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Abstract: Intelligent fault diagnosis (IFD) is essential for preventative maintenance (PM) in Industry

4.0. Data-driven approaches have been widely accepted for IFD in smart manufacturing, and various

deep learning (DL) models have been developed for different datasets and scenarios. However, an

automatic and unified DL framework for developing IFD applications is still required. Hence, this

work proposes an efficient framework integrating popular convolutional neural networks (CNNs) for

IFD based on time-series data by leveraging automated machine learning (AutoML) and image-like

data fusion. After normalisation, uniaxial or triaxial signals are reconstructed into -channel pseudo-

images to satisfy the input requirements for CNNs and achieve data-level fusion simultaneously.

Then, the model training, hyperparameter optimisation, and evaluation can be taken automatically

based on AutoML. Finally, the selected model can be deployed on a cloud server or an edge device (via

tiny machine learning). The proposed framework and method were validated via two case studies,

demonstrating the framework’s availability for the automatic development of IFD applications and

the effectiveness of the proposed data-level fusion method.

Keywords: intelligent fault diagnosis; convolutional neural network; automated machine learning;

data fusion; time series

1. Introduction

Intelligent fault diagnosis (IFD) [1] plays a vital role in preventative maintenance
(PM) for Industry 4.0, which can reduce downtime, improve overall system efficiency,
decrease maintenance costs, enhance reliability, and extend the lifespan of machinery, as
well as help to optimise operations and make informed decisions. Data-driven approaches
based on deep learning (DL) have been widely accepted for IFD in smart manufacturing.
Meanwhile, various deep neural network (DNN) architectures have been utilised and
developed in the field of IFD. However, these DL models are usually isolated, and previous
efforts [2–6] have always focused on creating a single DNN architecture for a specific
dataset or working scenario, which does not consider comparative analysis of these models.
Hence, an automatic and unified DL framework for IFD development is still required,
which comprises automatic data fusion, model training, hyperparameter optimisation,
and evaluation.

This work proposes an efficient IFD framework integrating popular convolutional
neural networks (CNNs) for time-series data by leveraging automated machine learning
(AutoML) and image-like data fusion. After normalisation, the uniaxial or triaxial sig-
nals can be reshaped into 3-channel pseudo-images through the proposed phase space
reconstruction, satisfying the input requirements for CNNs and achieving data fusion
simultaneously. With the reconstructed 3-channel pseudo-images, model training can be
carried out automatically via the integrated CNN architectures based on AutoML. Then,
the trained models are evaluated automatically according to different metrics, including
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accuracy, precision, recall, F1 score, ROC, AUC, MCC, FLOPs, and the model parame-
ters. Finally, the selected model can be deployed on a cloud server or an edge device via
tiny machine learning (tinyML) for practical applications, such as in a digital-twin (DT)
manufacturing system, which requires efficient and resilient decision-making, even under
communication-constraint circumstances.

The proposed framework and data fusion method were validated via two case studies
using uniaxial and triaxial vibration signals. The experiments demonstrate that the pro-
posed framework leveraging AutoML-CNN can automatically realise model training and
evaluation, which enhances the development efficiency for IFD applications. Moreover,
it proves that the fused triaxial data through the proposed data-level fusion can perform
better than the single-axis data using the same neural network. The main contribution
of this study is two-fold: (1) it proposes an efficient and automatic framework for IFD
development by leveraging AutoML-CNN and (2) it proposes an image-like data-level
fusion method to handle triaxial time-series signals.

The rest of this paper is structured as follows: Section 2 overviews the related work
for IFD based on machine learning. Section 3 presents the proposed pseudo-image recon-
struction method and the IFD framework. Section 4 is the framework validation via case
studies. Section 5 concludes the work and discusses the future research direction.

