superiority of the proposed approach.

The rest of the paper is organized as follows. Section II

presents the system model and problem formulation. Proposed

solution and numerical results are discussed in Section III

and Section IV, respectively. Finally, conclusions are drawn

in Section V.

Notation: We will use boldface letters to denote vectors. The

kth element of the vector x is denoted by xk. x
T is the

transpose of x, while x
H is the Hermitian transpose of x.

1m×n denotes an m×n matrix of all 1s. The Euclidean norm

of x is denoted by ||x||2. The value of a variable y after the

nth step of an iterative process is y(n). We denote the absolute

1Here we remark that the terminology of minorization-maximization is
standard for maximization problems in the context of MM algorithms [8].
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value of a complex number c by |c|. Re(c) and Im(c) are the

real and imaginary components of c, respectively.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider the downlink of a single cell system, where

the base station (BS) equipped with N antennas adopts beam-

forming to serve K single-antenna users. To facilitate NOMA,

each user k is assumed to be capable of performing succes-

sive interference cancellation (SIC). The equivalent baseband

channel for user k is denoted by hk ∈ CN×1 and assumed

to be perfectly known to the BS. The BS multiplies the data

symbol sk intended for user k by a beamforming vector wk,

and transmits a superposition of all weighted symbols. The

received signal at user k is

yk =

k−1
∑

j=1

h
H
k wjsj + h

H
k wksk +

K
∑

j=k+1

h
H
k wjsj + nk (1)

where nk represents the zero-mean Gaussian noise experi-

enced by user k. Without loss of generality, we assume that the

noise variance, σ2, is same at all K users. For SIC, a user first

decodes the strongest signal and removes the decoded signal

from its received signal. The process is repeated until the user

is able to decode its own data. Without loss of generality, we

assume that ||h1||2 < ||h2||2 < · · · < ||hK ||2.

Here we remark that finding the optimal decoding or-

der remains an open problem. User k successively decodes

and subtracts s1, ..., sk−1 from yk, then decodes sk treating

sk+1, ..., sN as noise. Thus, the achievable rate at the kth user

is

Rk = log

(

1 +
|hH

k wk|2
∑K

j=k+1 |hH
k wj |2 + σ2

)

(nats/s/Hz). (2)

It is important to note that to achieve (2), we implicitly

assume the signal of user k can be successfully decoded at

all subsequent users j > k. This is only possible if the data

rate of user k is bounded by

Rk ≤ log

(

1 +
|hH

j wk|2
∑K

m=k+1 |hH
j wm|2 + σ2

)

, j = k+1, . . . ,K

(3)

Combining (2) and (3) the achievable rate at the kth user is

Rk =















log
(

1 +
|hH

KwK |2

σ2

)

k = K

log
(

1 + min
j∈[k,K]

|hH
j wk|

2

K∑

m=k+1

|hH
j
wm|2+σ2

)

k = [1,K − 1]

(4)

where the notation j ∈ [k,K] denotes j ∈ {k, k + 1, . . . ,K}.

To perform SIC successfully in the stated user ordering, we

also impose the following constraints

|hH
k wj |2 ≥ |hH

k wj+1|2, k = 1, ...,K, j = 1, ...,K − 1. (5)

The constraints in (5) correspond to the power ordering

used in the context of power domain single-input single-

output downlink NOMA in [5, Sec. II]. Further to this, the

constraints in (5) also ensure that the interfering signal strength

is lower compared to that of the desired signal. Hence, (5) also

facilitates in boosting the sum data rate of the system.

B. Problem Formulation

We are interested in the weighted sum rate maximization of

the NOMA system considered in Sec. II-A subject to a sum

power constraint. This problem is mathematically stated as

maximize
{wj}

∑K

k=1
αkRk (6a)

subject to (5) &
∑K

j=1
||wj ||22 ≤ Ptx (6b)

where αk, a positive constant associated with user k, maintains

user fairness, Rk is given in (4) and Ptx is the maximum

power available to the transmitter. In addition to providing

trade-off between fairness and sum rate in resource allocation

process, varying αk in weighted sum rate maximization can be

used to trace the entire boundary of the rate region of NOMA

beamforming.

