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Abstract The Internet of Things (IoT) technologies interconnect a broad
range of network devices, differing in terms of size, weight, functionality, and
resource capabilities. The main challenge is to establish the required security
features in the most constrained devices, even if they are unknown to each
other and do not share common pre-distributed key material. As a conse-
quence, there is a high need for scalable and lightweight key establishment
protocols.

In this paper, we propose a key agreement protocol between two IoT devices
without prior trust relation, using solely symmetric key based operations, by
relying on a server or proxy based approach. This proxy is responsible for
the verification of the authentication and the key agreement between the IoT
devices, without being capable of deriving the established session key. We
propose two versions. The first version does not require interactive input from
the key distribution center to the proxy, but is not resistant if a compromised
user and proxy are collaborating. The second version on the other hand is
collision resistant, but needs an interactive key distribution center. In addition,
we add the interesting features of anonymity and unlinkability of the sender
and receiver in both protocol versions. The security properties of the proposed
protocol are verified by using formal verification techniques.
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1 Introduction

The Internet of Things (IoT) makes connections anywhere, with anything and
anytime possible [1,2]. It allows the development of a new generation of services
and applications. The security and privacy aspects from both end-users and
devices are essential for the credibility of future IoT systems. This is not an
evident task, as the measures should be implemented in a highly efficient way
due to the power and processing constraints which characterises many IoT
devices. As such, existing standard protocols for security protection cannot be
directly applied in the very constrained devices.

In order to establish a security key between two devices that are not nec-
essarily known to each other, there are three options. (1) One could pre-share
every time a common secret key in each of the devices. However, this method is
quite impractical and represents an unscalable approach. (2)The second option
is to use asymmetric security techniques. It results in adding high computa-
tional costs for resource constrained devices. (3)As last option, one could rely
on a secure third party, also called the server or the proxy. In this last option, it
is possible to establish the communication by means of low cost cryptographic
operations, in the assumption that each of the devices share a common secret
key with the proxy.

In this paper, we propose such a proxy-based key agreement protocol, using
solely symmetric key based operations. Consequently, our proposed protocol
is specifically designed for highly resource-constrained devices. The proxy is
considered honest, but curious. This means that it will perform all the required
actions, but might be interested in collecting the data for its own purposes
(e.g. to offer it later for sale). Therefore, the task of the proxy is mainly to
ensure the communication between two authenticated entities in the system
and to establish a key agreement such that the transmitted ciphertext can be
decrypted by the intended receiver. This results in a securely shared session
key between the two entities. Moreover, no information about the sender and
receiver can be derived by an outsider from the transmitted messages. Since
some of the IoT devices can be linked to a person and other IoT devices
linked to a particular application, some user behaviour can be derived from
eavesdropping the communication channel. As people get more and more aware
of the importance of anonymity, it is essential to add this feature to the current
systems [3].

Our protocol can be seen as a proxy re-encryption protocol, which is made
anonymous using techniques from the area of multi-server authentication pro-
tocols. In a proxy re-encryption scheme, a ciphertext is converted in another
ciphertext by the proxy, ensuring the involvement of the claimed entities. A
technique to establish anonymity from the domain of multi-server authentica-
tion protocols is based on the asymmetric share of secrets between the entities
and the servers, also called proxies here. Furthermore, we formally verify our
proposed protocol by proving that the goals of the protocol are established
(e.g. authentication, freshness, session-key establishment) and demonstrating
the absence of design weaknesses that may be exploitable by mountable at-
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tacks [4], [5], [6]. We now discuss two usecases, one in the healthcare domain
and the other for the industrial internet .

Usecases

A patient that wants to make use of the different services offered by a hospi-
tal can be an example of a use-case. During registration, the patient receives
its individual required security material on its smart phone. When the pa-
tient requests a service (e.g. measurements of a physical parameter), it sends
its pseudo identity information to that service, which is used by the service to
communicate the resulting output via the proxy. Also health related info stored
at the smartphone of the patient can be securely send to another authenticated
IoT device in the hospital environment via the proxy. As a consequence, both
patient’s smartphone and any IoT device authenticated by the hospital can
communicate with each other, without being mutually authenticated before-
hand. Another example, is when a patient of a hospital requires a special follow
up, based on a heart beat monitor attached to the patient. Every time, the
heart beat monitor reaches a certain threshold, the most nearby light should
be activated and a nurse call containing the history of the latest measurements
should be send out. Again, through the usage of our proposed ALPKA pro-
tocol, there is no pre-shared key agreement required between the heart beat
monitor and the smart light, or nurse call system. Figure 1 illustrates the
communication flow in this usecase

Fig. 1 Network system model for the healthcare usecase

A mobile robot in a factory is another example of a usecase. In todays fac-
tory environment, the communication is happening between entities via com-
mon networks through WiFi networks. However, security provided by WiFi
network are not sufficient to satisfy the security requirements in industrial
standards such as ISO/IEC 27000. Therefore, an extra level of security is
required to ensure the proper operation in a factory. By using the ALPKA
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protocol, the robot can retrieve the individual required security material dur-
ing the registration. While moving across the factory, the robot requests a
service form another device or robot. So, it can send its pseudo identity in-
formation to that service, which is used by the service to communicate the
resulting output via the proxy. Also, control or monitoring info stored at the
robot can be securely send to another authenticated IoT device in the factory
via the proxy. Consequently, the robot can communicate to any authenticated
IoT device in the factory, without being mutually authenticated beforehand.
This is ideal for a factory environment since a robot has to communicate with
a large number of IoT devices and it will reduce the additional authentication
delay. It will drastically improve the efficiency of the production.

