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ABSTRACT: Hydraulic conductivity is an important geotechnical engineering property as it is 
linked to the performance of many geo-structures. This study used a recently compiled granular 
soil database (CG/KSAT/7/1278) to evaluate the best fit probability density functions for import-
ant parameters in the database. The Loglogistic function was found to be the best-fit probability 
density function for the parameters from CG/KSAT/7/1278 investigated in this paper. The grad-
ing entropy parameters (un-normalised) were used to develop a chart that highlights trends from 
the effect of changes of the gradation parameters on the estimated soil permeability.

1 INTRODUCTION

Hydraulic conductivity (k) is a fundamental soil mechanics parameter that is closely linked to 
many geotechnical problems, such as seepage, settlement, and slope stability (e.g. Lambe & Whit-
man 1969, Taylor 1948). Simple predictive models for k calibrated using laboratory data are often 
used (e.g. Chapuis 2012).

Feng (2022) assembled a coarse-grained soil database CG/KSAT/7/1278, which consists 
over 1200 measurements of k (see Feng 2022 and Feng et al. 2023 for full details of the assem-
bled database including the original data-sources). Feng (2022) examined various empirical 
and semi-empirical transformation models for k of granular soils.

The aims of this study are: (a) Identify the best-fit PDFs for important parameters using CG/ 
KSAT/7/1278; (b) Examine the influence of statistical outliers on the choice of best-fit PDFs 
from (a) and (c) Investigate if the grading entropy theory can offer insights into the variation of 
the soil permeability data from CG/KSAT/7/1278. For further details on the establishment and 
statistical analysis of the database see the thesis of Feng (2022) and Feng et al. (2023).

2 DATABASE STUDY

2.1  Identifying potential outliers

In this work the following procedure for identification of potential outliers was adopted: (i) data-
points with a computed standardized residual not within the range of -2 to 2 (cf. Montgomery 
et al. 2007), or those with a computed leverage value greater than three times the computed mean 
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leverage (cf. Velleman & Welsch 1981) were identified for all calibrated regression models (see 
Feng 2022 for a full list of the calibrated models); and (ii) if a datapoint from (i) was identified as 
an outlier for greater than 75% of the calibrated models it was deemed to be a statistical outlier. 
This analysis results in 22 datapoints out of 1278 in the CG/KSAT/7/1278 database (approxi-
mately 2%) being classified as statistical outliers (a similar procedure for identification of statis-
tical outliers was adopted in Feng et al. 2021, Feng et al. 2022, and the procedure outlined in this 
paper is also used in Feng et al. 2023 for analysis of CG/KSAT/7/1278).

2.2  Probability Density Functions (PDFs)

The best fitting PDFs for the key parameters from the database CG/KSAT/7/1278 were evalu-
ated using the Akaike Information Criterion (AIC) (Akaike 1974) before and after the 
removal of the statistical outliers as identified in Section 2.1. The AIC is computed as:

where Lðθ̂Þ is the ‘likelihood function’, and Ki is the number of parameters in the PDF fitted 
to the data. The trialled PDFs were: ‘Lognormal’, ‘Exponential’, ‘Weibull’, ‘Loglogistic’ and 
‘Gamma’ (Feng and Vardanega 2019 carried out a similar study for a fine-grained soil 
k database: FG/KSAT-1358), were fitted to the void ratio (e), aperture diameter through 
which 50% of the material would pass (D50) and k data from CG/KSAT/7/1278. In the follow-
ing analysis the k data was analysed in the form of the intrinsic permeability K (length2).

Figures 1–3 show probability plots where the aforementioned PDFs are fitted to the e, D50 

and K data from CG/KSAT/7/1278 with and without the identified statistical outliers 
included. Tables 1 and 2 record the computed AIC for the PDFs trialled. The results show 
that the ‘Loglogistic’ function is the best-fit PDF for all parameter examined in database 
either before or after the removal of the identified statistical outliers. The ‘Loglogistic’ func-
tion can be expressed as (e.g. Johnson et al. 1994): 

where, μ = mean of the logarithmic values, and σ = scale parameter of the logarithmic values. 
Table 3 compares the fitted parameters of the best-fit PDFs (‘Loglogistic’) for the key param-
eters of the studied database with and without the identified statistical outliers. The effect of 
outliers on the fitted PDFs was deemed to be negligible. 