Note that to solve (6) the authors in [7] introduce several

auxiliary variables to arrive at a second order cone program

(SOCP) at each iteration of their algorithmic solution to the

NOMA sum rate problem. In total, their method requires the

introduction of at least quadratic in K additional analysis

variables, which is not favourable in practice, for instance,

in large-scale antenna schemes. Further, the effect of the large

number of analysis variables in [7] is also manifested in the

form of slow convergence, as we will see in the numerical

results section.

III. PROPOSED SOLUTION

The proposed solution is built upon the MM algorithm with

only K additional analysis variables. First we reformulate (6)

equivalently as

maximize
w,γ≥0

∑K

k=1
αk log(1 + γk) (7a)

subject to
∑K

m=k+1
|hH

j wm|2 + σ2 ≤
|hH

j wk|2
γk

,

k = 1, ...,K, j = k, ...,K, and (6b) (7b)

where w and γ denote the vectors that contain all wk, stacked

column-wise, and γk, respectively. Note that we have newly

introduced K optimization variables i.e., γk, k = 1 . . .K . The

non-convexity of (7) is due to (7b) and (5). Let w
(n)
j denote

the beamforming vector in the nth iteration. Then, in light of

the MM technique we can lower bound the left side of (5) as

|hH
k wj |2 ≥|hH

k w
(n)
j |2 + 2Re(w

(n)H
j Hk(wj −w

(n)
j ))

, f(hk,wj ;w
(n)
j ) (8)

where Hk , hkh
H
k and for ease of notation, we write w

(n)H
j

instead of (w
(n)
j )H . In fact, f(hk,wj ;w

(n)
j ) is simply an

affine approximation of |hH
k wj |2 at w

(n)
j .

We now turn our attention to (7b) and note that the right

side of the inequality is jointly convex in wk and γk. Thus,
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we can find a convex approximation to (7b) by linearizing its

right side, producing the following lower bound

|hH
j wk|2
γk

≥
|hH

j w
(n)
k |2

γ
(n)
k

+
2

γ
(n)
k

Re(w
(n)H
k Hj(wk −w

(n)
k ))

−
|hH

j w
(n)
k |2

(γ
(n)
k )2

(γk − γ
(n)
k ) , g(hj ,wk, γk;w

(n)
k , γ

(n)
k ) (9)

where γ
(n)
k represents γk in the nth iteration of our algorithm

to be proposed in the ensuing discussion. Using the bounds

in (8) and (9), in the (n+ 1)th iteration of our algorithm, we

solve the following convex problem

maximize
w,γ≥0

∑K

k=1
αk log(1 + γk) (10a)

subject to
∑K

m=k+1
|hH

j wm|2 + σ2

≤ g(hj ,wk, γk;w
(n)
k , γ

(n)
k ), k = [1,K], j = [k,K] (10b)

|hH
k wj+1|2 ≤ f(hk,wj ;w

(n)
j ), k = [1,K], j = [1,K − 1],

∑K

j=1
||wj ||22 ≤ Ptx (10c)

Algorithm 1-CS/AS MM-based algorithm for solving (6)

1: Generate feasible w
(0) and γ

(0) and set n := 0
2: repeat

3: Solve (10) with surrogate objective to obtain optimal

w
∗ and γ

∗

// CS and AS correspond to constant and

// adaptive surrogate functions,

// respectively.

4: Update w
(n+1) := w

∗, γ(n+1) := γ
∗, and n := n+ 1

5: until convergence is achieved

We remark that the objective in (10a) is concave and thus

(10) is a convex problem, which can be solved optimally

in polynomial time. That said, problem (10) is a mix of

exponential (i.e. non-symmetric cone) and quadratic cones for

which dedicated solvers2 are limited, and the computational

complexity is not completely known [14]. Thus it is natural

to find some high-quality approximate representation of an

exponential cone, like using a system of SOCs as done in [15],

but at the cost of increased complexity. It is also possible to

reformulate (10) as an SOCP for the special case of sum rate

maximization considered in [7] (i.e., αk = 1, k = 1, 2, . . . ,K).

