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Abstract: The Y Balance Test (YBT) is one of the most commonly used dynamic balance assessments in clinical and 

research settings. This study sought to investigate the ability of a single lumbar inertial measurement unit 

(IMU) to discriminate between the three YBT reach directions, and between pre and post-fatigue balance 

performance during the YBT. Fifteen subjects (age: 23±4, weight: 67.5±8, height: 175±8, BMI: 22±2) were 

fitted with a lumbar IMU. Three YBTs were performed on the dominant leg at 0, 10 and 20 minutes. A 

modified Wingate fatiguing intervention was conducted to introduce a balance deficit. This was followed 

immediately by three post-fatigue YBTs. Features were extracted from the IMU, and used to train and evaluate 

the random-forest classifiers. Reach direction classification achieved an accuracy of 97.80%, sensitivity of 

97.86±0.89% and specificity of 98.90±0.56%. “Normal” and “abnormal” balance performance, as influenced 

by fatigue, was classified with an accuracy of 61.90%-71.43%, sensitivity of 61.90%-69.04% and specificity 

of 61.90%-78.57% depending on which reach direction was chosen. These results demonstrate that a single 

lumbar IMU is capable of accurately distinguishing between the different YBT reach directions and can 

classify between pre and post-fatigue balance with moderate levels of accuracy.

1  INTRODUCTION 

Dynamic balance requires the maintenance 
of equilibrium during tasks that involve  
movement of the centre of mass outside of 
the base of support (Gribble et al., 2012). 
The Star Excursion Balance Test (SEBT) is 
one of the most commonly used dynamic 
balance assessment tools (Holden et al., 
2016, Doherty et al., 2016, Gribble et al., 
2012, Smith et al., 2015). It assesses many 
facets of the sensorimotor spectrum, 
including strength, proprioception and 
dynamic balance, closely mimicking the 
functional demands required for optimal 
sports performance. The SEBT requires the 
individual to maintain their balance, while 
reaching as far as possible in eight directions 
(Gribble et al., 2012).  

Large bodies of research have 
demonstrated dynamic balance deficits, as 
measured by the SEBT, between control and 
pathological groups with conditions such as 
acute ankle injuries (Doherty et al., 2015), 
chronic ankle instability (Doherty et al., 
2016) and anterior cruciate ligament injuries 
(Herrington et al., 2009). Additionally, 
researchers have attempted to establish the 
role these assessments play in the detection 
of risk factors that may predispose 
individuals to lower limb injuries (Gribble et 
al., 2015, Plisky et al., 2006). Despite this, 
there are a number of limitations to the 
SEBT which should be considered. These 
include the non-standard stance surface, the 
lack of a definite starting point reference, the 
time consuming nature of completing eight 
reach directions and the requirements of the 
assessor to visually monitor the stance foot, 



 

while marking the maximal reach distance 
(Gribble et al., 2012, Plisky et al., 2009). In 
an attempt to address some of these 
limitations, improve the reliability and the 
uptake of dynamic balance tests in clinical 
practice, the redundancy of five of the eight 
reach directions was demonstrated. This 
resulted in the development of the 
commercially available Y Balance Test 
(YBT) (functionalmovement.com, Danville, 
VA) which incorporates the anterior (ANT), 
posteromedial (PM) and posterolateral (PL) 
reach directions of the SEBT (Plisky et al., 
2009). 