Figure 2 illustrates how a single robot can securely communicate with mul-
tiple sensors by using the ALPKA protocol. Some proposals can be replicated,
when multiple robots wants to communicate with multiple sensors.

Fig. 2 Network system model for the industrial internet usecase

Paper outline

The paper is organized as follows. Section 2 describes related work. In Section
3, details are provided on the preliminaries that are used in explaining the
protocol. Section 4 describes the proposed solution. Section 5 provides a brief
analysis of the protocol. Section 6 presents the formal versification of the
proposed protocol. In Section 7, the computational overhead of the protocol is
discussed. Finally, Section 8 summarizes the paper by giving the conclusions.
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2 Background and Related Work

Several standards have been proposed to establish End-to-End (E2E) security
and key establishment in IoT, like Datagram Transport Layer Security [7],
Internet Key Exchange (IKEv2) scheme [8], and HIP-DEX [9] protocols. An
interesting approach to further improve these standards has been suggested
in [10], [11] and [12]. In these papers, a proxy-based solution is proposed for
delegating the heavy cryptographic operations from a constrained device to
less constrained nodes in its neighbourhood. In both [10] and [11], only one
set of intermediary proxies are used in the key establishment protocols. This
approach is generalized in [13], where two different sets of proxies are used.
The main disadvantage of these standards and their derivatives is that they
still either rely on asymmetric key based operations based on the assumption
of individual pre-shared secret key material, or proxies that are able to decrypt
the transmitted messages and thus, able to derive the common shared session
key.

Besides the standards, there have been many other server assisted key
establishment protocols proposed in literature. Most of them use public key
based operations, such as modular exponentiations [14], [15] and even pair-
ing operations [16], [17]. We now focus on the domain of the symmetric key
based re-encryption schemes, where we distinguish the schemes [18–20]. The
approach in [18] is efficient, but insecure, as each user is able to derive the secret
key of the other user and thus impersonate that user. Moreover, in [18] and [19],
an unrealistic assumption is made that both sender and receiver possess in ad-
vance a common shared key. In [20], the scheme AKAPR, Authentication Key
Agreement mediated by a Prxoy Re-Encryptor for IoT, has been presented.
This scheme is the first symmetric key based proxy re-encryption scheme in
literature, capable to establish a common shared key between two IoT devices
which do not have a common prior trust relation. However, this scheme and
also [18], [19] require an interactive Key Distribution Center (KDC) to derive
the re-encryption key for the proxy. Due to this requirement, the KDC needs
to be permanently online, increasing its vulnerability for denial of service and
other related security attacks. Moreover, none of the schemes [18–20] are able
to offer identity protection for the entities. An outsider, able to eavesdrop on
the communication channel, is able to follow the communication flow between
the different entities and potentially derive interesting patterns out of this in-
formation. Especially for the last two issues, we will give an adequate solution.
Finally, there is also a recent paper [21], which is mainly limited to the au-
thentication between user and IoT device through a completely trusted proxy.
This proxy takes the role of KDC. Only symmetric key mechanisms are used
in the protocol.

The technique to establish the anonymity comes from the area of smart
card based server authentication protocols. There are again symmetric key
based and public key based approaches in this domain. When limiting the dis-
cussion to the symmetric key based schemes and the more general multi-server
authentication protocols, we can distinguish the following most relevant and
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secure schemes, [22–24]. In [23], the server requires an additional communi-
cation with the KDC during each authentication. This communication is not
required in [22] and [24]. The schemes of [22] and [24] are quite similar, except
that [24] also includes unlinkability. The proposed re-encryption schemes in
this paper are based on the techniques from [24], but have some significant
changes as the setting is not a server-based, but a peer-to-peer architecture.

3 Network Architecture and Preliminaries

3.1 Setting and assumptions

We assume there are three entities participating in the system: the Key Dis-
tribution Center (KDC), the proxy Pk, and the nodes or entities (U1, . . . , Um).
Node Ui wants to securely communicate with node Uj (1 ≤ i, j ≤ m), using
an arbitrary proxy Pk. We assume that Ui and Uj are highly resource con-
strained. Note that Uj can also be an external more powerful entity, requesting
information on one of the entities in the network. The KDC is responsible for
generating and sharing the secret key material with the different nodes and the
proxies. In the case of the interactive KDC, the proxy communicates with the
KDC to receive the re-encryption key. Figures 1 and 2 illustrate the network
system model for the 2 versions of the ALPKA scheme in both the healthcare
domain and industrial internet respectively.