More specifically, we can equivalently replace the objective

of (10) with the geometric mean of (1 + γk)’s which can

be represented by a system of second-order cone (SOC)

constrains [7]. Consequently, (10) reduces to an SOCP. For

the general case, the trick introduced in [15] can be used to

reformulate (10) as an SOCP. For both these scenarios, several

additional variables need to be introduced.

To obtain a more efficient algorithm we further approximate

the objective of (10) by a quadratic form, and reformulate the

2CVX may be involved to solve this type of problems but the accuracy is
not guaranteed.

resulting problem as an SOCP with minimal overhead.3 In the

context of the MM algorithm, we need to find a conic surrogate

function that minorizes the objective function. To this end, we

recall that log(1 + γk) is 1-Lipschitz continuous gradient4 on

the domain γk ≥ 0, and the following inequality holds [17]

log(1 + γk) ≥ log
(

1 + γ
(n)
k

)

+
1

1 + γ
(n)
k

(

γk − γ
(n)
k

)

− θ
(

γk − γ
(n)
k

)2
, hθ(γk; γ

(n)
k ) (11)

for θ ≥ 1
2 . Hence, we employ hθ(γk; γ

(n)
k ) as a surrogate

of log(1 + γk) in the objective function of (10). We note

that second-order Taylor series expansion does not lead to the

lower bound in (11). The lower bound (11) follows directly

from [17, Eq. (24)] by first noting that a function f , whose

gradient ∇f has Lipschitz constant L, can be upper bounded

as follows

f(x) ≤ f(y) +∇f(y)T (x− y) +
1

2λ
‖x− y‖22 (12)

where λ ∈ (0, 1/L] [18]. The gradient of g(x) = − log(1 +
x), x > 0 is Lipschitz continuous with parameter L = 1, since

‖∇g(x1)−∇g(x2)‖2 =

∣

∣

∣

∣

x1 − x2

(1 + x1)(1 + x2)

∣

∣

∣

∣

≤ |x1 − x2| (13)

where the last inequality follows from (1 + x1)(1 + x2) > 1
for x1, x2 > 0. Now a straightforward application of (12)

leads to the bound in (11). Our proposed solution is outlined

in Algorithm 1-CS/AS. By Algorithm 1-CS we mean the

version in which the surrogate function with a fixed θ is

employed. Likewise, Algorithm 1-AS is used to refer to the

version where θ is made adaptive as we describe in the next

section.

A. Making Surrogate Function Adaptive

In order to guarantee the monotonic convergence of Algo-

rithm 1-CS, hθ(γk; γ
(n)
k ) should be a lower bound on the

objective function. Moreover, to make the bound as tight as

possible, setting θ = 1/2 is a natural choice. However, as

mentioned by Nesterov in [19, pp. 71], monotonicity (which

he refers to as relaxation) is never the key to deriving fast

converging algorithms. Following this philosophy, we abandon

the requirement of monotonicity in the above algorithm and

allow the constant θ to be small and adaptive to further im-

prove its convergence rate. To this end we remark that owing to

adaptive θ
(n)
k , we have a loose approximation of the objective

permitting efficient implementation in some early iterations

but ensuring the approximation is tight at convergence. This

results in attaining the stabilized objective value quickly as

the number of iterations increase. To study the behaviour of

our approximating function, we plot hθ(γk; γ
(n)
k ) for different

values of γ
(n)
k and θ in Fig. 1. It is seen that in the vicinity

3The resulting problem is a quadratically constrained quadratic program
which can be solved directly by some dedicated solvers. However, reformu-
lating it as an SOCP can be computationally beneficial because quadratic
cones are simpler than quadratic functions [16].