While the YBT does address some of 
these aforementioned limitations, there are a 
number of challenges which continue to 
restrict its use in clinical practice. Firstly, 
while research has shown that these 
assessments are capable of demonstrating 
statistically significant differences in reach 
distances between groups (Plisky et al., 
2006, Gribble et al., 2015, Doherty et al., 
2016, Doherty et al., 2015, Herrington et al., 
2009), it has been difficult to determine 
clinically relevant cut off points. Plisky and 
colleagues (2006) and Smith and colleagues 
(2015) reported that a right/left asymmetry 
of greater than 4cm on the ANT reach 
direction of the SEBT and YBT respectively 
is associated with an increased risk of a 
lower limb injury. While Gribble and 
colleagues (2015) reported that a reduced 
ANT reach distance, in combination with 
high BMI, is associated with increased risk 
of lower limb injury. Schaefer and 
colleagues (2012) reported that the 
minimally detectable change for normalised 
reach distances ranged from 4.9-5.4% for the 
different reach directions, while Munro et al 
(2010) showed that the smallest detectable 
difference ranged from 6.87-8.15% of leg 
length depending on the reach direction. 
While these thresholds provide guidance for 
clinicians on the reach distances that can be 
considered clinically relevant, they are 
population specific, and only provide a small 
amount of clinically relevant information. 
Another is the time consuming nature of the 
YBT testing protocol, which requires the 
individual to complete 4 practice trials 
followed by 3 recorded trials in order to 
obtain a reliable and repeatable score 
(Gribble et al., 2012). 

An additional strategy which has been 
employed to improve the accuracy and 
objectivity of the SEBT and YBT is the use 

of marker based motion analysis and force 
platform systems, providing information on 
the control of movement and balance 
strategy employed during the task (Coughlan 
et al., 2012, Fullam et al., 2014, Doherty et 
al., 2015). However, these methods have a 
number of major limitations, restricting their 
application in clinical practice. Firstly, the 
set-up is time intensive and requires training, 
increasing the overall testing time and 
limiting the number of clinicians with the 
experience required to use the systems with 
efficacy. The systems are expensive (> 
€100,000). They are commonly not 
accessible outside of a laboratory 
environment. The application of markers 
may hinder natural movement during 
dynamic tasks (Bonnechère et al., 2014, 
Ahmadi et al., 2014). The data recorded 
from such systems also requires extensive 
processing and analysis, which is time 
consuming. 

In recent times, there has been a shift 
away from traditional motion capture 
systems towards unobtrusive systems that 
incorporate inertial measurement units 
(IMUs) (Ahmadi et al., 2014). Such systems 
address some of the aforementioned 
limitations of traditional motion capture, as 
they allow for inexpensive, accessible 
quantification of human movement, in an 
unconstrained environment (Giggins et al., 
2013). These IMU systems have been used 
in the objective quantification of a range of 
activities, from static balance tasks (King et 
al., 2014, Alberts et al., 2015, Furman et al., 
2013), to dynamic tasks such as the squat 
(O'Reilly et al., 2015) and single leg squat 
(Whelan et al., 2015), walking (Zijlstra and 
Hof, 2003, Yang et al., 2013) and running 
(Lee et al., 2010). Early work investigating 
the use of IMUs in balance assessment has 
shown that a static balance assessment, 
instrumented with an IMU mounted on the 
lumbar spine, was not as effective as the 
traditional subjectively scored assessment in 
identifying balance deficits post-concussion 
(Furman et al., 2013). More recently, King 
et al (2014) demonstrated improved levels of 
sensitivity and specificity from the 
instrumented balance error scoring system 
(BESS). It is likely that the conflicting 
results are due to the different quantified 
variables selected in the two studies. King et 
al (2014) utilised root mean squared 
acceleration, whereas Furman et al (2013) 
used sway path length, which may not be 



 

capable of detecting subtle changes in 
balance, when measured using a lumbar 
mounted IMU. While these initial studies 
have demonstrated the ability of IMUs to 
detect differences in static balance between 
groups, there is a paucity of evidence 
surrounding their ability to classify dynamic 
balance performance during tasks such as 
the YBT.  

Previous research has established the 
effect various forms of muscle fatigue such 
as high intensity intermittent exercise 
(Whyte et al., 2015), lower limb functional 
exercises (Gribble et al., 2009) and isolated 
muscle fatigue (Gribble and Hertel, 2004, 
Gribble et al., 2009) have on dynamic 
balance. The combined physiological effects 
of central and peripheral fatigue mechanisms 
may result in changes to the integration of 
sensorimotor information from the balance 
subsystems, leading to decreased balance 
performance.  Therefore, this research sets 
out to evaluate the ability of a single lumbar 
mounted IMU to objectively quantify 
dynamic balance performance. It is 
hypothesised that a single IMU system has 
the potential to accurately differentiate the 
three reach directions (ANT, PM and PL) 
and distinguish “normal” and “abnormal” 
balance as influenced by fatigue. 