We further assume that the KDC is fully trusted and the proxy semi-
trusted. This means that the proxy will execute all the required actions as
prescribed in the protocol, but is also curious to derive the content of the
ciphertexts and the common shared session key.

3.2 Cryptographic requirements

Proxy re-encryption schemes are characterized according to different criteria
[16, 25]. We also add the anonymity and unlinkability feature to the list, as
they are more and more considered as important requirements in current IoT
systems [3]. These criteria are enumerated below:

– Directionality: There are two options. If the re-encryption key of the
proxy can only be used in one direction by the proxy, it is called unidi-
rectional. In contrast, a bidirectional scheme allows the proxy to reuse the
re-encryption key for messages between the same two entities, independent
of their role of sender or receiver.

– Interactivity: In a non-interactive scheme, the sender can generate a re-
encryption key independent of the participation of the KDC or the proxy.
In an interactive scheme, the active participation of both proxy and KDC
is required.

– Usability: If the proxy re-encryption scheme can re-encrypt a ciphertext
multiple times for different entities, it is called multiple-use. If the proxy
is able to perform only one re-encryption, it is called a single use scheme.



Anonymous Lightweight Proxy Based Key Agreement for IoT (ALPKA) 7

– Transitivity: In a transitive proxy re-encryption scheme, the proxy can
derive the proxy re-encryption key for communication from node Ui to Ul,
given the proxy re-encryption keys for communications from nodes Ui to
Uj and Uj to Ui. If not, the scheme is called non-transitive.

– Collusion resistant: If a node collaborates with the proxy, it is able to
decrypt all the messages sent in the system.

– Anonymity: From the transmitted messages, no information on the iden-
tity of the sender and the intended receiver can be derived by an outsider.

– Unlinkabiity: When collecting the transmitted messages over a long time,
no relation can be made between them to link the messages with the same
sender or receiver.

3.3 Operations

The operations used in the scheme are limited to simple and symmetric key
based operations. The operation H : {0, 1}∗ ⇒ {0, 1}n is a one-way cryp-
tographic hash function (eg. SHA2 or SHA3). An authenticate encryption
algorithm is used to encrypt the message (e.g. AES-GCM or AES-CCM).

The concatenation of two messages M1 and M2 is denoted by M1‖M2. We
denote by M the message sent by the sender. The ciphertext C, obtained by
the encryption of M through a symmetric key encryption algorithm using key
K, is defined as C = EK(M). Similar, the decryption by the symmetric key K
is denoted by M = DK(C). We assume that these functions are implemented
in each entity and proxy which are participating in the scheme.

Table 1 summarises the most important notations to be used in the rest of
the paper.

Table 1 Notations and abbreviations

Abbreviation Explanation

x, y, z Master secret keys of KDC

IDi Real identity of Ui

Ai Secret identity of Ui, known by KDC and proxy

Bi Public identity of Ui

si Secret key between Ui and KDC

H(x) Secret parameter known by all Ui and KDC

IDk Public identity of proxy Pk

H(z‖y) Secret parameter, known by all proxies and KDC

H(IDk‖H(x)) Secret value stored by proxy Pk

rkij Re-encryption key between Ui and Uj

M,C Message and ciphertext
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4 Proposed Key Agreement Protocol

A symmetric key based proxy re-encryption scheme consists of five phases, be-
ing the Key Generation (KeyGen), the Re-encryption Key Generation (ReKey-
Gen), the Encryption (Encrypt), the Re-Encryption (ReEncrypt), and De-
cryption (Decrypt) phase. The KDC will be responsible for the KeyGen and
ReKeyGen phases, the sender for the Encrypt phase, the proxy for the ReEn-
crypt phase, and the receiver for the Decrypt phase. We suppose that Ui will
delegate the decryption right of the ciphertext C to Uj with the help of the
proxy Pk, resulting in the derivation of the common shared session key.

We now describe these different phases of our proposed key agreement
protocols into detail. Note that we explain both schemes together as they
are very similar and differ only at a few places. In the first version of the
scheme, also called ALPKA 1, the proxy needs an interactive KDC to receive
a re-encryption key. In the second case, ALPKA 2, the proxy does not need
a separate re-encryption key and thus, corresponds with a non interactive
scheme.

4.1 Key Generation (KeyGen)

We suppose the KDC possesses three master secret values x, y, z. The KDC
shares a different type of information to the entities Ui and to the proxies
Pk. We discuss both, the initialisation of the key material and the required
updates.

– Initialization: For each entity Ui with serial number IDi, the KDC com-
putes the following information

Ai = H(IDi‖y)

Bi = H(z‖y)⊕Ai

si = H(Ai‖z)

The KDC securely sends the information Bi, H(Ai), si, H(x) to the entity
Ui. From now on, the identity of the entities is replaced by the publicly
known value Bi. The other values H(Ai), si, H(x) are kept secret.
For the proxies Pk with identity IDk, the KDC sends the information
H(z‖y) and H(IDk‖H(x)). The identity of the proxy IDk is public, while
the values H(z‖y) and H(IDk‖H(x)) are kept secret.
Note that a secure channel between the KDC and each of the entities,
the KDC and each of the proxies is required during this phase. For the
entities, this can be established by pre-installation, while for the proxies
standardized security protocols can be applied as they are not considered
as constrained devices.