4A differentiable function f(x) is said to have an L-Lipschitz continuous
gradient if |f ′(x)− f ′(y)| ≤ L|x− y| for some L > 0.
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γkγ
(n)
k = 7γ

(n)
k = 2

h0.5(γk; γ
(n)
k )

h0.1(γk; γ
(n)
k )

h0.02(γk; γ
(n)
k )

Fig. 1. Illustration of log(1 + γk) and the surrogate function hθ(γk ; γ
(n)
k

)

at γ
(n)
k

= 2 and at γ
(n)
k

= 7 for different θ.
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Fig. 2. Average sum rates of algorithms against the number of transmit
antennas, N . The number of users is K = 3.

of a given γ
(n)
k , θ can be small for hθ(γk; γ

(n)
k ) to be a good

lower bound in practice. Furthermore, it is also observed that

for the best fitting curves θ is roughly inversely proportional

to γ
(n)
k . Motivated by these findings we propose the following

rule to update θ in Algorithm 1-CS/AS

θ
(n)
k =

n

nc+ α
(

1 + γ
(n)
k

)2 (14)

for some constants α > 0 and 0 < c ≤ 2. The update rule

in (14) is empirically motivated for our problem, and to the

best of authors’ knowledge, is not known. The update given in

(14) is used in step 3 of Algorithm 1-CS/AS. Consequently,

we have Algorithm 1-AS. The idea is to use a small value of

θ
(n)
k for first few iterations to achieve a good approximation

to the objective. When γ
(n)
k is not large initially, small θ

(n)
k

can be attained by appropriately choosing α and c. As the

8 16 32 64 128 256
10−1

100

101

102

103

Number of transmit antennas, N

R
u

n
ti

m
e

(s
)

Algorithm 1-CS
[7]

Algorithm 1-AS

Fig. 3. Average run time against the number of transmit antennas, N . The
number of users is K = 4.

number of iterations becomes large, the impact of α reduces

and by suitably choosing c within its defined range, θ
(n)
k is

changed such that it is as close as possible to being greater

than or equal to 0.5. Analytically determining optimal values

of α and c remains open.

B. Convergence and KKT Point Attainment

We will consider the convergence of Algorithm 1-AS.

The convergence of Algorithm 1-CS follows on similar

lines. First notice that since γ
(n)
k is bounded above due

to finite transmit power, it is certain that θ
(n)
k > 1/2 for

n > n0 for some n0. Now corresponding to the formulations

in (7) and (10) we introduce some abstract notation for

original functions and constraints and their approximations

to comprehensively elaborate our arguments. Denote the

ith original function by Fi(Di,Vi), where Di and Vi

represent the sets of given data and optimization variables

of the ith function. Similarly, the ith minorizing function

corresponding to Fi(Di,Vi) is denoted by MFi(Di,Vi;V(n)
i ),

where V(n)
i represents the set of optimization variables

in the nth iteration that act as parameters of the

underlying minorization-maximization approach in our

case. For i = 0, F0(D0,V0) ,
∑K

k=1 αk log(1 + γk)

and MF0(D0,V0;V(n)
0 ) ,

∑K

k=1 αkhθ(γk; γ
(n)
k ) represent

the objective and its minorizing function, respectively.

Similarly, we denote the original and approximated

constraints as Ci(Di,Vi) , Hi(Di,Vi) − Fi(Di,Vi) ≤ 0 and

ACi(Di,Vi;V(n)
i ) , Hi(Di,Vi) − MFi(Di,Vi;V(n)

i ) ≤ 0,

respectively, where Hi(Di,Vi) is not required to be

approximated. It is easy to verify the following properties:

(a) Fi(Di,Vi) ≥ MFi(Di,Vi;V(n)
i ), ∀Vi, (b) Fi(Di,V(n)

i ) =

MFi(Di,V(n)
i ;V(n)

i ), (c) ∇Fi(Di,V(n)
i ) =

∇MFi(Di,V(n)
i ;V(n)

i ). If V(n)
i are feasible for

Ci(Di,Vi) ≤ 0, these are also feasible for

ACi(Di,Vi;V(n)
i ) ≤ 0 due to (b). We also observe

that ACi(Di,V(n+1)
i ;V(n)

i ) ≤ 0. Now the feasibility of
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V(n+1)
i for Ci(Di,Vi) ≤ 0 follows from (a), because

Ci(Di,V(n+1)
i ) ≤ ACi(Di,V(n+1)

i ;V(n)
i ) ≤ 0. Since V(0)

i is

feasible for the original problem, therefore, the sequence of

variables will always satisfy Ci(Di,Vi) ≤ 0.