2 METHODS 

2.1 Subjects 

Fifteen healthy participants aged between 18 
and 40 (age: 23±4, weight: 67.5±8, height: 
175±8, BMI: 22±2) who actively participate 
in sport were recruited from the wider 
university population. Participants were 
excluded from the study if they suffered 
from chronic ankle instability, had sustained 
a lower limb injury in the last six months, 
had vestibular, visual or balance impairment, 
cardiovascular disease, any neurological 
disease, or answered yes to any questions on 
the PAR-Q (Warburton et al., 2011). Ethical 
approval was obtained from the University 
Human Research Ethics Committee and all 
participants provided informed consent prior 
to participating in the study. 

2.2 Measures 

2.2.1 Y-Balance Test 

The YBT is an instrumented alternative to 
the SEBT, capable of measuring dynamic 
postural control. The YBT utilises three of 
the eight original SEBT reach directions 
(ANT, PM and PL) and was developed in 
order to provide a more objective reach 
distance measurement, allowing for more 
accurate results, collected in a less time 
consuming manner. The YBT has been 
reported to demonstrate excellent intra-tester 
(0.85-0.89) and inter-tester (0.97-1.00) 
reliability (Plisky et al., 2009). The YBT 
requires participants to stand on one leg, 
with their hands on their hips, and slide a 
block as far as possible in the three specified 
directions, with the contralateral limb, 
before returning to bilateral stance. A fail is 
recorded if the participant (1) uses the block 
for support, (2) raises the stance heel from 
the platform, (3) makes ground contact, (4) 
kicks the block forward to gain extra 
distance or (5) removes one or both hands 
from the hips during the task. The reach 
distances are then normalised against the 
participant’s leg length using the formula: 

 
𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑 𝑅𝑒𝑎𝑐ℎ 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =

(𝑅𝑒𝑎𝑐ℎ 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒) ⁄ (𝐿𝑒𝑔 𝐿𝑒𝑛𝑔𝑡ℎ) (1) 
 
Leg length is obtained by the same 

investigator for each study participant by 
measuring the distance from the anterior-
superior iliac spine to the most distal aspect 
of the medial malleolus (Gribble and Hertel, 
2003). The average YBT reach distances 
scores used for analysis were obtained by 
finding the mean of the three normalised 
maximal YBT scores in each reach direction. 
The YBT testing protocol was developed 
and conducted according to the guidelines 
outlined by Gribble and colleagues (2012). 
 

2.2.2 Modified Wingate Test 

The Wingate test is traditionally used in the 
measurement of peak anaerobic power and 
anaerobic capacity (Smith and Hill, 1991). A 
modified version of the extended Wingate 
test protocol employed by Carey and 
Richardson (2003) was used during this 
study in order to maximally fatigue 



 

participants. The modified test requires 
participants to cycle at maximal intensity for 
60 seconds, rather than the traditional 30 
second protocol. The cycle ergometer 
resistance is set to 0.075 g·kg-1 as per 
previously published methods (Kraemer et 
al., 2000, Laurent et al., 2007). Prior to 
commencement of the Wingate test, 
participants completed a 5-minute warm-up 
cycling at 50-60 RPM, which included 3 x 5 
second sprints. Following the 5-minute 
warm-up, participants commenced cycling 
at a cadence of 50-60 RPM for 30 seconds. 
At the end of the 30 second period, the 60 
second Wingate test commenced, and 
participants were encouraged to maintain a 
maximal effort for the duration of the 60 
seconds in order to ensure maximal fatigue. 
 

2.2.3 Inertial Measurement Unit  

A Shimmer3 IMU (Shimmer, Dublin, 
Ireland) was mounted at the level of the 
fourth lumbar vertebra (Figure 1). The IMU 
was calibrated and configured to stream tri-
axial accelerometer (±2 g), gyroscope (±500 
◦/s) and magnetometer (±1 gauss) data at 
102.4 Hz via Bluetooth to an Android tablet, 
using Multi-Shimmer sync software 
(Shimmer, Dublin, Ireland). These data 
acquisition parameters were chosen based on 
previous work carried out by our research 
group investigating the use of IMUs in the 
evaluation of exercise technique during 
similar movements, such as the single leg 
squat (O'Reilly et al., 2015).  