Table 1. Computed AIC for the fitted PDFs for CG/KSAT/7/1278 (best fits shown in bold).

n =1278 Exponential Lognormal Weibull Loglogistic Gamma

e 1140 -628 -599 -801 -716
D50 (mm) 3810 2800 3313 2762 3524
K (mm2) -16736 -25291 -25108 -25388 -24269

Table 2. Computed AIC for the fitted PDFs for CG/KSAT/7/1278 with identified outliers removed 
(best fits shown in bold).

n =1256 Exponential Lognormal Weibull Loglogistic Gamma

e 1131 -716 -656 -880 -791
D50 (mm) 3582 2610 3127 2565 3331
K (mm2) -17532 -24883 -24701 -24972 -23946
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3 GRADING ENTROPY

The grading entropy approach was presented to investigate granular soil dry bulk density 
(e.g. Lőrincz 1990) and has subsequently been used to study a range of geotechnical problems 
(e.g. Lőrincz et al. 2005, Imre et al. 2009, Imre et al. 2012 and McDougall et al. 2013). Lőrincz 

Table 3. Best fit PDF (Equation 2) for key parameters of CG/KSAT/7/1278.

Fitted parameters

with the outliers included (n = 1278) with outliers removed (n = 1256)

e D50 (mm) K (mm2) e D50 (mm) K (mm2)

μ -0.59 -0.71 -12.49 -0.59 -0.74 -12.48
σ 0.18 0.69 1.74 0.17 0.67 1.66

Figure 2.  (a) Probability plot with PDFs fitted to data of D50 (mm) from CG/KSAT/7/1278 (n =1278), 
(b) Probability plot with PDFs fitted to data of D50 (mm) from CG/KSAT/7/1278 with identified statis-
tical outliers removed (n =1256).

Figure 1.  (a) Probability plot with PDFs fitted to data of e from CG/KSAT/7/1278 (n =1278), (b) Prob-
ability plot with PDFs fitted to data of e from CG/KSAT/7/1278 with identified statistical outliers 
removed (n =1256).

Figure 3.  (a) Probability plot with PDFs fitted to data of K (mm2) from CG/KSAT/7/1278 (n =1278), 
(b) Probability plot with PDFs fitted to data of K (mm2) from CG/KSAT/7/1278 with identified statistical 
outliers removed (n =1256).
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et al. (2005) and Imre et al. (2009) give a detailed introduction of the framework (which char-
acterizes disorder in soil particle size distributions) and full derivation of grading entropy 
parameters. The grading entropy S of a soil mixture is given by (form of the equations are 
shown as in Singh 2014, pp. 324-328):

where S0 = base entropy:

where N = number of fractions, xi = relative frequency of fraction i, Ci = number of elementary 
statistical cells contained in fraction i. The entropy increment ΔS is:

the base entropy S0 and the entropy increment ΔS helps explain the relative spread of the 
grain sizes and explains the relative distribution of the particles. The normalised grading 
entropy coordinates A and B are:

Feng et al. (2019) used the normalised grading entropy parameters (A, B) to assess the hydraulic 
conductivity for a granular soil mixture. O’Kelly & Nogal in their discussion of Feng et al. (2019) 
proposed the addition of the e alongside A and B for hydraulic conductivity prediction (Feng et al. 
2020). O’Kelly & Nogal (2020) applied their three-parameter approach to test data on a wider 
range of granular materials than was presented in Feng et al. (2019, 2020). Feng et al. (2021) then 
investigated the influence of using the grading entropy parameter (S) along with the percentage air 
voids to assess asphalt concrete hydraulic conductivity using a large database. Imre et al. (2021) 
used the un-normalised grading entropy coordinates and determined iso-lines for the saturated k.

The grading entropy parameters for data from CG/KSAT/7/1278 were calculated with the 
width of the elementary cell (d0) assumed to be 2-22mm following Imre et al. (2009). Figures 4 
and 5 present the normalised and non-normalized grading entropy diagram for the database 
CG/KSAT/7/1278. Figure 4 shows that the permeability levels exhibit an increasing trend with 
higher S0 value and lower ΔS value. Such variation of permeability level is less distinct on the 
normalised grading entropy diagram (Figure 5). It was observed that datapoints with lower 
permeability level (i.e. categories ‘very low’, ‘practically impermeable’) mostly are aggregated 
around the A = 2/3 on the normalised grading entropy diagram, which according to Lőrincz 
(1990) represent mixtures with the maximum density for a given fraction number N, concern-
ing a fixed distribution type (e.g., fractal distribution, non-fractal distribution).

4 CONCLUSIONS

Some statistical analysis of the coarse-grained soil database CG/KSAT/7/1278 has been pre-
sented in this paper. The main findings from this study are:

(a) the ‘Loglogistic’ function is the best fit PDF (of those trialled) for the e, D50 and K data 
from CG/KSAT/7/1278.

(b) The influence of the identified statistical outliers was found to be minimal on the best fit 
PDFs.
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(c) On the normalised grading entropy diagram (A versus B), the K categories are less distin-
guishable than on the un-normalised grading entropy diagram (ΔS versus S0) for the studied 
data.
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