Now suppose the value of the objective function in the nth

run is O(n). It is clear that

O(n+1) = F0(D0,V(n+1)
0 ) +MF0(D0,V(n+1)

0 ;V(n)
0 )−

MF0(D0,V(n+1)
0 ;V(n)

0 ) ≥ F0(D0,V(n)
0 ) +MF0(D0,V(n)

0 ;V(n)
0 )

−MF0(D0,V(n)
0 ;V(n)

0 ) = F0(D0,V(n)
0 ) = O(n) (15)

where the inequality above follows due to (a) and (b). Hence,

the objective function is monotonically non-decreasing and

due to bounded power, it converges to a finite maximum

value. Now we will show that at all points (and therefore at

convergence as well) the algorithm satisfies the Karush-Kuhn-

Tucker (KKT) conditions. For non-negative dual variables

λi, ζ, the KKT conditions of (10) in terms of our compact

notation can be written as:

−∇MF0(D0,V(n)
0 ;V(n)

0 ) +
∑

i

λi∇ACi(Di,V(n)
i ;V(n)

i )+

ζ∇(‖w(n)
j ‖22 − Ptx) = 0 (16a)

λiACi(Di,V(n)
i ;V(n)

i ) = 0, ∀i, ζ(‖w(n)
j ‖22 − Ptx) = 0 (16b)

λi, ζ ≥ 0, ∀i, ACi(Di,V(n)
i ;V(n)

i ) ≤ 0. (16c)

Due to the properties (b) and (c), it is straightforward to see

that the KKT conditions in (16) are the same as that of the

original problem.

C. Complexity Perspective

The number of analysis variables introduced in both Al-

gorithm 1-CS and Algorithm 1-AS are K , and in [7] this

number is O(K2). Similarly, the number of constraints in both

Algorithm 1-CS and Algorithm 1-AS are O(K2), whereas,

the number of constraints in the corresponding formulation

of [7] are O(K3). Specifically, the O(K2) constraints in our

formulation consist of O(KN) and O(N) dimensional SOC

constraints. In comparison, the dimension of large SOCs in

[7] is O(K3). Owing to these estimates, our formulation is

expected to have better complexity as we see in the numerical

results section.

IV. NUMERICAL RESULTS

In this section, unless otherwise mentioned, the number

of transmit antennas and transmit power are set as N = 8
and Ptx = 43 dBm, respectively. The channels are modeled

as hk =
√

PLk × h̃k, where PLk and h̃k denote the path

loss and small scale fading coefficients for each user k. The

path loss is computed using the Stanford University Interim

(SUI) path loss model in [20]. Entries of h̃k are assumed

to be uncorrelated and are drawn from a circularly complex

Gaussian distribution with zero mean and unit variance. For

Algorithm 1-AS, the parameters for updating θ
(n)
k in (14)

are taken as c = 2 and α = 16. The results are compared

against the solution in [7]. We employ MOSEK [21] through

the YALMIP toolbox [22] for numerical computations for

all algorithms in comparison on the same PC to ensure fair

and reliable results. We assume equal power allocation and

generate w
(0) and γ

(0) as

w
(0)
k =

√

Ptx

K ×N
1N×1, ∀k (17)

γ
(0)
k = min

j∈[k,K]

(

1

K − k
+

σ2

|hH
j wj |2

)

, ∀k. (18)