– Update: As the value H(x) is shared among all devices in the network, a
regular update on the secret parameter x is required. Therefore, a unicast
message containing the new secret value will be send from the KDC to
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the entity Ui, using the shared secret key si. Simultaneously, updates on
H(IDk‖H(x)) will be send to the different proxies.
Also regular updates on H(z‖y) are required, as this value is shared among
the different proxies. In order to avoid an impact on a change of the value
Ai of the entities, and thus indirectly on the values H(Ai), si that are stored
in the nodes, it is sufficient to only update the parameter y. Consequently,
an update on y, influences H(z‖y) of the proxies and also only the value
Bi on the side of the entities.

4.2 Re-encryption Key Generation (ReKeyGen)

Note that the re-encryption key is only required for the ALPKA 1 scheme. In
ALPKA 2, this key does not exist. The re-encryption key for the communica-
tion between entities Ui and Uj , denoted by rkij , is determined by

rkij = (H(si‖Bj)⊕H(sj‖Bi))

Consequently, it holds that rkij = rkji. This leads to a bidirectional scheme,
as also discussed further in the next section.

4.3 Encryption (Encrypt)

First, the entity Ui, chooses a random value t ∈ Zp and then computes, using
its secret value si and the public identity Bj of Uj , the random value:

Ni = t⊕H(si‖Bj)

Next, the following computations are performed:

C1 = H(IDk‖H(x))⊕H(Bi‖Ni)

CIDi = Bi ⊕H(H(IDk‖H(x))‖H(Bi‖Ni))

C2 = H(H(Ai)‖C1))⊕Ni

C3 = H(C1‖H(Ai))⊕Bj

C = EKi(M)

For the key Ki in the last encryption, there are two possibilities i = 1 and
i = 2, leading to the definitions of

K1 = H(t)

K2 = H(Bi‖Bj‖H(x)‖H(Ni))

The key K1 is used in the ALPKA 1, while the key K2 in the ALPKA 2.
Finally, as last step in the Encrypt phase, the message {C1, C2, C3, CIDi, C}

is sent to the proxy Pk. Here CIDi is the part of the message that refers to
the dynamic identity of Bi. The dynamic character is obtained based on the
value C1. The parameter C2 hides the random value Ni that is used in the key
definition, and C3 hides the identity of the receiver Bj .
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4.4 Re-Encryption (ReEncrypt)

This phase can be split into two parts. The first part is required to check the
message of the sender, while in the second part the preparation of the message
to be forwarded to the receiver is made. Below, we discuss into detail the
actions to be performed by the proxy in this phase.

Upon arrival of the message {C1, C2, C3, CIDi, C}, the proxy executes the
following steps:

H(Bi‖Ni) = H(IDk‖H(x))⊕ C1

Bi = CIDi ⊕H(H(IDk‖H(x))‖H(Bi‖Ni))

Ai = H(z‖y)⊕Bi

Bj = H(C1‖H(Ai))⊕ C3

Ni = H(H(Ai)‖C1))⊕ C2

In the ALPKA 2 scheme, the proxy needs to communicate Ni to the entity
Uj , while in the ALPKA 1 scheme, this value should be updated by means of
the re-encryption key rkij (generated in the ReKeyGen phase).

Ni = Ni ⊕ rkij = t⊕H(sj‖Bi)

Figure 3 gives a schematic overview of the different steps to be performed
in the Encrypt, the ReKeyGen, and the first part of the ReEncrypt phase by
the sender Ui and proxy Pk. The result of the KeyGen phase is also depicted.
Note that the public part of the key material, present at each entity and proxy,
is on the first line and the secret part on the second line in the figure. Finally,
the only difference up to now between ALPKA 1 and ALPKA 2 is in the
definition of Ni, where for ALPKA 1 the ReKeyGen phase is required to use
the resulting re-encryption key for updating Ni.

In the second part of the ReEncrypt phase, the following computations are
executed by the proxy:

Aj = H(z‖y)⊕Bj

C4 = H(H(Aj)‖C)⊕Ni

C5 = H(Bj‖Ni))⊕Bi

Finally, the message containing {C4, C5, C} is sent to Uj . Here, the parameter
C4 is meant to hide the random value Ni to be used in the key definition,
while C5 hides the identity of the sender Bi.

4.5 Decryption (Decrypt)

Upon arrival of this message, Uj performs the following computations:

Ni = H(H(Aj)‖C)⊕ C4

Bi = H(Bj‖Ni)⊕ C5
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Fig. 3 Schematic overview of the cryptographic operations in the ReKeyGen, Encrypt, and
first part of the ReEncrypt phase by the sender Ui and proxy Pk. The resulting key material
from the KeyGen phase is also presented.

