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Summary. The field of Natural Computing (NC) has advanced rapidly over the
past decade. One significant offshoot of this progress has been the application of
NC methods in finance. This chapter provides an introduction to a wide range of
financial problems to which NC methods have been usefully applied. The chapter
also identifies open issues and suggests future directions for the application of NC
methods in finance.

1 Introduction

Recent years have seen the application of multiple Natural Computing (NC)
algorithms (defined in this chapter as computer algorithms whose design draws
inspiration from phenomena in the natural world) for the purposes of finan-
cial modelling [13]. Particular features of financial markets including their
dynamic and interconnected characteristics bear parallel with processes in
the natural world and prima facie, this makes NC methods ‘interesting’ for
financial modelling applications. Another feature of both natural and financial
environments is the phenomenon of emergence, or the activities of multiple
individual agents combining to co-evolve their own environment.

The scale of NC applications in finance is illustrated by Chen & Kuo [22]
who list nearly 400 papers that had been published by 2001 on the use of evo-
lutionary computation alone in computational economics and finance. Since
then several hundred additional papers have been published underscoring the
continued growth in this application area (see also [14, 15, 21, 112, 122] for
additional examples of NC applications in finance).

Some of the major areas of financial applications using NC methods are:
forecasting, algorithmic trading, portfolio management, risk management,
derivatives modelling and market modelling. In this chapter, we describe the
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utility of NC methods within each of these areas wherein their usage can be
broadly categorised as optimisation, model induction and agent-based mod-
elling.

Optimisation

A wide variety of NC methodologies including genetic algorithms, evolution-
ary strategies, differential evolution and particle swarm optimisation have
been applied for optimisation purposes in finance. A particular advantage of
these methodologies is that, if applied properly, they can cope with ‘difficult’
search spaces. Examples of the use of optimisation techniques in finance, in-
clude optimal asset allocation, stock selection, risk management, pricing and
hedging of options, and asset liability management [126].

Model Induction

While optimisation applications of natural computing are important, the un-
derlying model or data generating process is not known in many real-world
financial applications. Hence, the task is often to ‘recover’ or discover an un-
derlying model from a dataset. This is usually a difficult task as both the
model structure and associated parameters must be uncovered.

Financial markets are affected by a myriad of interacting economic, po-
litical and social events. The relationship between these factors and financial
asset prices is not well understood and, moreover, is not stationary over time.
Most theoretical financial asset pricing models are based on strong assump-
tions which are often not met in real-world asset markets. This offers opportu-
nities for the application of model induction methodologies in order to recover
the underlying data generating processes. These methods can be applied, for
example, to financial forecasting, credit risk assessment and derivatives pric-
ing.

Agent-based Modelling

Agent-based modelling (ABM) has become a fruitful area of financial and
economic research in recent years. ABM allows the simulation of markets
which consist of heterogeneous agents, with differing risk attitudes and dif-
fering expectations to future outcomes, in contrast to traditional assumptions
of investor homogeneity and rational expectations. ABM attempts to explain
market behaviour, replicate documented features of real-world markets, and
allows us to gain insight into the likely outcomes of different regulatory policy
choices.

A growing community of researchers are engaged in the application of
natural computing methodologies in finance as illustrated by the number of
conferences, workshops and special sessions in this area. Examples of these
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include the annual track on Evolutionary Computation in Finance and Eco-
nomics at the IEEE Congress on Evolutionary Computation, the IEEE Sym-
posium on Computational Intelligence for Financial Engineering (CIFEr), the
annual international Conference on Computational Intelligence in Economics
& Finance (CIEF), and the European Workshop on Evolutionary Computa-
tion in Finance (EvoFIN) held annually as part of Evo*.

1.1 Structure of Chapter

The rest of this chapter is organised as follows. Section 2 provides a concise
overview of a number of key families of natural computing methods. Section
3 introduces various financial applications of natural computing methods and
shows how these methodologies can add value in those applications. Section
4 concludes this chapter, suggesting multiple avenues of future work at the
intersection of finance and natural computing.

2 Natural Computing

Natural computing (NC) algorithms can be clustered into different groups
depending on the aspects of the natural world upon which they are based.
The main clusters that are relevant for finance applications illustrated in this
chapter are Neurocomputing, Evolutionary Computing, Social Computing,
Immunocomputing, Physical Computing, and Developmental & Grammatical
Computing (see Fig. 1).

Natural Computing 
Algorithms

Neurocomputing

Evolutionary Computing

Social Computing

Immunocomputing

Physical Computing

Developmental & 

Grammatical Computing

Fig. 1. An overview of Natural Computing Algorithms

Neurocomputing (or neural networks, NNs) typically draws inspiration from
simplified models of the workings of the human brain or the nervous system.
From a design perspective, neural networks can be characterised by a set of
neurons (or nodes), the network structure which describes the pattern of con-
nectivity between neurons, and the learning (or training) approach used. The
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predominant neurocomputing paradigms include feedforward networks, recur-
rent networks, self-organising networks, radial basis function networks, support
vector machines [127, 25], etc. Financial firms worldwide are employing NNs
to tackle difficult tasks involving intuitive judgment or requiring the detection
of data patterns which elude conventional analytic techniques. For example,
NNs are already being used to trade the securities markets, to forecast the
economy and to analyse credit risk. NNs were among the earliest NC method-
ologies to see widespread applications in finance (see, for example, Trippi et
al. [110]) but they do suffer from the practical drawback that their black box
nature makes their internal workings opaque to the user.

Evolutionary Computation (EC) is based upon neo-Darwinian principles
of evolution. A population-based search process is used, whereby better (fit-
ter) members of the population are preferentially selected for reproduction and
modification, leading to a new population of individuals increasingly adapted
to their environment. The main streams of EC are genetic algorithms (GA),
evolution strategies (ES), evolutionary programming (EP) and genetic pro-
gramming (GP). These methods have broad applications for optimisation and
model induction purposes. Recent extensions of the literature on EC to en-
compass dynamic, multi-objective and constrained optimisation problems has
greatly increased the practical utility of these algorithms in finance.

Social Computing adopts a swarm metaphor and includes algorithms in-
spired by the flocking and schooling behaviour of birds and fish. It also in-
cludes algorithms inspired by behaviours observed in social insects such as
ants. These social systems exhibit a number of characteristics facilitating
self-organisation, flexibility, robustness, and direct or indirect communication
among members of the population. Some examples of social computing include
ant colony, particle swarm and bacterial foraging algorithms. These algorithms
are population-based like their evolutionary computation counterparts, and
they operate by allowing the population of problem-solvers to communicate
their relative success in solving the problem to each other, thereby biasing the
future actions of the individuals in the population.