2. Related Works

2.1. IFD with Traditional Machine Learning

Intelligent fault diagnosis (IFD) methods that can automatically recognise the health
states of machines and infrastructures [7] are essential for preventative maintenance in
Industry 4.0. Many traditional machine learning (ML) approaches can be applied in IFD,
such as k-nearest Neighbour (k-NN) [8], Naïve Bayes classifier [9], support vector machine
(SVM) [10], decision tree [11], and random forests [12], etc., which rely on manual features.
The pipeline for IFD based on traditional ML can be condensed as shown in Figure 1, which
starts from data acquisition through various IoT technologies to feature extraction via
handcrafted design and automatic data-driven health state recognition using supervised or
unsupervised learning approaches.
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Data for fault diagnosis are usually in time series and collected constantly from differ-
ent sensors mounted on machines or infrastructures, such as acceleration, displacement,
strain, and acoustic signals, as well as ambient conditions like temperature and wind
speed. The commonly used features can be categorised into time, frequency, and time–
frequency domains based on the extraction methods, e.g., the statistical features, zero-cross
rate, wavelet, fractal features in the time domain, discrete Fourier transform (DFT), and
power spectral density (PSD) in the frequency domain; energy and entropy from short-term
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Fourier transform (STFT), wavelet transform (WT), wave packet transform (WPT), and
Hilbert–Huang transform (HHT) in the time–frequency domain, as shown in Table 1.

Table 1. Traditional machine learning pipeline for IFD.

Machine Learning Handcrafted Feature Extraction Approaches

Traditional ML

Time domain: statistical features, zero-cross
rate, wavelet, fractal features, etc.

KNN, SVM, Naïve Bayes
classifier, decision tree,
random forest, etc.

Frequency domain: DFT, PSD, etc.

Time–frequency domain: STFT, WT, WPT,
EMD, HTT, etc.

2.2. IFD with Deep Learning

With the rapid development of the IoT, the collected data volume is dramatically
higher than ever before and brings more useful information for fault diagnosis. Big data
acquisition has four characteristics: volume, quality, variety, and velocity [7].

(1) Volume—the volume of collected data sustainably grows during the long-term opera-
tion and maintenance (O&M).

(2) Quality—a portion of poor-quality data is mingled in the massive data.
(3) Variety—multi-source data is collected from multiple sources (by different sensors)

with a heterogeneous structure.
(4) Velocity—fast transmission can be enabled in situ via fieldbus cables or at the remote

end via high-speed communication like 5G, which promises response and decision-
making in near real-time for DT.

Traditional ML relying on handcrafted features becomes inappropriate for big data
scenarios. Hence, IFD has been extensively developed based on DL, which can learn
features automatically. Its pipeline is shown in Figure 2, consisting of only two steps,
i.e., data acquisition and health state recognition, which can accommodate massive data and
achieve a higher level of automation by skipping the step of manual feature extraction. The
widely used DL approaches for IFD include multilayer perceptron (MLP), autoencoder (AE),
recurrent neural network (RNN), convolutional neural network (CNN), transformer, etc.
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2.2.1. DL with 1D Time Series

Liu et al. [13] and Lu et al. [14] employed the stacked sparse AE and the stacked
denoising AE for the IFD of bearings, presenting higher diagnosis accuracy than traditional
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ML methods. Common RNNs, including gated recurrent units (GRUs) and long-term
memory networks (LSTM), are theoretically an ideal non-linear time-series forecasting
tool and a universal approximator for dynamic systems [15]. Ling et al. [16] employed
RNN to achieve early warning in the fault creep period for nuclear power machinery,
together with principal component analysis (PCA), wavelet analysis, and Bayesian infer-
ence. Yuan et al. [17] utilised LSTM for IFD and remaining useful life (RUL) estimation for
aero-engine based on time-series data. Moreover, Neves et al. [18,19] employed an MLP
with train-induced acceleration data to identify the structure health conditions of the KW51
railway bridge. Sajedi and Liang [20] proposed a framework based on a fully convolutional
encoder–decoder architecture for structural damage diagnosis with the vibration signals
from a grid sensor network, which can localise damages and distinguish multiple damage
mechanisms with reliable generalisation capacities.

Additionally, 1D-CNN is also inherently suitable for time-series pattern recognition.
For example, Wu et al. [21] proposed an approach for rub-impact fault diagnosis of a
rotor system based on 1D-CNN. Sony et al. [22] designed a 1D-CNN to identify multiclass
damage using bridge vibration data. 1D CNN was also utilised to detect the change of local
structural stiffness and mass based on acceleration from a single sensor [23,24].

2.2.2. DL with 2D Synthetic Images

As the monitoring variable for IFD is usually a 1D time series, which is different from
2D images, to leverage the powerful feature learning capability of CNNs, many efforts have
been made to transform 1D motion signals into 2D images, including Gramian angular field
(GAF) [25], wavelet transform [26–28], S-transform [29], phase space reconstruction [30],
etc. The GAF, wavelet transform, and S-transform are time-consuming, and the latter
two require expert knowledge in the frequency domain for spectrum exploration. In
contrast, phase space reconstruction can quickly generate synthetic images with simple
backgrounds. For example, time series can be converted through Equation (1) (i.e., min–max
normalisation) into a single-channel greyscale image, as shown in Figure 3.