2.3 Procedure 

On arrival to the performance laboratory, the 
experimental protocol was explained to the 
participants, and individuals completed 4 
practice trials in each direction, on their 
dominant leg (all right leg dominant). Leg 
dominance was obtained by asking the 
participants which leg they would use to kick 
a ball (Wilkins et al., 2004). Following 
completion of the practice trials, each 
participant was fitted with the IMU as 
described above. Participants then 
completed three recorded YBT in each 
direction (randomised order) on the 
dominant limb. This was repeated at 0, 10 
and 20-minutes in order to provide a pre-
fatigue baseline measurement of dynamic 
balance. YBT maximal reach distances and 
IMU data were collected for each YBT 
attempt. If a participant failed to complete 
the test as described above, the individual 
reach direction was repeated, and an 
annotation was recorded in the IMU data to 
denote a failed and repeated reach direction. 

Following the baseline assessment, 
participants completed the modified 
Wingate protocol in order to elicit maximal 
anaerobic fatigue. Immediately following 
the Wingate protocol, participants 
completed the YBT to capture the reduced 
dynamic balance performance elicited by 
maximal anaerobic fatigue. 

2.4 Data Analysis 

Nine signals were collected from the IMU; 
accelerometer x, y, z, gyroscope x, y, z and 
magnetometer x, y, z. Data were analysed 
using MATLAB (2012, The MathWorks, 
Natwick, USA). To ensure the data analysed 
applied to each participant’s movement and 
in order to eliminate unwanted high-
frequency noise, the nine signals were low 
pass filtered with an 8th order Butterworth 
filter with a 20Hz cut-off. Nine additional 
signals were then calculated. The 3-D 
orientation of the IMU was computed using 
the gradient descent algorithm developed by 
(Madgwick et al., 2011). The resulting W, X, 
Y and Z quaternion values were also 
converted to pitch, roll and yaw signals. The 
pitch, roll and yaw signals describe the 
inclination, measured in radians, of each 
IMU in the sagittal, frontal and transverse 

Figure 1: Illustrates the 

mounting location of the 

Lumbar IMU. 



 

planes respectively. The magnitude of 
acceleration was also computed using the 
vector magnitude of accelerometer x, y, z. 
The magnitude of acceleration describes the 
total acceleration of the IMU in any 
direction. This is the sum of the magnitude 
of inertial acceleration of the lumbar spine 
and acceleration due to gravity. 
Additionally, the magnitude of rotational 
velocity was computed using the vector 
magnitude of the gyroscopes x, y and z. 

Each reach direction from each 
completed YBT was extracted from the IMU 
data and resampled to a length of 1000 
samples; this was undertaken to minimise 
the influence of the speed of repetition 
performance on signal feature calculations. 
It ensures the computed features related to 
differences in movement patterns and not the 
participant’s exercise tempo.  Descriptive 
features were computed in order to 
characterise the pattern of each of the 
eighteen signals as the YBT was completed. 
These features were namely  'Mean', 'RMS', 
'Standard Deviation', 'Kurtosis', 'Median',  
'Skewness', ‘ Range', ‘Variance', 'Max', 
‘Index of Max’, 'Min', ‘Index of Min’, 
'Energy', '25th Percentile', '75th Percentile', 
'Level Crossing Rate' and' Fractal 
Dimension' (Katz and George, 1985) . This 
resulted in 17 features for each of the 18 
available signals producing a total of 306 
features. These features were then used to 
develop and evaluate a classifier for the 
automated detection of reach direction in the 
YBT and a separate classifier for the 
detection of pre-fatigue or fatigued YBT 
performance. The random-forests 
method was employed to perform 
classification of reach direction and for the 
detection of fatigued YBT performance 
(Breiman, 2001). This technique was chosen 
as it has been shown to produce superior 
accuracy, sensitivity and specificity scores 
in analysing exercise technique with IMUs 
in comparison  to the Naïve-Bayes and 
Radial-basis function network techniques 
(Mitchell et al., 2015). Four hundred 
decision trees were used in each random-
forest classifier.  