Immunocomputing encompasses a family of algorithms which turn to the
complex and adaptive biological immune system of vertebrates to inspire their
design. The natural immune system represents an intricate network of spe-
cialised chemicals, cells, tissues and organs with the ability to recognise, de-
stroy and remember an almost unlimited number of foreign bodies, and to
protect the organism from misbehaving cells in the body. These properties
are especially useful for tasks such as classification and optimisation. Prac-
tical applications of immunocomputing include financial pattern-recognition
such as the identification of potentially fraudulent credit card transactions, the
identification of financially at-risk companies and the identification of market
‘state’.
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Physical Computing draws inspiration from the physical processes of the
natural world to design computational algorithms. These algorithms draw
inspiration from phenomena such as simulated annealing and quantum me-
chanics. A claimed benefit of the quantum-inspired algorithms is that because
they use a quantum representation, they can maintain a good balance between
exploration and exploitation. It is also suggested that they offer computa-
tional efficiencies as use of a quantum representation can allow the use of
smaller population sizes than typical evolutionary algorithms. Computational
efficiency is important in many financial applications such as real-time trading
where systems have to deal with large data flows and a dynamic environment.
Consequently, there is a continuing demand for optimisation algorithms which
can potentially offer efficiency gains.

Developmental and Grammatical Computing borrows from both a de-
velopmental and a grammar metaphor. Grammatical computing refers to al-
gorithms which adopt concepts from linguistic grammars and are dominated
by the generative form of grammars. Generative grammars are used to con-
struct a ‘sentence’ in the language specified by the grammar, and this genera-
tive process is metaphorically similar to the developmental process in biology
in which ‘rules’ govern the production of a complex, multi-cellular organism
from a single embryonic cell. Generative grammars have been used in natural
computing as a convenient representation by which developmental systems
can be realised in-silico. The implementations of developmental & grammat-
ical computing, such as grammatical evolution (GE) [88, 89] (a grammatical
variant of GP) may also embed an evolutionary algorithm typically used to
drive the search process. GE has been already successfully applied to financial
forecasting, credit rating assessment, and other financial applications.

These families of NC algorithms provide a rich set of tools for the devel-
opment of quality optimisation, model induction and agent-based modelling
applications, and all have seen application in finance. Readers requiring de-
tailed information on these algorithms are referred to earlier chapters in this
book. A review of these methods can also be found in [13, 31, 57].

3 Financial Applications

In this section we introduce the application of NC methods across a range of
financial areas including forecasting, algorithmic trading, portfolio manage-
ment, risk management, derivatives modelling and agent-based market mod-
elling.

3.1 Forecasting

Financial forecasting applications may involve the prediction of future val-
ues of macroeconomic variables, individual stock, market indices, commodity
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futures, the volatility of some financial products, etc. From an optimisation
perspective, NC methods can be applied either for variable identification or for
parameter estimation (optimisation). For example, NC methods can be used
to select the explanatory variables from a large pool of candidates, which are
then incorporated into the forecasting model. Even where the modeler knows
the appropriate set of explanatory variables and model form, the selection of
appropriate model parameters (co-efficients) can be a difficult task, particu-
larly for complex, non-linear model structures. In the more difficult problem
where the model form is not known, model induction methodologies such as
GP or NNs can be used. This is potentially of considerable importance in
financial applications, as many theoretical forecasting models are based on
assumptions which are not met in real-world financial markets. This offers
opportunities for the application of NC methods as model induction tools in
order to ‘recover’ the underlying data-generating processes directly from the
data.

One family of NC methods which has seen extensive application for fi-
nancial forecasting is NNs (e.g., [121, 56, 2, 17, 42]). They offer particular
advantages due to their ability to identify non-linear models, handle noisy
data and embed a memory (recurrent NNs). A simple case of index prediction
using a basic feedforward Multi-layer Perceptrons (MLP) to construct a finan-
cial prediction model is illustrated in [13], where the MLP model is employed
to predict the five-day percentage change in the value of the FTSE 100 Index.
Ten inputs selected from a range of technical, fundamental and intermarket
data were included in the final model:

1. 5-day lagged percentage change of the FTSE 100 index
2. 20-day lagged percentage change of the FTSE 100 index
3. Ratio of the 10 vs 5-day moving average of the FTSE 100 index
4. Ratio of the 20 vs 10-day moving average of the FTSE 100 index
5. Bank of England Sterling index
6. S&P 500 composite index(t)−(t−5)

7. LIBOR 1-month deposit rate
8. LIBOR 1-year deposit rate
9. Aluminium ($ per tonne)

10. Oil ($ per barrel)

In developing the final MLP models, a 11:6:1 structure was utilised, as illus-
trated in Fig. 2

yt = L




5∑

j=0

wjL

(
10∑

i=0

biwij

)


where bi represents inputi (b0 is a bias node), wij represents the weight be-
tween input nodei and hidden nodej , wj represents the weight between hidden
nodej and the output node, and L represents the hyperbolic tangent function.
Generally, NNs is developed through a trial and error approach guided by
heuristics, the process is time-consuming, and there is no guarantee that the
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Fig. 2. Index Prediction using MLP model, with 11 input nodes, 6 hidden nodes
and a single output node

final network structure is optimal. One approach is to automate the construc-
tion of the NN using evolutionary approaches (e.g., [1, 7, 18]).

GP can also be applied for forecasting. One of the best-known examples,
EDDIE (which stands for Evolutionary Dynamic Data Investment Evaluator),
was developed as an interactive decision tool [111, 70]. It is a genetic program-
ming based system for channelling expert knowledge into forecasting. Given
a set of variables, EDDIE attempts to find interactions among variables and
discover non-linear functions.

Other examples of forecasting in the financial literature include the pre-
diction of take-over targets [51, 11, 91, 94, 52], the prediction of auditor qual-
ification of the financial statements of a company [83, 37, 108], the prediction
of earnings and the prediction of IPO underpricing. In earnings prediction,
[109] uses a GA to select explanatory variables from financial statements in
order to predict corporate earnings. In the prediction of IPO underpricing,
[93] employs GA for rule-based prediction. A less common, but nonetheless
important, application in the literature is the prediction of volatility. Neely
[85] uses GP to predict exchange rate volatility, where GP is applied for pro-
ducing forecasting rules of the out-of-sample daily volatility in the foreign
exchange market.

Typically, studies applying NNs, GA or GP methods for financial time
series forecasting use measures of goodness of fit drawn from statistics such
as mean squared error, sum of squared error, mean absolute percentage error,
etc. as their error (or fitness) function. The aim is to uncover or train a
model using historical data, which ‘fits’ that data well. Unsurprisingly, the
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choice of fitness function usually has a critical impact on the behaviour of
resulting model, hence a model constructed using one fitness metric would not
necessarily perform well on another. While many forecasting studies applying
NC methods to financial data indicate that models could be constructed to fit
historic data fairly well, a common finding is that the quality of the forecasts
diminishes, over time, out of sample.