Only for the ALPKA 1 scheme, Uj needs to derive in addition the value t,
which equals due to the definition of the re-encryption key, to

t = Ni ⊕H(sj‖Bi)

Consequently, for the decryption of the ciphertext C, the shared secret key
should be derived, which equals to K1 in the ALPKA 1 and K2 in the ALPKA 2.
The exact values are determined by:

K1 = H(t)

K2 = H(Bi‖Bj‖H(x)‖H(Ni))

Figure 4 gives a schematic overview of the different steps to be performed by
the proxy Pk and receiver Uj , in the second part of the ReEncrypt phase and
the DeCrypt phase.

5 Protocol Analysis

This section discusses the strength of the ALPKA 1 and ALPKA 2 proto-
cols against the required security features of a proxy re-encryption scheme, as
mentioned in Section 3.

– Directionality: In the case of the ALPKA 1 scheme, where the proxy
needs to receive a re-encryption key of the KDC, the scheme is bidirectional.
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Fig. 4 Schematic overview of the cryptographic operations in the second part of the ReEn-
crypt phase and the DeCrypt phase, performed by the proxy Pk and receiver Uj .

Both for the communication from Ui to Uj and vice versa, the re-encryption
scheme is similar, due to construction, i.e.

rkij = (h(si‖Bj) · h(sj‖Bi))
−1

= rkji = (h(sj‖Bi) · h(si‖Bj))
−1

In the ALPKA 2 scheme, this feature is not applicable since there is no
re-encryption key used.

– Interactivity: The presence of this feature is one of the main differences
between ALPKA 1 and ALPKA 2 schemes. The protocol ALPKA 1 is not
interactive as for the computation of the key K1 by the receiver, since the
proxy first needs to use additional information (proxy re-encryption key)
coming from the KDC. For the key K2 in ALPKA 2 on the other hand, it
suffices to securely forward the random value Ni, generated by the sending
entity. Unfortunately, we explain later that it is not possible to combine
the non-interactive property with a collusion resistant feature.

– Usability: The ALPKA 1 scheme cannot be made multiple use, as the
proxy requires the knowledge of the combined secret information from
solely the sender and the receiver for the re-encryption key.
The ALPKA 2 scheme could allow multiple use if the construction of the
key slightly changes. For instance, if K2 = H(Bi‖H(x)‖H(Ni)), i.e., if
the information of the receiver is removed from the definition of the key.
However, in this case, the sender does not have any control on who will
receive the message, and thus this feature might not be very interesting.

– Transitivity: As this feature involves a property on the proxy re-encryption
key, it is only relevant for ALPKA 1. Transitivity is obtained as the re-
encryption key combines the secret information of both sender and receiver
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by multiplication. Since the single secret information of one of the two is
not known and cannot be extracted by combining multiple re-encryption
keys from different pairs of senders and receivers, it is impossible to con-
struct a new re-encryption key from this information.

– Collusion resistant: First of all, a compromised proxy cannot generate
new authorized entities, as the construction of the values Ai require the
knowledge of the master key y of the KDC. Also a compromised node on
itself is not able to decrypt messages (not intended to him). It is only able
to derive the identity of the sender and the receiver from the transmitted
messages. For the impact on the security when both a compromised proxy
and entity collaborate, the two ALPKA schemes are discussed separately.
– For the computation of K1 in ALPKA 1, the secret information of either

sender or receiver is required. Suppose a malicious user collaborates
with the proxy, it is only able to derive the messages sent by himself or
sent to a particular receiver as the re-encryption key involves the secret
information of both the sender and the receiver. For the transmission
of information between other entities, their combined knowledge allows
only to the malicious user to derive the identity of the sender and
receiver as explained later, but cannot be exploited to decrypt their
messages.

– For the derivation of K2 in ALPKA 2, no individual secret information
of the sender si or receiver sj is used. Its secrecy mainly depends on two
types of values, which are asymmetrically divided among the entities
and the proxy. First, there is the value H(x), which is shared among all
authorized users and not the proxy. Second, there are also the individual
secret data H(Ai), H(Aj), which are only shared between the proxy
and the sender and receiver respectively since the proxy possesses the
key H(z‖y) to transform the public identity information Bi, Bj into the
values Ai, Aj . Consequently, not the proxy or another authorized entity
besides Bi, Bj is able to decrypt the transmitted ciphertext C as the
combined knowledge of these two types of values is required.
However, when a malicious user collaborates with the proxy, this asym-
metric division of the key material no longer holds and the proxy gets
also aware of the value H(x), making it possible to derive the secret
key K2. Also the malicious user gets to know H(z‖y), allowing them to
derive the values of H(Ai), H(Aj), and thus to compute the secret key
K2.

– Anonymity: The identity of the entity IDi corresponds with the publicly
shared pseudo identity Bi. Let us analyze the information, which is derived
from the message sent by Ui and the message sent by the proxy.
– Message {C1, C2, C3, CIDi, C}. The information related to the identity

of the sender Bi is hidden in the values C1, CIDi. Here, C1 is required
in order to make the identity related information of the sender dynamic
by including the random value Ni.
The value C3 hides the information on the identity of the receiver,
through the usage of the secret shared value H(Ai) with the proxy. It
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is made dynamic by including a part of the message C1 into the hash
value.
Finally, as the receiver will be able to derive Ni in the end, it is impor-
tant that the value H(Ai) cannot be directly derived by the receiver
from this message. Therefore, H(Ai) is incorporated in a hash contain-
ing another dynamic value, like in C2.