The quality of the exercise 
classification system was established using 
leave-one-subject-out-cross-validation 
(LOSOCV) and the random-forests 
classifier with four hundred trees (Fushiki, 
2011). Each participant’s data corresponds 
to one fold of the cross validation. At each 

fold, one participant’s data is held out as test 
data while the random forests classifier is 
trained with all other participants’ data. The 
held out data is used to assess the classifier’s 
ability to correctly categorise unseen data. 
The use of LOSOCV ensures that there is no 
biasing of the classifiers, meaning the test 
subjects data is completely unseen by the 
classifier prior to testing. Previous research 
by Taylor et al (2010) has shown that not 
employing this method of testing can skew 
results significantly. In our system, each 
individual reach direction was classified. 

The scores used to measure the quality 
of classification were total accuracy, average 
sensitivity and average specificity. Accuracy 
is the number of correctly classified 
observations divided by the total number of 
observations completed; this is calculated as 
the sum of the true positives (TP) and true 
negatives (TN) divided by the sum of the 
true positives, false positives (FP), true 
negatives and false negatives (FN):   
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁 
 (2) 

The sensitivity and specificity were 
calculated for each of the reach directions, 
sequentially treating each label as the 
‘positive’ class, and then the mean and 
standard deviation across the five values was 
taken. Sensitivity and specificity were 
computed using formulas 3 and 4 below: 
 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (3) 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
 (4) 

Sensitivity measures the effectiveness of a 
classifier at identifying a desired label, while 
specificity measures the classifiers ability to 
detect negative labels. In the detection of 
fatigued balance, single sensitivity and 
specificity scores were calculated, treating 
pre-fatigued balance as the positive class and 
fatigued balance as the negative class. 
 
In reviewing the accuracy, sensitivity and 
specificity scores produced by each 
classifier, 90% or over was considered an 
excellent result, 80-89% was considered a 
'good' quality result, 60-79% was considered 



 

a 'moderate' result and anything less than 
59% was deemed a poor result. These values 
were chosen by the authors after reviewing 
existing literature on identifying exercises 
with IMUs. In reviewing such literature, an 
existing accepted standard for a good, 
moderate or poor classifier could not be 
found. Therefore, the above system was 
agreed on by the authors to facilitate 
interpretation of our range of results. 

3 RESULTS 

ICC values for the three normalised reach 
directions ranged from 0.976 – 0.986, 
indicating excellent test-retest reliability 
across the pre-fatigue measures. Due to the 
excellent ICC scores observed, the final pre-
fatigue measure was considered 
representative of the pre-fatigue state, and 
was used in the comparison pre and post-
fatigue. The SEM ranged from 0.792-1.48 
for the three YBT reach directions. The 
average decrease in YBT reach distances 
following the fatigue protocol was 2.65 ± 
4.91 (ANT), 2.44 ± 3.06 (PM) and 3.57 ± 
4.27 (PL). Paired samples t-tests 
demonstrated statistically significant 
differences (p < 0.05) between the final pre-
fatigue YBT measurement and the first post-
fatigue measurement in all reach directions 
(Table 1).  
 
 
Table 1: Comparison of ICC, SEM and paired sample 
t-tests for the YBT normalised reach distances for all 
three directions. The level of significance was set to 
p < 0.05 and statistically significant values were 
denoted with an *. 
 

Reliability Analysis 
Pre01, Pre02 & Pre03 

Level of Significance 
(p Values) for Post-

hoc Paired t-test 

Reach 
Distance 

ICC SEM 
Pre03 vs 
Post01 

ANT 0.986 0.792 0.049* 
PM 0.976 1.482 0.008* 
PM 0.978 1.134 0.006* 

 
 
The classification algorithm for a single 

lumbar mounted IMU was capable of 
differentiating the three reach directions in 
the pre-fatigue baseline measures with an 
accuracy of 97.80%, Sensitivity of 97.86 ± 
0.89% and specificity of 98.90 ± 0.56%. 