P(j, k) = round

{

f (x((j − 1)× L + k)− Min( f (x))

Max( f (x))− Min( f (x))
× 255

}

(1)

where P(j, k) ∈ [0, 255] denotes the pixel strength of the grayscale image and j and k are the
row and column numbers in the reconstructed image, respectively.
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The DL-based IFD can be summarised as shown in Table 2. Previous works [30–32]
have already proved the effectiveness of using shallow CNNs, like modified LeNet, for IFD.
However, they mainly focused on a single sensor and did not consider data fusion for the
signals from triple sensors or axes. Meanwhile, the imaging method has not been further
developed to generate three-channel images (like RGB) to take advantage of the popular
deep CNN architectures.
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Table 2. Deep learning pipeline for IFD.

Pipeline Approaches

Deep Learning

1D time series:
RNN (including GRU and LSTM), 1D-CNN, etc.

2D synthetic images:
(1) Imaging—GAF, wavelet transform, S-transform, phase space

reconstruction, etc.
(2) Models—shallow single-channel CNNs and classical

three-channel deep CNNs via proposed imaging.

2.3. IFD with Data Fusion

Data fusion is usually employed in IFD based on multi-sensor data, which is supposed
to be an effective way to improve pattern recognition accuracy. It includes data-level
and decision-level fusion. Teng et al. [33] trained seven individual 1D CNNs using the
acceleration signals from the corresponding sensors and fused their classification results
at the decision level by hard voting. Compared with data-level fusion, i.e., integrating all
acceleration signals into a multi-channel time sequence, decision-level fusion enhanced
the classification accuracy by at least 10% in the experiments. However, this comparison
consequence is not absolute. For example, Gao et al. [34] trained a single 1D CNN with the
data-level fused acceleration signals from six sensors on a bridge for structure health-state
recognition. Compared with decision-level fusion with hard and soft voting from six
individual classifiers, data-level fusion can enhance the test accuracy by more than 20%.
Furthermore, Gong et al. [35] used multi-channel data-level fusion of time-series signals
from different sensors for the IFD of rotating machinery by leveraging CNN-SVM, which
also achieves excellent test performance (nearly 100% accuracy). As can be seen, the level of
fusion occurrence in IFD is flexible, depending on the used dataset and the selected neural
network architecture.

3. Proposed IFD via AutoML-CNN and Image-like Fusion

3.1. Problem Statement

As can be seen from the related works for IFD with deep learning, CNN-based pattern
recognition using the derived 2D images from time-series data has become one of the most
effective approaches for data-driven fault diagnosis. It can be attributed to the excellent
feature learning capability of CNNs and subsequent fully connected networks’ (FCNs)
fitting ability. Meanwhile, there are already many classical CNN architectures designed
in computer vision, including LeNet, VGG, ResNet, EfficientNet, MobileNet, etc., as well
as techniques developed for improvement, such as dilated convolution, attention, and
lightweight design.

However, previous research has usually focused on implementing or improving an
individual architecture, such as modified LeNet, VGG16, and transformer. Still, it did not
involve different neural networks in a unified framework by leveraging AutoML. As is
known, variant neural networks could perform differently in data-driven fault diagnosis
even for the same dataset. Therefore, how to automatically realise training (including
parameter optimisation) and select the most appropriate neural network has become an
issue for developing practical IFD applications. Meanwhile, how to fuse the data from a
triaxial sensor, such as three-axis acceleration on (x, y, z), efficiently and effectively is also
a problem.

3.2. Pseudo-Image Reconstruction and Data Fusion

The previous time–frequency transformation from 1D time-series signals to 2D syn-
thetic images is usually time-consuming (e.g., the wavelet transformation for a sliding
window of 1032 will take 1.653 s on Google Colab) and requires expert knowledge of the fre-
quency spectrum. In contrast, the spatial reconstruction from the same time-series sliding
window to a grayscale image like in [30] will only take 0.0001 s. However, the generated
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single-channel grayscale image cannot be utilised directly as input for the popular deep
CNNs because they are designed for three-channel RGB images. Hence, an improved
three-channel pseudo-image reconstruction (i.e., imaging) method is proposed here, as
shown in Figure 4.
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Figure 4. Proposed three-channel pseudo-image reconstruction from time series.