3.2 Algorithmic Trading

Algorithmic trading is defined here as the use of computer programs to assist
with any aspect of the trading of financial assets. It can therefore encompass
systems which decide on certain aspects of the order such as the timing,
price, or even the final quantity of the order. Hence algorithmic trading can
be combined with any investment strategy. Below we illustrate a few related
processes of algorithmic trading where NC methods can be applied, namely,
investment analysis, arbitrage and trade execution.

Investment Analysis

Financial trading has seen a large number of applications of NC methods.
Typically these studies take one of two approaches of investment analysis, us-
ing either fundamental data (fundamental analysis) or market data, primarily
price and volume (technical analysis).

Fundamental Analysis

Taking the example of investing in stocks, fundamental investment concen-
trates on the use of accounting information about the company, as well as
industry and macroeconomic data, in order to identify companies which are
mispriced by the market. In other words, the objective is to identify stocks
which are good value (underpriced by the market), or stocks which are over-
priced by the market (and therefore are candidates for ‘shorting’). In this ap-
proach, the investor needs to develop stock screening rules in order to decide
which stocks to invest in. These rules were formulated manually in decades
before computers. With a natural computing algorithm such as the GA, a
large range of stock filter rules can be searched efficiently in order to find the
highest-quality rules. In this approach, each individual in the population cor-
responds to a potential stock filter rule. The utility of these rules are tested
using historical data, with the best rule (or set of rules) then being used for
investment purposes (Fig. 3). More generally, GP methods can be applied to
evolve the structure of the filter rules.
Technical Analysis

In contrast to investors using a fundamental investment approach, techni-
cal analysts attempt to identify imbalances in the supply and demand for
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Fig. 3. String encoding of a number of fundamental indicators. Each indicator can
be coded as a 0 (no) or 1 (yes)

a financial asset using information from the time-series of the asset’s trad-
ing (such as historical price, volume and volatility data). Usually, investors
who adopt a technical analysis approach look to combine technical indicators
(pre-processed price and volume time series data about a financial asset), in
order to produce a ‘trading signal’. For example, a ‘technical indicator’ could
be the moving average convergence-divergence (MACD) oscillator, calculated
by taking the difference of a short-run and a long-run moving average. If the
difference is positive, it may indicate that the market is trending upward. For
example a buy signal could be generated when the shorter moving average
crosses the longer moving average in an upward direction. A sell signal could
be generated in a reverse case. Hence a sample MACD trading rule could be:

IF x-day MA of price ≥ y-day MA of price

THEN Go Long ELSE Go Short

where x < y. The optimal value of x and y can be evolved through a genetic
algorithm, in order to maximise the trading profit (the fitness measure). A
candidate solution encoded as a binary string of length 8 is illustrated below.

x: 0 0 0 0 1 0 1 0
y: 0 0 1 1 0 0 1 0

This solution indicates that x = 10 and y = 50. The MACD oscillator is a
crude band-pass filter, removing both high-frequency price movements and
certain low-frequency price movements, depending on the precise moving av-
erage lags selected. In essence, the choice of the two lags produces a filter
which is sensitive to particular price-change frequencies. In a recursive fash-
ion, more complex combinations of moving averages of values calculated from
a MACD oscillator can themselves be used to generate trading rules. In past
decades, the search for apparently useful technical indicators (or combinations
of these) was undertaken manually by investors who back tested various indi-
cators on historical financial data. GP allows the automation of this process,
with the concurrent vast expansion of the search space which can be feasibly
searched [33].

A trading rule should specify the entry, profit-taking, and stop-loss or
exit strategy. NC methods can be used for rule optimisation (to find optimal
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parameters for a fixed rule) or rule induction (to find optimal combination of
diversified rules). Early applications of EC to uncover trading rules include
[10, 84, 5, 47]. The flexibility to implement different fitness functions is one
particular advantage of EC approaches. However, there are also some issues
related to the fitness functions as to include transactions costs and to consider
different types of risks [92]. While markets exhibit periods in which a static
trading rule can work, it is hard to find evidence of rules which are successful
over long time periods. Of course, as financial markets comprise a dynamic
system, the utility of any static trading system can be expected to degrade
over time [34]. One basic way of examining the characteristics of a trading
system is to use an equity curve (Fig. 4). The use of an adaptive trading
strategy seems more plausible [49, 27].
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Fig. 4. Sample equity curves showing cumulative returns on the y axis and time
on the x axis. The left-hand graph exhibits gradual return accumulation, whereas
the right-hand graph suggests that the model is working less well on the second half
of the time period

Recent work has seen a broadening of the information sources used as inputs in
trading models. Instead of typical data drawn from the market, financial state-
ments or macroeconomic data, for example, [107, 65] used text data drawn
from either internet message boards / the financial press in the creation of
trading rules.

A wide range of forecasting approaches have also been employed to support
making trade decisions, such as support vector machines [41], and hybrid
methods like neuro-fuzzy hybrids [125], neuro-genetic hybrids, geno-fuzzy [49]
and ensemble methods (combining multiple models) [64].
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Arbitrage

Arbitrage trading can be defined in a variety of ways, but broadly speaking,
these trades seek to make profits by exploiting price differences of identical
or similar financial instruments, on different markets or in different forms (for
example, buying a share at $23.78 on one exchange, and selling it immediately
on another for $23.82, thereby exploiting a pricing difference for the same asset
between the two exchanges). As would be expected, arbitrage opportunities
tend to be closed very quickly and transactions costs can negate apparent
arbitrage possibilities.

A simple example of an arbitrage play based on Put-Call Parity is illus-
trated in [113]. In essence, the concept underlying this trade is that the price
of a ‘long’ position on an asset and an associated put option (the right to
sell that asset in the future at a specified price, see Section 3.5 for a detailed
description of options) must be equal to the price of a long call option on the
same asset and a long position in a risk-free bond. Specifically, for example,
for a European option:

S0 + PE(S0, T,K) = CE(S0, T, K) + K(1 + r)−T

where S0 is the current price of the underlying asset, PE is the current price
of a European put, CE is the current price of a European call, r is the risk
free rate of return, K is the strike price for both options, and T is the time
to maturity of the options. If either the put or call option are mispriced the
investor can, in theory, make a risk-free gain by constructing a portfolio of
the four financial instruments.