Figure 2 presents a confusion matrix that 
illustrates the exact percentage of reach 
direction repetitions that were classified 
correctly and incorrectly. The rows represent 
the actual reach direction recorded and the 
columns show the classifier’s predicted 
reach direction. 

A single lumbar mounted IMU was 
capable of discriminating pre and post-
fatigue balance performance with an 
accuracy of 61.90%-71.43%, sensitivity of 
61.90%-69.04% and specificity of 61.90%-
78.57% depending on which reach direction 
was chosen (Table 3). When all reach 
directions were considered together, balance 
performance was classified with an accuracy 
of 70.24%, sensitivity of 64.28% and 
specificity of 76.19%. 
 
Table 2: The accuracy, sensitivity and specificity results of 

the classification algorithm in the detection of baseline and 

fatigued dynamic balance 

 

 
ANT PM PL 

All 
Directions 

Accuracy 61.90 71.43 70.24 70.40 
Sensitivity 61.90 69.04 61.90 64.28 
Specificity 61.90 73.80 78.57 76.19 

Figure 2: A confusion matrix showing multi-class 

classification results for the three reach directions. The 

percentage of reach direction attempts classified correctly 

are marked in bold 

 



 

4  DISCUSSION 

The purpose of this study was to determine 
if data derived from a single lumbar mounted 
IMU is capable of accurately differentiating 
the individual reach directions of the YBT, 
and classifying pre and post-fatigue dynamic 
balance performance.  

The traditional normalised YBT reach 
distance results presented demonstrate that 
the modified Wingate protocol had a 
detrimental effect on the participant’s 
dynamic balance. The ICC values for the 
pre-fatigue baseline assessments presented 
suggest that the normalised YBT reach 
distance scores for each reach direction 
possess excellent test-retest reliability. The 
paired sampled t-test results (Table 1) 
demonstrate that there was a statistically 
significant difference between the final pre-
fatigue measurement and the post-fatigue 
measurements, suggesting that the fatigue 
intervention had a detrimental effect on the 
YBT reach distances for all three reach 
directions. Additionally, the SEM results for 
all reach directions was smaller than the 
average decrease in reach distance between 
the final pre-fatigue and the post-fatigue 
measurement, indicating that the fatigue 
intervention had a negative effect on reach 
distance scores. When the SEM is viewed in 
conjunction with the ICC, it allows us to be 
sure that any deviation from the baseline is 
as a result of the fatiguing intervention, and 
not a consequence of natural biological 
variation.  

The results presented in this paper 
support previously published ones indicating 
that dynamic balance is heavily influenced 
by isolated muscle fatigue (Gribble et al., 
2004, Gribble et al., 2009), lower limb 
fatiguing exercises (Gribble et al., 2009), 
treadmill running (Wright et al., 2013) and 
high intensity intermittent exercise protocols 
(Whyte et al., 2015). Whyte and colleagues 
(2015) investigated the effect of high 
intensity intermittent exercise on dynamic 
balance, as measured by the SEBT. It was 
reported that the percentage reduction in 
SEBT reach distance, for the ANT, PM and 
PL directions were marginally lower than 
those presented in our study. Importantly, 
these differences may be a result of the 
different fatiguing interventions influencing 
the sensorimotor system to different extents 
(Whyte et al., 2015). Additionally, different 

methods of dynamic balance assessments 
were utilised in the two studies. Whyte and 
colleagues (2005) used the SEBT, whereas 
the YBT was implemented in our study, 
potentially explaining the difference in the 
magnitude of change (Coughlan et al., 
2012). These past findings, combined with 
the results from this study, demonstrate that 
at a group level, the fatigue intervention had 
a negative effect on dynamic balance. 