The first step in pre-process is to select an appropriate sliding window size, which
depends on the sampling frequency, computing capability (for edge device), etc. Normal-
isation is suggested to decrease the time cost of training convergence, which can be the
min–max normalisation or z-score standardisation of the training data. The pseudo-image
pixels (i.e., matrix element) can be decimals without scaling up to the range of [0, 255]
(i.e., unlike Equation (1) in previous research) because neural networks can convert the
decimals to the scores between [0, 1] after the hidden layers and softmax functions. The slice
of signals on each axis is reshaped as a single-channel pseudo-image in rows or columns,
as shown in Figure 3. Then, the single-channel pseudo-image from a uniaxial signal can
be duplicated to three channels, and the slice of triaxial signals can be reconstructed into
a three-channel pseudo-image by stacking the single-channel image from each axis, as
shown in Figure 4. The latter can achieve triaxial data-level fusion and satisfy the input
requirement for CNN architectures at the same time.

3.3. Automated Machine Learning

Automated machine learning (AutoML) includes the end-to-end procedure from
beginning with a raw dataset to building a machine learning model ready for deployment.
The high degree of automation in AutoML aims to allow non-experts to use machine
learning models and techniques without requiring them to become experts in machine
learning [36]. Currently, most popular CNN architectures have already been built as APIs
in the mainstream DL framework, including Keras, TensorFlow, PyTorch, etc. They can be
revoked straightforwardly, which serves as the foundation of AutoML in this study.

After the proposed imaging, the derived three-channel pseudo-images are adopted
as the input for integrated DL neural networks, which can be the built-in classical CNN
architectures or the self-defined models. It is worth noting that the integrated neural
networks are not limited to CNNs and can be any DNN architecture designed for RGB
images, such as the Swim Transformer. The pseudo-images need to be resized appropriately
according to the input requirement of each neural network. Then, the AutoML procedure
can be carried out as shown in Figure 5, consisting of (1) automatic training through the
popular DL frameworks for the integrated CNN architectures; (2) neural network search
(and hyperparameter optimisation) based on evaluation according to various metrics; and
(3) deployment on an edge device through tinyML.

Notably, the first two steps are supposed to be taken on a high-performance computer,
such as a cloud server with a GPU, because DL training requires considerable computing
power and memory. Hyperparameters, including optimiser, epoch, activation function,
and learning rate, are also available for automatic optimisation via different approaches,
such as random search, grid search, Hyperband [37], Bayesian hyperparameter optimisa-
tion (BHO) [38], tree-structured Parzen estimator (TPE) [39], population-based training
(PBT) [40]. Appropriate transfer learning, such as pre-trained backbones from similar
signals, can also be integrated into the training step, especially when applying self-defined
neural networks.



Machines 2023, 11, 932 7 of 14

 

Figure 5. Proposed AutoML procedures for IFD.

Notably, the first two steps are supposed to be taken on a high-performance com-
puter, such as a cloud server with a GPU, because DL training requires considerable com-
puting power and memory. Hyperparameters, including optimiser, epoch, activation 
function, and learning rate, are also available for automatic optimisation via different ap-
proaches, such as random search, grid search, Hyperband [37], Bayesian hyperparameter 
optimisation (BHO) [38], tree-structured Parzen estimator (TPE) [39], population-based 
training (PBT) [40]. Appropriate transfer learning, such as pre-trained backbones from 
similar signals, can also be integrated into the training step, especially when applying self-
defined neural networks.

The models were evaluated via different metrics (see Equations (2)–(7)), including 
accuracy, precision, recall, F1 score, receiver operating characteristic curve (ROC), area 
under the ROC curve (AUC), Matthew’s correlation coefficient (MCC), etc.
where TP—true positive, TN—true negative, FP—false positive, and FN—false negative.Accuracy = 𝑇𝑁 + 𝑇𝑃𝑇𝑁 + 𝐹𝑃 + 𝑇𝑃 + 𝐹𝑁 (2)

Precision = 𝑇𝑃𝑇𝑃 + 𝐹𝑃 (3)

Recall = 𝑇𝑃𝑇𝑃 + 𝐹𝑁 (4)

𝐹1 Score = 2 ∗  Precision ∗  Recall 
 Precision +  Recall (5)

MCC = 𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁) (6)

𝐴𝑈𝐶 = ∑(𝑝𝑖 , 𝑛𝑗)𝑝𝑖>𝑛𝑗𝑃 ∗ 𝑁 (7)

where 𝑃—the number of positive examples; 𝑁—the number of negative examples; 𝑝𝑖—
the prediction score for a positive example; and 𝑛𝑗—the prediction score for a negative 
example. 