In Fig. 2, the average sum rates of Algorithm 1-CS, Algo-

rithm 1-AS, and the method in [7] are compared. A system

with three users whose distances to the BS are 1000 m, 700 m

and 400 m, respectively is considered. For wireless systems it

is desirable that an optimization algorithm stabilizes quickly

enough so that it responds to the changing data (wireless

channels) and yields optimal solution corresponding to each

data set. Thus, in our experiment, we set the maximum number

of iterations for all algorithms under consideration to 5. If the

difference between the objective values in two consecutive

iterations is less than 10−4, an algorithm is considered to

have converged, and thus early termination occurs. Thus

Algorithm 1-CS/AS can stop at 5 iterations even when full

convergence is not achieved, and the same stopping criterion is

also applied to the method of [7]. The sum rates obtained are

averaged over 1000 sets of random channel realizations. We

can see that Algorithm 1-AS achieves superior performance

compared to [7] and Algorithm 1-CS. Since the objective

function is adaptively updated in Algorithm 1-AS, the al-

gorithm speeds up initially and stabilizes within 5 iterations

for most channels. In contrast, the method presented in [7]

needs more than 5 iterations to stabilize. While both [7] and

Algorithm 1-AS converge to the same point if we do not

limit the maximum number of iterations, the approach in [7]

is slow to respond to varying channels. Moreover, the approach

in [7] has higher complexity as shown in Sec. III-C, and

is numerically sensitive to system parameters as discussed

below. Algorithm 1-CS exhibits poor sum rate as the surrogate

function is a quite crude approximation to the objective for

θ = 1/2.

In Fig. 3, we plot the average run time of the algorithms un-

der consideration over 1000 channel realizations as a function

of the number of transmit antennas. The number of users is

set to K = 4 and their distances to the BS are 1000 m, 700 m,

400 m, 250 m, respectively. For all algorithms, the iterations

cease when the difference between the objective values for

four iterations is less than 10−4. The codes are executed

on a 64-bit desktop with 16 Gbyte RAM and Intel CORE

i7 processor. As expected, Algorithm 1-AS outperforms the

remaining algorithms, and Algorithm 1-AS is more efficient

for large N . The algorithm in [7] works reasonably well

for small N but its complexity increases quickly with N .

Algorithm 1-CS is inferior as it requires many iterations to

converge. It is pertinent to mention that beyond N = 32
MOSEK very often experiences numerical issues in one of

the iterations when solving the convex subproblems in [7]

and thus cannot converge. Among 1000 channel realizations,

the method of [7] only returned a solution for 198 cases (i.e.

around 20% of successful runs were observed). The run time
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for [7] in Fig. 3 is obtained by averaging the total required

time for these successful runs.

Interestingly enough, this issue does not arise in Fig. 2 when

the number of users is K = 3, meaning that numerical stability

of the work of [7] is sensitive to large scale problems. We do

not observe this behaviour in our proposed methods.

V. CONCLUSION

In this correspondence, we have derived a low complexity

fast converging algorithm to maximize the downlink NOMA

weighted sum rate. We have shown that by merely introducing

K analysis variables and by exploiting the Lipschitz continu-

ous gradient property of the objective function, our proposed

algorithm shows a much improved convergence behaviour. The

superiority of our approach is further ascertained by noting

its low average computational times versus the number of

transmit antennas.

REFERENCES

[1] ITU-R, “Minimum requirements related to technical performance for
IMT-2020 radio interface(s),” Tech. Rep. ITU-R M.2410-0, Nov. 2017.

[2] P. Rost, A. Banchs, I. Berberana, M. Breitbach, M. Doll, H. Droste,
C. Mannweiler, M. A. Puente, K. Samdanis, and B. Sayadi, “Mobile net-
work architecture evolution toward 5G,” IEEE Commun. Mag., vol. 54,
no. 5, pp. 84–91, May 2016.

[3] 3GPP, “Study on non-orthogonal multiple access (NOMA) for NR,”
Tech. Rep. 3GPP TR 38.812, Dec. 2018.

[4] M. Shafi, A. F. Molisch, P. J. Smith, T. Haustein, P. Zhu, P. De Silva,
F. Tufvesson, A. Benjebbour, and G. Wunder, “5G: A tutorial overview
of standards, trials, challenges, deployment, and practice,” IEEE J. Sel.