The IMU classification system was 
capable of differentiating individual YBT 
reach directions with excellent levels of 
accuracy, sensitivity and specificity. The 
confusion matrix (Figure 2) illustrates the 
percentage of the reach directions classified 
correctly and incorrectly, indicating where 
the confusion occurred. The ANT reach 
direction was classified with the greatest 
success rate of 99%, followed by PM (98%), 
and then PL (97%). These results may be 
expected as the three reach directions utilise 
different strategies to complete a maximal 
reach. The ANT reach direction involves a 
single planar movement which incorporates 
a single leg squat type movement, while the 
individual reaches outside of their base of 
support. In contrast, the PM and PL 
movements involve multi-planar 
movements, requiring the individual to enter 
a single leg squat, while rotating at the pelvis 
and trunk in order to achieve a maximal 
reach distance. Indeed, previous research 
conducted by Kang and colleagues (2015) 
investigating trunk, pelvic and lower limb 
kinematic strategies utilised during the YBT. 
The results presented by their group 
demonstrate that the ANT reach direction 
requires a largely different strategy to the 
PM and PL directions. The ANT direction 
requires minimal trunk and pelvic kinematic 
movements, with 1° trunk extension, 4° 
trunk ipsilateral flexion, 9° anterior pelvic 
tilt, and 1° of pelvic ipsilateral rotation. The 
majority of the movement strategies stem 
from sagittal plane movements at the hip 
(30° flexion), knee (62° flexion) and ankle 
(39° dorsiflexion). In contrast, the PM and 
PL reach directions require large changes in 
trunk and pelvic kinematics, with the PM 
reach direction requiring 43° trunk flexion, 
21° trunk ipsilateral flexion, 39° anterior 
pelvic tilt and 0° of pelvic contralateral 
rotation, and the PL reach direction requiring 
48° trunk flexion, 16° trunk contralateral 
flexion, 38° anterior pelvic tilt and 11° of 
pelvic contralateral rotation. These results 



 

clarify the similarities and differences 
between the movement strategies utilised 
during each reach direction, contextualising 
how the classification algorithm was capable 
of classifying the individual reach directions 
with such high degrees of accuracy.  

The YBT reach direction classification 
results presented in this study are in line with 
previously published IMU exercise 
identification results which range between 
85-95% depending on the exercises and 
IMU setups (Giggins et al., 2014, Pernek et 
al., 2015, Chang et al., 2007). Giggins and 
colleagues (2014) demonstrated that a single 
IMU location could differentiate between 
seven basic rehabilitation exercises with an 
accuracy of between 93-95% depending on 
the mounting location. Additionally, Pernek 
and colleagues (2015) reported that a single 
IMU system can correctly identity upper 
limb free weight exercises with 85% 
accuracy.  This is significant as the excellent 
levels of accuracy (98%) presented in this 
study were achieved using just 252 
observations. In contrast, the exercise 
classification work presented above used a 
greater number of observations to train the 
classifiers, with Giggins et al (2014) utilising 
3940 observations and Pernek et al (2015) 
using 440 observations per exercise.   

The lumbar IMU classification algorithm 
was capable of differentiating dynamic 
balance performance, as influence by 
fatigue, with and accuracy of between 62% 
and 71%, depending on the reach direction 
(Table 3). The PM reach direction 
demonstrated the highest classification 
accuracy (72%), followed by the PL (70%) 
and then the ANT (62%) reach direction. 
When all reach directions were considered 
together, the classification algorithm was 
able to differentiate normal and abnormal 
balance with an accuracy of 70%.  

These results would be expected, because 
as we previously discussed above, the three 
reach directions require different levels of 
movement strategy complexity. The ANT 
reach direction presented with the lowest 
degree of classification accuracy. The ANT 
reach direction is the least complex 
movement, predominantly requires sagittal 
plane movement of the stance limb (Kang et 
al., 2015). It may be that the ANT reach 
direction movement does not sufficiently 
challenge the sensorimotor system in all 
individuals to elicit a balance deficit large 
enough to be consistently detected by the 

lumbar mounted IMU. In contrast, the higher 
degree of accuracy observed in the detection 
of abnormal balance during the PM and PL 
reach directions are expected as these 
movements require the individual to 
implement a more complex multi-planar 
movement strategy. Both the PM and PL 
reach directions require the individual to 
reach outside of their base of support while 
utilising their trunk as a mobile counter-
lever, involving a combination of complex 
multi-planar movements occurring at the 
trunk, pelvis, hips, knee and ankle (Kang et 
al., 2015, Fullam et al., 2014, Doherty et al., 
2016). This complex multi-planar 
movement may more comprehensively 
challenge the integration of the sensorimotor 
subsystems, resulting in more pronounced 
strategy changes following the introduction 
of a balance deficit, thus leading to 
differences in the IMU data. 