Additionally, because the float point operations (FLOPs) represent the forward-pass 
computing capability needed by the neural network model, the number of model param-
eters (params) is subject to the computing memory, and the frame per second (FPS) re-
flects the processing speed; if the trained models have similar performance using the 
above indicators, the one with fewer FLOPs, fewer params, and higher FPS would be rec-
ommended for practical applications.

Figure 5. Proposed AutoML procedures for IFD.

The models were evaluated via different metrics (see Equations (2)–(7)), including
accuracy, precision, recall, F1 score, receiver operating characteristic curve (ROC), area
under the ROC curve (AUC), Matthew’s correlation coefficient (MCC), etc.
where TP—true positive, TN—true negative, FP—false positive, and FN—false negative.

Accuracy =
TN + TP

TN + FP + TP + FN
(2)

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

F1 Score = 2 ∗
Precision ∗ Recall

Precision + Recall
(5)

MCC =
TP × TN − FP × FN

√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(6)

AUC =
∑
(

pi, nj

)

pi>nj

P ∗ N
(7)

where P—the number of positive examples; N—the number of negative examples; pi—the
prediction score for a positive example; and nj—the prediction score for a negative example.

Additionally, because the float point operations (FLOPs) represent the forward-pass
computing capability needed by the neural network model, the number of model parame-
ters (params) is subject to the computing memory, and the frame per second (FPS) reflects
the processing speed; if the trained models have similar performance using the above indi-
cators, the one with fewer FLOPs, fewer params, and higher FPS would be recommended
for practical applications.

Finally, the selected DL model can be deployed on edge devices for IFD by leveraging
tinyML, such as TensorFlow Lite. Moreover, as edge devices are also usually the equipment
for data acquisition or aggregation, the newly collected data can be used to update the
training set based on supervised or semi-supervised learning via appropriate annotation,
thereby enhancing the long-term performance of the IFD application, as shown as the loop
in Figure 5.
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3.4. Proposed Framework and Workflow

The complete workflow for IFD by leveraging AutoML-CNN and image-like data
fusion can be seen in Figure 6. The time-series signals from uniaxial and triaxial sensors are
adopted as the input for the built-in and self-defined CNN architectures seamlessly after
the proposed pseudo-image reconstruction, achieving triaxial data fusion simultaneously.
Neural network selection and hyperparameter optimisation can be implemented through
AutoML based on model evaluation according to different metrics, including test perfor-
mance (such as accuracy, precision, recall, F1 score, ROC, AUC, and MCC) and computing
performance (such as FLOPs, params, and FPS).
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4.2. Case 1—CWRU Dataset (Uniaxial Signals)

In the first case, the bearing dataset collected by the Case Western Reserve University
Bearing Data Center on a bearing test rig was utilised for framework validation with
uniaxial signals [35]. The vibration signals in the experiment were collected from the
uniaxial accelerometers on the drive end of the motor under one hp at the sampling
frequency of 48 kHz. Different faulty bearings were introduced with fault diameters of
0.007, 0.014, and 0.021 inches on the rolling element, the inner raceway, and the outer
raceway, respectively. Therefore, there are nine fault categories plus a normal baseline,
i.e., ten kinds of bearing health states. The experiment aims to automatically recognise each
fault category and select the most appropriate neural network for deployment through the
proposed IFD framework.
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Firstly, the uniaxial acceleration signals for each bearing health condition were sepa-
rated into segments with the size of 1024 because the 32 × 32 pseudo-images can be utilised
for most built-in APIs of classical CNN architectures directly in tf.keras. The segments
were split randomly into the training, validation, and test sets according to 60%:20%:20%,
i.e., 2820, 940, and 940 segments, respectively. Z-score standardisation was employed on
the training set, and the fitted scaler transforms the test set. The segments were reshaped
to single-channel matrices and duplicated into triple-channel pseudo-images through the
pipeline in Figure 4. Subsequently, the pseudo-images were provided to the integrated
CNN architectures as input for training and evaluation. Here, the pseudo-images were
resized to 75 × 75 through nearest-neighbour interpolation when necessary to meet the
input shape requirements of some CNN architectures, such as Xception. A fixed training
configuration was employed in the experiment to test the framework availability for neural
network selection, as shown in Table 3. Automatic hyperparameter optimisation can be
further integrated in future work. The training loss and test accuracy are shown in Figure 8.