The above example, describes an arbitrage opportunity between the cash
market (for the asset) and the option market. More generally, arbitrage oppor-
tunities can also exist between cash and futures markets and between futures
and options markets. In its purest form, arbitrage is a risk-free transaction
but in reality, most arbitrage trades are exposed to some risk such as liquidity
risk or credit risk, and more significantly, execution risk where prices move
before all elements of the trade can be completed.

An alternative approach that wait for arbitrage opportunities to emerge
and then try to trade on them, is to anticipate or forecast opportunities in ad-
vance of the actual mispricing occurring. Markose, Tsang and Er [76] adopted
this approach and developed a GP model to predict arbitrage opportunities
between the FTSE 100 index futures and options market up to ten minutes
in advance of the arbitrage opportunity arising. Another example of the ap-
plication of computational intelligence for uncovering arbitrage opportunities
is provided in [113] who used self-organising, fuzzy NNs to identify mispriced
American style currency options between the USD and the GBP, and then
use a Delta hedge trading strategy to execute the arbitrage play.
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Trade Execution

An important issue in trading financial assets is the efficient execution of large
institutional size orders, and applications of EC for this task have begun to
emerge in recent years. Typically, orders to buy or sell a stock can be either
market orders (the transaction is undertaken immediately in the market at
current prices) or limit orders (the purchase / sale must occur at a price
which is no greater than / or less than a specific price). When a market order
is placed, the customer does not have control over the final price, and in a
limit order, while the customer has some price control, there is no guarantee
that the order will actually be executed). So for example, if a customer places
a limit order to buy a stock at $25 per share the transaction will only take
place if the market price falls to $25 or less.

Over the last number of years, trading algorithms have been executing
an ever-increasing number of trades on markets. In the U.S. their rise has
been brought about through a series of technological and regulatory changes.
Since 2001 with the move to decimalization of the U.S. equity markets, and
the widespread acceptance of electronic market places, the average trade size
has declined from 1,200 shares per transaction in 2000 to 300 shares in 2008
(NYSE Euronext). This in turn has led to an explosion in the number of
trades executed and a narrowing of spreads, with large institutional orders
taking longer to execute. As a result, investors wishing to trade large blocks
face tradeoffs in balancing the risk of tipping their hand and providing infor-
mation to the marketplace, thereby suffering market risk as the trade is ex-
ecuted. Trading algorithms seek to optimally execute these orders, using the
vast amounts of data produced by the market place and submitting appro-
priately sized smaller orders to various destinations with the aim of achieving
best execution. In reaching this goal an entire ecology of different trading algo-
rithms have been designed to perform under different market conditions, with
recent innovations intelligently switching between these algorithms depending
on current market conditions.

When trading shares, particularly when an investor is looking to buy or
sell a large quantity of stock, the problem of market impact arises. Market
impact occurs when the actions of an investor start to move the price ad-
versely against themselves. Hence, market impact is the difference between
a transaction price and what the market price would have been in the ab-
sence of the transaction. For example, the order may be executed as quickly
as possible through sweeping any orders posted to the limit-order book, how-
ever this would incur significant cost and drive the price of the stock against
the investor. In this case the investor avoids market risk but, by demanding
instantaneous liquidity, incurs significant market impact costs. The obvious
strategy to minimise market impact is to break up the order up into smaller
lots and spread it over several purchases. While this will reduce the market
impact, it incurs the risk of suffering opportunity cost, that market prices may
start moving against you during the multiple purchases. Added to this, the
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steady flow of small orders over time will inform other market participants
of the presence of a large institutional order and so encourage competitors to
run ahead of the investor. Hence, the design of trade execution strategies is
intended to balance out the total cost of market impact and opportunity cost
while maintaining a tight control over information leakage.

In selecting a trade execution strategy, the investor must not only balance
her preferences but must also be prepared to adapt and change strategy as
market conditions evolve. NC techniques provide ample scope to assist in
uncovering information that can help optimise trading algorithm selection
and/or adaptation. Various rules and heuristics can be evolved and adapted
using (for example) GAs that can provide a trading strategy with predictive
capability [102] with the aim of selecting best trading tactic under current
market conditions. For institutional sized orders, which can be on the order
of millions of shares, the reduction in average price by a couple of pennies can
lead to significant savings.

Despite the importance of optimising trade execution, there has been rel-
atively little attention paid in the literature to the application of evolutionary
methodologies for this task. One interesting exception is Lim and Coggins [71]
who used a GA to evolve a trading strategy in order to optimise trade execu-
tion performance using order book data from the Australian Stock Exchange.
In this study, the approach taken was to initially split each trade into a series
of N equal sized orders, and the objective was to evolve the timing strategy
for the execution of each of these N orders during a single trading day. Each
order was submitted as a limit order at the best ask or bid prevailing at the
time the order was submitted, depending on whether the investor was seeking
to buy or sell shares. A simple traditional trading strategy could be to submit
one of these orders every ten minutes. However, there is no guarantee that a
ten minute order spacing would produce good results in terms of minimising
market impact. Lim and Coggins [71] used a GA to uncover good quality tim-
ings for each order by evolving a chromosome of N genes, where each gene
encoded the maximum lifetime that the order would remain on the order book
(if it had not already been executed) before it was automatically ticked over
the spread (for example, a limit buy order being repriced to the current ask)
to close out the trade. Any uncompleted trades at the end of the day were
closed out the same way. Hence, the GA evolved the maximum time that each
order would be exposed to the market before being crossed over the spread.

A variety of fitness functions could be designed to drive the evolution of
the trading strategy but a common metric of trade execution performance is
its Volume Weighted Average Price (VWAP):

V WAP =
∑

(Price · V olume)∑
(V olume)

The VWAP of a strategy can be calculated and benchmarked against (for
example) the overall VWAP for that share during the period of the trad-
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ing strategy’s execution. The aim is to evolve a strategy which produces as
competitive a VWAP as possible.

In the above approach, the basic structure of the execution rule is deter-
mined in advance (number of trades etc.) and the task of GA is to parameterise
the rule. Another approach which could be applied is to use GP to evolve the
structure of the execution rule, as well as its parameters.

In real-world trading a number of interesting additional issues arise. While
the order book provides an indication of the current state of supply and de-
mand for a share, it does not always present a true reflection of investor’s
trading intentions. For example, market participants can attempt to ‘game’
the order book by placing limit orders which are subsequently cancelled or
amended, and (as described above) the order book may contain iceberg orders
(a large order which has been split into several smaller orders in order to
disguise the investor’s trading intent). The dynamic nature of the order book
suggests that an agent-based modelling approach could be used in order to
uncover robust trade execution strategies.