To the best of the authors knowledge this 
is the first research study that has attempted 
to classify dynamic balance performance 
using an IMU. Previous research has 
investigated the ability of single and 
multiple IMUs to detect technique 
breakdown during compound lower limb 
exercises such as the squat (O'Reilly et al., 
2015) and single leg squat (Whelan et al., 
2015). Lower limb exercises such as the 
single leg squat incorporate many of the 
requirements involved during the YBT reach 
directions, such as maintaining one’s 
balance while executing a dynamic task on a 
single leg. Whelan and colleagues (2015) 
reported that a single lumbar based IMU 
mounted on the lumbar spine was capable of 
classifying correct and incorrect single leg 
squat technique with an accuracy of 92%. 
While the classification accuracy presented 
by Whelan and colleagues is higher than that 
of the YBT balance performance 
classification presented in our study, it is 
probable that the YBT classification 
performance would be greatly improved by 
increasing the number of observations used 
to train and test the classifier. 

The results presented in this paper 
demonstrate the potential of a single lumbar 
mounted IMU to automatically classify YBT 
reach direction and balance performance. 
This lays the groundwork for the 
development of an accurate dynamic balance 
performance classification system that can 
provide accessible, in depth, clinically 
relevant information, surrounding an 



 

individual’s dynamic balance, outside of the 
constraints of a laboratory. Future work will 
allow us to detect changes in movement and 
balance strategy during the YBT, 
characterising the dynamic balance defects. 
This would provide clinicians with more in 
depth information which can be used to 
comprehensively and objectively assess the 
integration of the sensorimotor subsystems, 
in an accessible manner. This has the 
potential to provide information in areas 
such as lower limb injuries, identification of 
lower limb injury risk factors, assessment of 
the motor function domain post-concussion, 
as well as balance training in strength and 
conditioning and rehabilitation.  

A number of limitations to the study must 
be acknowledged. The sample size and 
resultant number of observations that could 
be used to train and evaluate the 
classification algorithms were relatively 
small, potentially resulting in decreased 
levels of accuracy. It can be expected that as 
the number of participants and observations 
are increased, there will be a resultant 
increase in the accuracy of the balance 
performance identification. Secondly, no 
gold standard motion capture system was 
employed in this study. However, YBT 
reach directions are commonly accepted as 
the standard in clinical balance assessments, 
and each participant was educated and 
supervised by a Chartered Physiotherapist 
throughout the duration of the study.  

Extensive future work is required to 
improve the classification results presented 
in this paper. Firstly, a greater number of 
participants is required to increase the size of 
the data set in order to establish a normative 
dataset. Additionally, a classification system 
with improved accuracy, sensitivity and 
specificity will be developed. This may be 
achieved through investigating the 
effectiveness of a single IMU located at 
different anatomical positions, collecting a 
larger data set to allow for more training data 
for the classification algorithms and the 
identification of new features to input into 
the classifiers which enable further 
distinction of normal and abnormal balance. 
Novel classification techniques for IMU data 
may also be employed such as the 
application of deep learning on the data. This 
will also require a larger data set to be 
collected. 

5 CONCLUSION 

To conclude, the results presented in this 
paper demonstrate that a lumbar mounted 
IMU is capable of accurately distinguishing 
the three YBT reach directions, as well as 
classifying balance performance as 
influenced by a maximal anaerobic fatigue. 
This work lays the foundations for the 
development of a single IMU system, that 
can accurately differentiate the YBT reach 
directions, as well as detect changes in 
balance strategy, characterising and 
classifying dynamic balance performance.  
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