– Message {C4, C5, C}. Only the identity related information Bi of the
sender is hidden in the message part C5, since the receiver already
knows that the information is coming from the proxy. Again, this value
C5 is made dynamic by the inclusion of a random value.

– Unlinkability: As explained before, due to the usage of secret key material
and the inclusion of a random value in the message parts CIDi, C1, C3, C5,
allowing the derivation of the identity related information of sender Bi and
receiver Bj , the messages are unlinkable.

Table 2 compares the above described list of security features with the
other symmetric key based proxy re-encryption schemes [18–20] in literature.

Table 2 Comparison of security features with related work

Feature [18] [19] [20] ALPKA 1 ALPKA 2

Directionality bi-d bi-d bi-d bi-d na

Non-interactivity No No No No Yes

Multiple use Yes No No No Possible

Non-transitivity No Yes Yes Yes na

Collusion resistance No No Yes Yes No

Anonymity No No No Yes Yes

Unlinkability No No No Yes Yes

As can be concluded from Table 2, our ALPKA 1 and ALPKA 2 schemes
add the anonymity and unlinkability features to the existing state of the art
schemes. In addition, ALPKA 2 is the first non-interactive symmetric key
based proxy re-encryption scheme. However, this feature is not compatible with
collusion resistance. Consequently, there is also the ALPKA 1 scheme, which
adds the anonymity and unlinkability features, while still resisting collusions,
but requiring continuous interaction between the proxy and the KDC. Note
that instead of requiring the continuous interaction of the KDC, making it
vulnerable to a whole range of security attacks, the proxy can also store all
possible re-encryption keys for each pair of entities in the system, as proposed
in [20].

Since in ALPKA 2 no re-encryption key is used, the features of direction-
ality and non-transitivity are not applicable.

Finally, we also want to note that the communication overhead in the
ALPKA protocols is limited to one additional message part C1, enabling the
unlinkability of the messages. All other message parts correspond with required
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information: the identity of sender, receiver, additional information for the key
derivation, and ciphertext.

6 Formal Verification of the ALPKA Protocol

In this section we formally verify the correctness of our proposed protocol
by formally analysing the security goals of the protocol (i.e., authentication,
session-key establishment) We are using an automated modal logic-based of
knowledge CDVT/AD [4], [5], [28], [29], [30], [31].

The CDVT/AD verification tool is an automated system that implements a
modal logic of knowledge [29] and an attack detection theory for identification
of freshness and man-in-the-middle attacks [30]. The tool uses a proving engine
based on the Layered Proving Trees concept [31] and can analyze the evolution
of knowledge and belief during a protocol execution. Therefore, it is useful in
addressing issues of both security and trust.

Prior to the automated verification using the CDVT logic of knowledge,
the scheme must be formalized, i.e. translated into the language of the tool [5].
A formalized protocol consists of three components:

1. Initial assumptions (conditions that hold before the protocol starts);
2. Protocol steps (the messages exchanged between the principals);
3. Protocol goals (conditions that are expected to hold if the protocol termi-

nates successfully).

The following notations are used when translating the scheme into the
language of the CDVT/AD tool:

Key Distribution Center: KDC
Trusted Third Party: TTP
User Ui: Principal Ui;
User Uj: Principal Uj;
Proxy Pk: Sk;
Secrets possessed by KDC x, y, z: Nx, Ny, Nz

Fig. 5 Security Goals Verification Results
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Hash Function H(.): H()
Identity of user Ui, IDi: Ui
Identity of proxy Pk, IDk: Sk
XOR: ⊕
Symmetric encryption EK(m): {m}k
send: →
concatenation: ‖

The CDVT/AD tool applies the axioms and rules of the implemented logic
of knowledge in an attempt to derive the protocol goals as a logical consequence
of the initial assumptions and the protocol steps. If such a derivation exists,
the verification is successful and the verified protocol can be considered secure
within the scope of the logic.

6.1 Formalization of the Proposed Scheme

6.1.1 Initial Assumptions

Initial assumptions are statements defining what each principal possesses and
knows at the beginning of a protocol run. The following specifies the initial
assumptions of the scheme:

Express TTP possessions at time t0

– Ai = H(Ui,Ny)
– Bi = H(Nz,Ny) XOR H(U,Ny)
– si = H(H(U,Ny),Nz)