3.3 Portfolio Management

In finance a portfolio refers to a grouping of financial assets such as stocks,
bonds and cash equivalents. Portfolio management involves the art and science
of making decisions about investment mix and policy, matching investments to
objectives, asset allocation, and balancing risk and return. An overview of the
portfolio management process is illustrated in Fig. 5. For a portfolio manager,
the first and foremost part of the investment process is understanding the
client’s needs, the client’s tax status and his or her risk preferences. The next
part of the process is the actual construction of the portfolio, which involves
asset class allocation and security selection decisions. Asset class allocation
refers to the allocation of the portfolio across different asset classes defined
broadly as equities, fixed income securities and real assets (such as real estate,
commodities and other assets). The security selection decision refers to the
selection of specific securities under each asset class. The final component of
portfolio management is trade execution, the efficient purchase or sale of the
relevant assets in the marketplace. An important and open question is how
best to measure the performance of the resulting portfolio.

‘Optimization is the engineering part of portfolio construction’, as men-
tioned by Fabozzi et al [44] in their recent survey for quantitative equity port-
folio management: ‘Most portfolio construction problems can be cast in an
optimization framework, where optimization is applied to obtain the desired
optimal risk-return profile’. Multiple elements of the portfolio management
process, such as asset allocation, security selection, index tracking, etc. where
optimisation is crucial, are amenable to NC methodologies. Below we illus-
trate applications of NC methods for the purposes of asset allocation and
index tracking.
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The Portfolio Manager’s Job
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Source: Investment Philosophies (2003), by Damodaran, A. [29]

Fig. 5. An overview of the portfolio management process

Asset Allocation

Asset allocation is the selection of a portfolio of investments where each com-
ponent is an asset class rather than an individual security. The aim of asset
allocation is to invest a fixed amount of money in a diverse set of assets so as
to maximise return while minimising a risk measure. The solution to this is a
Pareto frontier (usually referred to as the efficient frontier) shown in Fig. 6,
as for a given level of risk, there should not be a portfolio with a higher rate
of return, or for a given level of return, there should not be a portfolio with a
lower level of risk. Once the frontier is uncovered, the final choice of portfolio
is determined by the individual investor’s risk preference.

A classical approach used for asset allocation is the Markowitz mean-
variance model [77, 78]. It assumes that investors wish to maximise their
return (measured as mean or expected return) and minimise their risk (mea-
sured as variance or the standard deviation of their return). This produces
the risk return trade-off. The goal of the Markowitz model is therefore to find
an optimal portfolio p of N assets, each with a weighting wi (in percentage),
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Fig. 6. Pareto frontier. The points that correspond to the risk-return of the set of
portfolios that are Pareto optimal

such that the return Ep is maximised:

Ep =
N∑

i=1

wi · µi

while minimising the variance of the return:

Vp =
N∑

i=1

N∑

j=1
i 6=j

wi · wj · σij

subject to
N∑

j=1

wi = 1

wi ≥ 0; i = 1, . . . , N

where σij is the covariance of return between asset i and j, the constraints
are used to ensure that all the money is invested and all investments are
positive (assuming that short selling is not allowed). It produces a multi-
objective optimisation problem (maximise return, minimise risk) and there
are two equivalent formulations which are the dual of each other (firstly fix a
value of expected return and find the portfolio that minimises the risk, sec-
ondly select a level of risk, and find the portfolio that maximises the expected
return). Either of the formulations produces a quadratic programming prob-
lem and several algorithms exist which can be applied to uncover good quality
portfolios.
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Adding Real-world Constraints

Quadratic programming relies on a number of assumptions, including a single
quadratic objective function, linear constraints, and the existence of a positive
definite covariance matrix between the asset returns. However, these assump-
tions are typically breached in the real-world. For example, the constraints can
include cardinality constraints (a limit on the number of assets which can be
held in the portfolio), i.e.

∑N
i=1 sign(wi) = K, or there may be threshold limits

on the amount of investment in any single asset, i.e. wi ≤ mi, i = 1, . . . , N ,
where mi is the threshold amount for asset i. Other constraints may include in-
dustry or sector (or concentration) holding constraints, round lot constraints,
and transactions costs may have both fixed and non-linear variable cost ele-
ments. These constraints can lead to non-convex, non-differential models. In
addition, some constraints may be hard and others may be soft. Hence, real-
world portfolio selection can present a difficult, high-dimensional, constrained
optimisation problem, which is beyond the capabilities of traditional opti-
misation methods. In this setting, heuristic approaches such as evolutionary
computing methods are of particular interest because of their ability to find
good solutions even if optimality is not assured.

MOEA and Portfolio Selection

An extensive literature on Multi-Objective Evolutionary Algorithms (MOEA)
has developed over the past twenty years (see [95, 32, 26] for a detailed review).
MOEA have an advantage of maintaining a population of solutions and there-
fore offer the potential to uncover multiple points on the Pareto frontier. A
wide range of approaches have been offered to deal with different types of con-
straints including penalty function approaches, repair mechanisms, the design
of appropriate representations and diversity-generation operators. A stream of
literature also exists which has used hybrid Evolutionary Algorithms or local
search techniques for MOEA. Many of these approaches have been applied for
portfolio selection.

The earliest papers to apply EAs for portfolio selection include [8, 72, 99,
116]. In the case of [8] multiple GA populations were used to identify the
Pareto frontier. Rather than use the standard Markowitz model, the authors
used a downside risk measure. The multi-objective problem was converted
into a single objective using a trade-off function, with each population using a
different trade-off coefficient and therefore producing a different portion of the
Pareto frontier. The formulation of the portfolio problem includes cardinality
and buy-in constraints, and a repair mechanism was applied in order to ensure
that generated solutions were feasible. The utility of differing crossover opera-
tors and differing genotypic representations for the portfolio selection problem
was examined by [103, 104], and the application of EC hybrids was examined
by [106] and [105]. The impact of cardinality constraints was examined in [46]
and [82] (the latter also adopted an EC hybrid approach). A number of other
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applications including stock ranking, and credit portfolio optimisation have
been reported in the literature (see [16, 96] for a review of MOEA applications
in finance).

In practical settings, investment managers are concerned with a variety
of risk and return measures, not just expected return and its variance. For
example, value at risk (VaR), the risk that a portfolio could lose a significant
amount of its value over a defined time window (more precisely, VaR at level
(1-α) is the α-quantile of the loss distribution), has gained importance es-
pecially for regulatory purposes. VaR is typically non-linear and non-convex,
making optimisation in models which use this metric difficult. More generally,
a portfolio manager may be concerned with more than one risk constraint.
A variety of papers have applied MOEA to non-Markowitz risk metrics, in-
cluding [73] which uses a compound risk metric. Hochreiter [53] introduces
an evolutionary stochastic portfolio optimisation methodology and illustrates
its application using a set of structurally different risk measures, which in-
clude, Standard Deviation, Mean-absolute Downside Semi Deviation, Value-
at-Risk, and Expected Shortfall. Recent work has also seen the application of
co-evolutionary MOEAs for portfolio optimisation [38].