Areas Commun., vol. 35, no. 6, pp. 1201–1221, June 2017.
[5] Z. Ding, X. Lei, G. K. Karagiannidis, R. Schober, J. Yuan, and V. K.

Bhargava, “A survey on non-orthogonal multiple access for 5G networks:
Research challenges and future trends,” IEEE J. Sel. Areas Commun.,
vol. 35, no. 10, pp. 2181–2195, Oct. 2017.

[6] J. Choi, “Power allocation for max-sum rate and max-min rate propor-
tional fairness in NOMA,” IEEE Commun. Lett., vol. 20, no. 10, pp.
2055–2058, Oct. 2016.

[7] M. F. Hanif, Z. Ding, T. Ratnarajah, and G. K. Karagiannidis, “A
minorization-maximization method for optimizing sum rate in the down-
link of non-orthogonal multiple access systems,” IEEE Trans. Signal

Process., vol. 64, no. 1, pp. 76–88, 2016.
[8] D. R. Hunter and K. Lange, “A tutorial on MM algorithms,” Amer.

Statistician, vol. 58, no. 1, pp. 30–37, 2004.
[9] Y. Zhang, H. Wang, Q. Yang, and Z. Ding, “Secrecy sum rate maximiza-

tion in non-orthogonal multiple access,” IEEE Commun. Lett., vol. 20,
no. 5, pp. 930–933, May 2016.

[10] Q. Yang, H. Wang, D. W. K. Ng, and M. H. Lee, “NOMAin downlink
SDMA with limited feedback: Performance analysis and optimization,”
IEEE J. Sel. Areas Commun., vol. 35, no. 10, pp. 2281–2294, Oct 2017.

[11] J. Zhu, J. Wang, Y. Huang, S. He, X. You, and L. Yang, “On optimal
power allocation for downlink non-orthogonal multiple access systems,”
IEEE J. Sel. Areas Commun., vol. 35, no. 12, pp. 2744–2757, Dec. 2017.

[12] Y. Zhang, H. Wang, Z. Ding, and M. H. Lee, “Non-orthogonal multiple
access assisted multi-region geocast,” IEEE Access, vol. 6, pp. 2340–
2355, 2018.

[13] F. Zhu, Z. Lu, J. Zhu, J. Wang, and Y. Huang, “Beamforming design for
downlink non-orthogonal multiple access systems,” IEEE Access, vol. 6,
pp. 10 956–10 965, 2018.

[14] J. Dahl and E. D. Andersen, “A primal-dual interior-
point algorithm for nonsymmetric exponential-cone optimization,”
White Paper, MOSEK, Aug. 2019. [Online]. Available:
https://docs.mosek.com/whitepapers/expcone.pdf

[15] L.-N. Tran, M. F. Hanif, A. Tolli, and M. Juntti, “Fast converging algo-
rithm for weighted sum rate maximization in multicell miso downlink,”
IEEE Signal Process. Lett., vol. 19, no. 12, pp. 872–875, Dec 2012.

[16] E. D. Andersen, “On formulating quadratic functions in optimization
models,” MOSEK ApS, Tech. Rep., 2013. [Online]. Available:
https://docs.mosek.com/whitepapers/qmodel.pdf

[17] P. Luong, F. Gagnon, C. Despins, and L.-N. Tran, “Optimal joint remote
radio head selection and beamforming design for limited fronthaul c-
ran,” IEEE Trans. Signal Process., vol. 65, no. 21, pp. 5605–5620, 2017.

[18] N. Parikh and S. Boyd, “Proximal algorithms,” Foundations and Trends

in Optimization, vol. 1, no. 3, pp. 123–231, Nov. 2014.
[19] Y. Nesterov, Introductory Lectures on Convex Optimization: A Basic

Course. Springer, 2014.
[20] “Stanford University Interim,” https://www.xirio-

online.com/help/en/sui.html, accessed: 2019-01-27.
[21] E. D. Andersen and K. D. Andersen, “The MOSEK interior point opti-

mizer for linear programming: an implementation of the homogeneous
algorithm,” in High performance optimization. Springer, 2000, pp.
197–232.
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