A1: TTP possess at [0] Nx;
A2: TTP know at [0] NOT (Zero possess at [0] Nx);
A3: TTP possess at [0] Ny;
A4: TTP know at [0] NOT (Zero possess at [0] Ny);
A5: TTP possess at [0] Nz;
A6: TTP know at [0] NOT (Zero possess at [0] Nz);
A7: TTP possess at [0] H(Ui,Ny);
A8: TTP know at [0] Ui possess at [0] H(Ui,Ny);
A9: TTP possess at [0] XOR(H(Nz,Ny), H(Ui,Ny));
A10: TTP know at [0] Ui possess at [0] XOR(H(Nz,Ny), H(Ui,Ny));
A11: TTP possess at [0] H(H(Ui,Ny),Nz);
A12: TTP know at [0] Ui possess at [0] H(H(Ui,Ny),Nz);
A13: TTP possess at [0] H(Uj,Ny);
A14: TTP know at [0] Uj possess at [0] H(Uj,Ny);
A15: TTP possess at [0] XOR(H(Nz,Ny), H(Ui,Ny));
A16: TTP know at [0] Uj possess at [0] XOR(H(Nz,Ny), H(Uj,Ny));
A17: TTP possess at [0] H(H(Uj,Ny),Nz);
A18: TTP know at [0] Uj possess at [0] H(H(Uj,Ny),Nz);

Express Ui possessions at time t0
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– Bi= XOR(H(Nz,Ny), H(Ui,Ny))
– H(Ai)= H(H(Ui,Ny))
– si= H(H(Ui,Ny),Nz)

A19: Ui possess at [0] Uj;
A20: Ui possess at [0] Sk;
A21: Ui possess at [0] XOR(H(Nz,Ny), H(Ui,Ny));
A22: Ui possess at [0] H(H(Ui,Ny));
A23: Ui possess at [0] H(H(Ui,Ny),Nz);
A24: Ui possess at [0] H(Nx);
A25: Ui possess at [0] Nt;
A26: Ui know at [0] NOT ZERO possess at [0] Nt;

Express Uj possessions at time t0

– Bj= XOR(H(Nz,Ny), H(Uj,Ny))
– H(Aj)= H(H(Uj,Ny))
– sj= H(H(Uj,Ny),Nz)

A27: Uj possess at [0] Ui;
A28: Uj possess at [0] Sk;
A29: Uj possess at [0] XOR(H(Nz,Ny), H(Uj,Ny));
A30: Uj possess at [0] XOR(H(Nz,Ny), H(Ui,Ny));
A31: Uj possess at [0] H(H(Uj,Ny));
A32: Uj possess at [0] H(H(Uj,Ny),Nz);
A33: Uj possess at [0] H(Nx);
A34: Uj possess at [0] H(H(H(Uj,Ny),Nz), XOR(H(Nz,Ny), H(Ui,Ny)));

Express Sk possessions at time t0

A35: Sk possess at [0] H(Nz,Ny);
A36: Sk possess at [0] H(Sk,H(Nx));

6.1.2 Scheme Steps

The proposed scheme steps are formalized as follows:
Step 1: C1, C2, C3, CIDi, C

S1: Sk receive at [1] XOR(H(Sk,H(Nx)), H(XOR(H(Nz,Ny), H(Ui,Ny)),Nt
H(H(H(Ui,Ny),Nz), XOR(H(Nz,Ny), H(Uj,Ny)))));
S1: Sk receive at [1] XOR(H(H(H(Ui,Ny)), XOR(H(Sk,H(Nx)), H(XOR(H(Nz,Ny),
H(Ui,Ny)),Nt H(H(H(Ui,Ny),Nz), XOR(H(Nz,Ny), H(Uj,Ny)))))),Nt H(H(H(Ui,Ny),Nz),
XOR(H(Nz,Ny), H(Uj,Ny))));
S1: Sk receive at [1] XOR(H(XOR(H(Sk,H(Nx)), H(XOR(H(Nz,Ny), H(Ui,Ny)),
Nt H(H(H(Ui,Ny),Nz), XOR(H(Nz,Ny), H(Uj,Ny))))), H(H(Ui,Ny))), XOR(H(Nz,Ny),
H(Uj,Ny)));
S1: Sk receive at [1] XOR(XOR(H(Nz,Ny), H(Ui,Ny)), H(H(Sk,H(Nx)),
H(XOR(H(Nz,Ny), H(Ui,Ny)), Nt H(H(H(Ui,Ny),Nz), XOR(H(Nz,Ny), H(Uj,Ny))))));
S1: Sk receive at [1] {m}H(Nt);
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Step 2: C4, C5, C

S2: Uj receive at [2] XOR(H(H(H(Uj,Ny)), mH(Nt)), NtH(H(H(Uj,Ny),Nz),
XOR(H(Nz,Ny), H(Ui,Ny))));
S2: Uj receive at [2] XOR(H(XOR(H(Nz,Ny), H(Uj,Ny)), NtH(H(H(Uj,Ny),Nz),
XOR(H(Nz,Ny), H(Ui,Ny)))), XOR(H(Nz,Ny), H(Ui,Ny)));
S2: Uj receive at [2] {m}H(Nt);

6.1.3 Security Goals

The objective of the proposed scheme is the establishment of the session keys
and the authentication of the users. The formalized goals of the scheme are as
follows:

Verify if the establishment of the session keys is done correctly (i.e. secrecy of
the key components and their possessions by the legitimate users)