Index Tracking

There are two common types of portfolio management strategies: passive and
active. Active portfolio management consists of picking assets which are ex-
pected to outperform the market. In contrast, passive management simply
tracks a market index, where the objective is to form a portfolio that repli-
cates the performance of an index as closely as possible.

Passive portfolio management strategies have become very common in
recent decades. Just like general portfolio optimisation, the construction of
an index tracking portfolio is a constrained optimisation problem, where the
objective is to minimise a measure of tracking error (or difference between
the return to the portfolio and the return to the index), subject to a variety
of constraints, similar to those in the general portfolio optimisation problem.
The solution space is non-convex suggesting a useful role for population-based,
global optimisation heuristics.

At first glance, the construction of an index tracking portfolio appears
trivial, merely requiring the purchase of the same basket of assets that make up
the index, using the same weight that each asset has in the index. However, the
creation of a perfect replica portfolio is difficult for several reasons including a
requirement for frequent portfolio re-balancing (with associated transactions
costs), integer constraints on asset purchases, mandate limits on the maximum
holding in any individual asset etc. Another practical issue is that not all
assets making up market indices have equal liquidity. Hence, there may be
good reason to seek to track the performance of a broad market index using
a portfolio which comprises of a subset (rather than all) of the assets making
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up the index. Another feature of this problem is that investor’s risk attitudes
to tracking errors are not symmetric. While investors will not wish to under-
perform the index, they will not object if the portfolio outperforms the index.
EC applications to the index tracking problem include [98], [105], [90] and
[75] which also examines the impact of investor loss aversion preferences on
tracking portfolio construction.

3.4 Risk Management

Risk management is a critical aspect of investing. Some of the main types of
risks faced by investors are illustrated in Fig. 7 below.

MARKET RISK

LIQUIDITY RISK

CREDIT
RISK

Credit Risk 
Associated with Investments

Credit Risk 
Associated with Counterparties

Funding Liquidity

Asset Liquidity

Source: Sound Practices for Hedge Fund Managers (2000) [100]

Fig. 7. Risk illustration

Market Risk Computation

Market risk refers to the risk faced by an investor arising from changes in fi-
nancial market prices. The degree of risk of loss faced by an investor will vary
depending on the price volatility of the assets they hold. Not all assets will
have the same degree of volatility. There are various techniques to measure
market risk [79], applications of NC methodology include the calculation of
Value-at-Risk (VaR) and the sensitivities. The VaR approach measures the
worst expected loss under normal market conditions over a specific time in-
terval. The loss distribution is usually assumed to be normal when calculating
VaR. Evolutionary algorithms do not need to embed this assumption and can
incorporate any preferred loss distribution type [114]. NNs have also been
used for other market risk measures, such as Conditional VaR estimates [67],
and expected shortfall [35]. The sensitivity analysis approach measures how
much the portfolio’s (or a specific financial instrument’s) value is expected to
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change if there is a small change in one of the market-risk factors, such as
interest rates, equity prices, commodity prices etc. The sensitivities are the
so-called greeks for derivatives; duration and convexity for fixed income prod-
ucts. Keber [60] has used GP to calculate greeks of the American-type put
options (see Section 3.5 for an explanation of derivative products).

Credit Risk Assessment

Credit risk is the risk that a counterparty to a deal fails to perform their
obligations. Credit risk assessment is an important component of the lending
decision of financial institutions and other commercial companies. Examples
of decisions of where credit scoring could be useful include, decisions such as
should a loan be extended to a firm or to an individual, should a customer be
allowed to purchase goods on credit, or what credit limit should be offered to
a customer on their credit card?

Over the past several decades an extensive literature has amassed on mod-
elling creditworthiness and default risk. Traditional statistical methods includ-
ing linear discriminant analysis [6] and logit [87] have been applied. In all of
these applications, the objective is to develop a model which will provide a
metric of creditworthiness from a series of explanatory variables. Typically, in
assessing corporate creditworthiness, explanatory variables can include num-
bers drawn from the financial statements of the firm, from financial markets,
general macro-economic variables, and non-financial, firm-specific informa-
tion). In assessing personal consumer creditworthiness explanatory variables
can include income, age, occupation, current employment status, past borrow-
ing record etc. [118, 124, 69]. Closely associated streams of academic literature
include corporate failure or bankruptcy prediction [6], and the reverse engi-
neering of the bond-rating models used by rating firms such as Standard &
Poor’s (S&P), Moody’s, Fitches’ or Dominion Bond Rating Service [43, 39, 48].
Assessments of credit default probability could also form a useful input into
a stock or bond trading model. A practical problem in constructing risk-
assessment models is that there is no clear theoretical framework for guiding
the choice of explanatory variables or model form. In the absence of an under-
lying theory, most published work on credit rating employs a data-inductive
modelling approach. This produces a high-dimensional combinatorial problem,
as the modeler is attempting to uncover a good set of explanatory variables
and model form.

An illustration of an early credit risk assessment model is provided by
Altman’s [6] classic study in which five ratios were combined to produce a lin-
ear discriminant classification model for corporate bankruptcy. A Z score was
calculated for each company, and this value determined whether the company
was classified as bankrupt or solvent:
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Z = 0.012X1 + 0.014X2 + 0.033X3 + 0.006X4 + 0.999X5

where
X1 = working capital to total assets
X2 = retained earnings to total assets
X3 = earnings before interest and taxes to total assets
X4 = market value of equity to book value of total debt
X5 = sales to total assets

As the range of NC techniques have expanded over the past twenty years, each
new technique has been applied to credit scoring and corporate failure predic-
tion. Examples include feedforward NNs [120, 9], self-organising maps [97, 62],
GAs [63, 115], Ant models [117, 13], GP and GE [80, 13, 88, 4]. The domain
offers particular potential for evolutionary automatic programming method-
ologies such as GP or GE as these methods can produce human-readable
credit decision rules. This can be important in some countries where lenders
can be required to justify decisions not to grant loans. Another advantage of
GP and GE is that the rule-evolution process can be seeded using domain
knowledge.

Another closely-related application is the prediction of bank failure [68],
with many regulatory authorities using risk models in order to assess which
financial institutions require the closest scrutiny. Obviously, for these applica-
tions it is important that the regulatory authority can verify the correctness
of the underlying prediction model, hence methodologies which can incorpo-
rate expert knowledge and produce interpretable decision rules, such as fuzzy
systems and GP, are of particular interest.

Of course, there are other types of risks which need to be quantified in
practice, such as liquidity risk and operational risk (arising due to poor or
inadequate management control systems or due to human error). However,
as yet, there is little literature concerning the application of NC methods in
these areas.