G1: Sk possess at [1] H(XOR(H(Nz,Ny), H(Ui,Ny)),NtH(H(H(Ui,Ny),Nz),XOR(H(Nz,Ny),
H(Uj,Ny))));
G2: Sk possess at [1] XOR(H(Nz,Ny), H(Ui,Ny));
G3: Sk possess at [1] H(Ui,Ny);
G4: Sk possess at [1] H(H(H(Ui,Ny)),XOR(H(Sk,H(Nx)), H(XOR(H(Nz,Ny),H(Ui,Ny)),
NtH(H(H(Ui,Ny),Nz), XOR(H(Nz,Ny), H(Uj,Ny))))));
G5: Sk possess at [1] NtH(H(H(Ui,Ny),Nz), XOR(H(Nz,Ny), H(Uj,Ny)));
G6: Uj possess at [2] H(H(H(Uj,Ny)), mH(Nt));
G7: Uj possess at [2] NtH(H(H(Uj,Ny),Nz), XOR(H(Nz,Ny), H(Ui,Ny)));
G8: Uj possess at [2] H(XOR(H(Nz,Ny), H(Uj,Ny)), NtH(H(H(Uj,Ny),Nz),XOR(H(Nz,Ny),
H(Ui,Ny))));
G9: Uj possess at [2] H(H(H(Uj,Ny),Nz),XOR(H(Nz,Ny), H(Ui,Ny)));
G10: Uj possess at [2] Nt;
G11: Uj possess at [2] m;

Authentication of users

– Sk authenticate Ui

G12: Sk know at [1] Ui send at [1] XOR(XOR(H(Nz,Ny), H(Ui,Ny)),
H(H(Sk,H(Nx)), H(XOR(H(Nz,Ny), H(Ui,Ny)),Nt H(H(H(Ui,Ny), Nz), XOR(H(Nz,Ny),
H(Uj,Ny))))));

– Uj authenticate Sk

G13: Uj know at [2] Sk send at [2] XOR(H(XOR(H(Nz,Ny), H(Uj,Ny)), Nt
H(H(H(Uj,Ny),Nz), XOR(H(Nz,Ny), H(Ui,Ny)))), XOR(H(Nz,Ny), H(Ui,Ny)));

– Uj authenticate Ui

G14: Uj know at [2] Ui send at [1] {m}H(Nt);
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6.2 Verification Results

The results of the automated verification for the above formalized scheme are
shown in Figure 4. Goals G1-G11 relate to the establishment of the session
keys and check for the secrecy of the key components and their possessions by
the legitimate corresponding users, while goals G12-G14 relate to the authenti-
cation of the users. As presented in Figure 5, all security goals are successfully
verified. This provides confidence in the correctness and effectiveness of the
proposed protocol.

7 Performance analysis

In this section we discuss the computational complexity of our scheme and
compare it with [20]. As mentioned before, [20] is the only other symmetric
key based proxy re-encryption scheme in literature which does not assume that
the sender and receiver possess in advance a prior secret key.

From the sender side, both ALPKA 1 and ALPKA 2 require 8 hash opera-
tions and 1 encryption. From the receiver side, 1 encryption and 5 hashes are
required in ALPKA 1, while 1 encryption and 4 hashes in ALPKA 2. Taking
into account that Key Derivation Functions (KDF) and Message Authentica-
tion Codes (MAC) have similar complexity as a hash operation, therefore [20],
requires 2 encryptions and 5 hashes at sender side and 2 encryptions and 4
hashes at receiver side.

In order to get a better understanding of the impact of these numbers, we
consider measurements performed on a smartphone with Android OS (Android
4.4 KitKat) consisting of a 2260 MHz ARM device. The timings for both
AES128 as encryption algorithm and SHA2 as hash operation, correspond
with 0.1 ms [32]. Consequently, both schemes have comparable and negligible
computational complexity.

8 Conclusions

This paper proposes two versions of anonymous lightweight proxy based key
agreement protocols, called ALPKA 1 and ALPKA 2. They are lightweight
as only symmetric key based operations are involved in our proposed proto-
cols and have limited communication overhead. Both protocols allow highly
constrained entities, that have never met before in order to share a secret key
in an anonymous and unlinkable way through a proxy. This proxy is respon-
sible for the authentication of the entities and the further derivation of the
required key material allowing the decryption by the receiver, while not being
capable of decrypting the message itself. The main difference between the two
versions is the combination of interactivity and collusion resistance versus non-
interactivity and not being resistant to collisions. As continuous interactivity
between the proxy and the KDC cannot always be ensured, it is important
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to give an alternative with some small cost in security. Moreover, the security
properties of the proposed protocol are verified by using formal verification
techniques. This provides confidence in the correctness and effectiveness of
the proposed protocol.

As future work, we plan to investigate how the proposed protocols can
be applied in the context of internet-connected cars. As our scheme is highly
efficient, it offers low latency and is very scalable, we believe that it might
offer a good solution to this domain, considering the high number of vehicles
required to communicate in real-time.
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