3.5 Derivatives Modelling

Derivatives are contracts whose value is derived from the value of the un-
derlying assets, such as equities, interest rates, currencies, market indices,
commodities etc. Two of the best known forms of derivative are futures and
options. A future is an agreement to buy or sell goods, currency or securities
on an agreed future date and for a price fixed in advance. An option is a
financial instrument simply gives the holder (buyer) the right, but not the
obligation, to buy (a call option), or sell (a put option), a specified underly-
ing asset at a pre-agreed price on or before a given date. A European style
option refers to an option that may only be exercised on expiration; while
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an American style option can be exercised on any trading day on or before
expiration.

The key issue for investors wishing to trade in derivatives is the determina-
tion of the fair price for the derivative. For some standard derivatives (based
on specific assumptions such as continuous time finance theory), closed-form
pricing equations have been determined (e.g. the Black - Scholes model [12, 81]
for pricing European options, the Cox et al. binominal model [28] etc.). The
traditional approach to pricing a derivative is [86]:

• specify a stochastic process for the underlying asset(s),
• derive the pricing equation for the derivative (using a no-arbitrage

argument), and
• price the derivative by solving the pricing equation.

Of course, this approach can be difficult to implement, as the relevant stochas-
tic process may be imperfectly understood, and the pricing equation may be
too difficult to solve analytically. In the latter case, there is scope to use tools
such as Monte Carlo (MC) simulation to estimate the expected payoff and the
associated payoff risk for the derivative. In valuing a complex derivative using
MC, the typical approach is to randomly generate a set of independent price
paths for each security underpinning the derivative, then compute the present
value of the payoff to the derivative under each set of these price paths. The
simulation process is repeated multiple times and the distribution of the pay-
offs is considered to characterise the derivative. An example of this approach
is illustrated in [61]. A critical issue in applying a MC approach is the correct
design of the theoretical pricing model.

There have been two main avenues of application of NC methods in pricing
financial derivatives, namely,

• model calibration, and
• model induction.

In model calibration, the objective is to estimate the parameters of (or ‘cal-
ibrate’) a theoretical pricing model. The parameters are estimated by fitting
the model to the relevant returns time series. Typically the pricing model will
have a complex, non-linear structure with multiple parameters. Hence, global
search heuristics such as the genetic algorithm can have utility in uncovering
a high-quality set of parameters. Examples of the use of NC algorithms for
model calibration include [30, 45].

In model induction, NC approaches such as GP would have particular
utility when little is known about the underlying asset pricing dynamics as
both the structure and the parameters of the pricing model are estimated
directly from the data, thereby extracting the pricing model implicitly. Even
where theory does exist, model induction methodologies allow us to investigate
whether other plausible theories may exist to explain observed prices. Appli-
cations of such methods include NNs [74, 54, 119], self-organising, fuzzy NNs
[113], or GP [19, 23, 58, 24, 123] to recover a proxy for the price-generating
model directly from the data.
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Below we illustrate an example of using GP to generate an option pricing
model. One advantage noted by [24] is that the GP process can be seeded with
the Black-Scholes equation, with the final resulting model being an adapta-
tion of the Black-Scholes equation for conditions which violate its underlying
assumptions. For example, in the Black-Scholes setting for a non-dividend
paying European call option there are five factors that affect the price of the
option (assuming no dividends):

1. S0 - the underlying asset price
2. K - the exercise price of the option
3. T - the time to maturity (of the option)
4. r - the risk free rate of return (of the underlying asset)
5. σ - the expected volatility of the asset price

Items 1 and 2 can be combined to give (S0−K) or a measure of the moneyness
of the option. An option is said to be ‘in the money’ when this value is greater
than zero, and ‘out of the money’ when it is less than zero. In developing a
pricing model for options from these factors the Black-Scholes model embeds
several critical assumptions. It is assumed that the stock price undergoes a
diffusion process that is log normally distributed, with an instantaneous drift
and volatility given by µ and σ respectively. The volatility σ and the risk-free
rate r are also assumed to be constant during option’s life. This implies that:
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and in turn this leads to:
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where µ is the instantaneous expected return on the stock, σ is the instanta-
neous volatility of stock price return, ST is the stock price at a future time T ,
S0 is the stock price at time zero, N(m, s) denotes the normal density function
with mean m and standard deviation s and η is defined as the continuously
compounded rate of return per annum realised between time zero and T. The
Black-Scholes formula for the price at time zero of an European call option
on a non-dividend paying stock is therefore:
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where

d1 =
ln(S0/K) + (r + σ2/2)T

σ
√

T

d2 = d1 − σ
√

T



24 A. Brabazon, J. Dang, I. Dempsey, M. O’Neill and D. Edelman

N(χ) is the cumulative probability distribution function for a standardised
normal distribution, C0 is the price of the European call option at time 0.

Of course, assuming that the Black-Scholes model did precisely value op-
tions, model induction techniques such as neural networks or GP could be used
to recover the structure of the option pricing model directly from a histori-
cal time series of option prices (C0) and the five factors that influence option
prices. Fig. 8 illustrates a tree representation of the Black-Scholes Model which
could (potentially) be recovered by GP.
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Fig. 8. Stylised lllustration of a tree representation of the Black-Scholes model (not
all sub-trees are shown)

In reality, some of the key assumptions in the Black-Scholes model do not
hold in real-world option markets, and hence the model does not explain
observed option prices correctly. For example, prices can experience discon-
tinuous jumps, the distribution of price changes has fatter tails than those
implied by a log normal distribution, and asset price volatility changes over
time.5 The latter issue can be easily seen if market prices are substituted into
the Black-Scholes model, in order to calculate the ‘implied volatility’ for that
option. If the assumptions underlying the Black-Scholes option pricing model
were correct, the implied volatilities for options on the same underlying as-
set would be constant for different strike prices and maturities. However in
practice the Black-Scholes implied volatilities are varying over strike price and
5 There is a long line of literature which examines alternative (non-normal) stock

return models including Poisson jump-diffusion return processes and GARCH
processes. However, closed-form solutions for the option price cannot be obtained
for all these models.
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maturity. Keber [59] has used GP to generate formulae for determining the
implied volatility based on American put options.

3.6 Agent-based Market Modelling

The essence of Agent-based Modelling (ABM) lies in the notion of autonomous
agents whose behaviour evolves endogenously leading to complex, emergent,
system dynamics which are not predictable from the properties of the indi-
vidual agents. ABM is an exciting new tool for exploring behaviour in finan-
cial markets that are far from traditional notions of equilibrium, and where
agents exhibit behaviour that is less than fully rational at times. Financial
markets are particularly appealing applications for agent-based methods es-
pecially considering the following: issues of price and information aggregation
tend to be sharper in financial settings where agent objectives tend to be
clearer; financial markets are rich in data sets (such as price and volume
data) at many different frequencies, that can be used for testing and calibrat-
ing agent-based models; financial markets are well organised, centralised, and
trade homogeneous products in a generally efficient fashion relative to mar-
kets for other goods and services; there are continuing developments in the
area of experimental financial markets which give carefully controlled environ-
ments which can be compared with agent-based experiments; the key debates
in finance about market efficiency and rationality are still unresolved; many
puzzles of the financial time series (such as the volatility persistence) are still
not well understood. In designing ABMs of financial markets, modellers face
a daunting list of design choices which can critically impact on the system’s
behaviour. Important design questions include:

• Representation and structure of the actual trading agents. Agents can
vary from simple budget constrained zero intelligence agents6 as in Gode
& Sunder [50] to sophisticated learning agents as in Chen & Yeh [20].

• The actual mechanism that governs the trading of assets. Ways of de-
signing this include assuming a simple price response to excess demand,
building the market such that a kind of local equilibrium price can be
found easily, or explicitly modelling the dynamics of trading to mimic the
continuous trading of real-world markets.

• Types of securities to be incorporated into the agent-based market model,
where typically simple securities (such as stocks) are considered.

In designing agent-based models (ABMs) of financial markets, NC methods
can be used to model the information processing and storage by agents, the
process of adaptive learning by agents, or to model the trading mechanism.
One example of the use of ABM to simulate a financial market is provided
by LeBaron [66] in building the well-known Santa Fe Artificial Stock Market.

6 Refers to a type of trader that randomly makes price bids (offers to buy) and/or
price asks (offers to sell) subject only to a budget constraint.
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This model simulates price generation and trading in a market made up of
artificial adaptive agents. This is a prototype example of a complex system
and is thought to illustrate the benefits of simulation modelling. The Santa
Fe Artificial Stock Market consists of a central computational market and a
number of artificially-intelligent agents. The agents choose between investing
in a stock and leaving their money in the bank, which pays a fixed interest
rate. The stock pays a stochastic dividend and has a price which fluctuates
according to agent demand. The agents make their investment decisions by
attempting to forecast the future return on the stock, using GA to generate,
test, and evolve predictive rules. Other applications of ABM include the sim-
ulation of a foreign exchange market [55], the modelling of an artificial stock
option market [40] and the modelling of an artificial payment card market [3].

A key output from the ABM literature on financial markets is that it illus-
trates that complex market behaviour can arise from the interaction of quite
simple agents. Carefully constructed, ABM can help increase our understand-
ing of market processes and can potentially provide insights for policy makers
and regulators, where unlike laboratory sciences, we cannot re-run a real mar-
ket under different regulations ‘to see what would happen.’ Of course, issues
of model validation are important in all ABM applications including those in
financial markets.

4 The Future

Though a plethora of academic literature on NC applications in finance ex-
ists, it is notable that many papers have concerned proof of concept rather
than robust, industry-strength, applications. While NC methods offer poten-
tial in multiple areas in finance, the maturing of their application requires
future work focusing on complex real-world problems. This will require the
construction of multi-disciplinary research teams, drawing academic exper-
tise as necessary from finance, computer science, mathematics, biology, etc.
and combining this with industrial collaborators. For example, quality work
on trading systems requires deep knowledge of market micro-structure, the
regulatory environment, available financial instruments, and the technology
available to traders. Below we indicate some promising future directions for
research at the nexus of natural computing and finance.

• Forecasting : While forecasting models applying NC methods can typi-
cally be constructed to fit historical data fairly well, a common finding is
that the quality of the out-of-sample forecasts degrades over time. Hence
we can expect to see increased use of more sophisticated methods for pre-
processing the raw time-series inputs, and for the adaptation of the result-
ing models in response to changing environmental conditions. Another area
of growing interest is the incorporation of information from text mining
(e.g. from the financial press) into forecasting models.
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• Algorithmic Trading : While many published papers have focused on
the development of simplified trading systems, successful real-world ap-
plications have often focused on the support of specific elements of the
investment process. In the medium term, we can expect to see a notable
increase in the rigor of published work in this area as computer scientists
form teams with finance academics and practitioners, incorporating re-
alistic models of market microstructure. The area of trade execution has
seen relatively little published application of NC methodologies, despite its
real-world significance. Model induction tools such as GP offer interesting
potential here, as do agent-based modelling approaches. The latter could
be used to uncover robust trade execution strategies.

• Portfolio Optimisation : There has already been an extensive applica-
tion of NC methods for portfolio optimisation, but we still require further
systematic investigation of portfolio constraints for special sub-application
areas including hedge funds, pension funds, and insurance. The extension
of dynamic portfolio optimisation needs further development, which may
involve the simulation or forecasting of extreme market situations, and the
solution of multi-stage constraint optimisation problems.

• Risk Management : Recent events on the financial markets have under-
scored the importance of risk management, and the weakness of existing
theoretical models in this area. It is interesting to note that applications of
NC methods in risk management have not attracted as much attention as
might be expected in the literature and this remains an open research area.
For example, NC methods could be applied to assist in the development
of enterprise-wide risk management systems, and to improve the flexibility
and efficiency of large scale multi-stage asset liability management (ALM)
models.

• Derivatives Modelling : In spite of the vast array of derivatives products
available, and the weakness of financial theory once we move beyond vanilla
products, there have only been a relatively limited number of applications
of NC for model calibration or induction in this area. Possibilities also
exist to hybridise NC methods with traditional numerical methods, and
to develop dynamic derivative pricing models.

• Agent-based Market Modelling : The field of ABM is attracting signifi-
cant attention with the increasing questioning of agent homogeneity which
underlies classical financial economics. ABM allows us to examine the ef-
fect of differing forms of market structure on market behaviour. Doubtless,
the next few years will see increased focus on this given the failures of
market regulation during the recent financial crisis. The co-evolutionary
element of markets lends itself well to NC approaches in terms of modelling
of agent behaviour and strategy adaptation.
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A practical issue that arises in the application of NC to finance is that the
underlying algorithms are themselves undergoing a process of maturation.
Recent years have seen extensive research in order to extend canonical NC
algorithms into high-dimensional environments (enhancing algorithmic scal-
ability), to develop efficient algorithms for constrained optimisation, and to
develop practical application of the algorithms in dynamic problem environ-
ments. Meanwhile, we have also seen developments in computer hardware,
and in our ability to implement parallel versions of NC algorithms (e.g. using
graphics processing unit (GPU) implementations). These two strands of de-
velopment are creating an ever more powerful toolbox of NC algorithms for
financial modellers.
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