Table 3. Training configuration.

Input Shape Split Epochs Optimiser Batch Size Learning Rate

32 × 32 × 3 or 75
× 75 × 3

60%:20%:20% 1000 Adam 128 0.001
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The checkpoint with the highest validation accuracy during training is saved as the
best model for each CNN architecture. Their test performance can be seen in Figure 9,
including accuracy, precision, recall, F1 score, and normal-vs-fault AUC. As can be seen, the
Xception model with resized pseudo-images (75 × 75 × 3) as input has the best performance,
and its confusion matrix is shown in Figure 10. The FLOPs, parameters, and average FPS
(within 100 times) are shown in Table 4. After conversion through TFLiteConverter [36],
the derived lightweight Xception model can be deployed on an edge device, i.e., Raspberry
Pi 4 (4GB) here, to satisfy the requirement for a practical application. It demonstrates that
the proposed framework can achieve the model training, evaluation, and selection for IFD
with the time-series signals from a uniaxial sensor by leveraging the popular built-in and
self-defined CNN architectures based on AutoML, i.e., AutoML-CNN.
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and selection for IFD with the time-series signals from a uniaxial sensor by leveraging the 
popular built-in and self-defined CNN architectures based on AutoML, i.e., AutoML-
CNN.

 

Figure 9. Test performance on the CWRU dataset through the proposed pipeline.
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the CWRU dataset.
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Table 4. The CWRU model FLOPs, parameters, and FPS.

Models LeNet EfficientNetB0 Mobile-Net Densnet-121 ResNet50 Xception VGG16

FLOPs 6.58 × 105 8.66 × 106 1.16 × 107 5.79 × 107 7.89 × 107 5.62 × 108 3.32 × 108

Params 6.16 × 104 4.06 × 106 3.23 × 106 7.05 × 106 2.36 × 107 2.09 × 107 3.36 × 107

FPS 5449 2374 4058 1464 2463 1128 2760

4.3. Case 2—SEU Dataset (Triaxial Signals)

In the second case, the gearbox dataset collected on the DDS (Drivetrain Dynamic
Simulator) test rig of Southeast University was utilised for framework validation with
triaxial signals. The planetary vibration data on triple axes (i.e., x, y, z) under the load
configuration 30-2 was adopted for the experiment. There are four gear faults, including
chipped tooth, missing tooth, root fault, surface fault, plus health working state, i.e., five
kinds of gear health states. The experiment aims to automatically recognise each fault
category and select the most appropriate neural network for deployment through the
proposed IFD framework.

Initially, the planetary vibration signals for each axis were separated into segments
with a size of 1024. Then, the segments were split randomly into the training, validation,
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and test sets under 60%:20%:20%, i.e., 3100, 1000, and 1000 segments, respectively. Z-score
standardisation was employed on the training set, and the fitted scaler transformed the
test set. Moreover, the segments were reconstructed into three-channel pseudo-images by
stacking the single-channel image from each axis to achieve triaxial data fusion. Subse-
quently, the pseudo-images wer provided to the integrated CNN architectures as input for
training and evaluation. Here, the pseudo-images were resized to 75 × 75 through nearest-
neighbour interpolation to meet the input shape requirements of some CNN architectures,
such as Xception, when necessary. Like case 1, a fixed training configuration was employed
in the experiment, as shown in Table 3. The training loss and test accuracy are shown in
Figure 11, where lenet_x, lenet_y, and lenet_z denote the LeNet-5 performance based on
the data on a single axis. In contrast, lenet_xyz, mobile_xyz, and xception_xyz represent
the model performance based on the triaxial data through the proposed image-like data
fusion.
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The test performance of each model, including accuracy, precision, recall, F1 score,
and normal-vs-fault AUC, is shown in Figure 12, where x, y, z, and xyz denote the models
with single- or triaxial signals. As can be seen, the model with the triaxial signals through
the proposed image-like data fusion can achieve better performance than the model with
the uniaxial signals, i.e., lenet_xyz performs better than lenet_x, lenet_y, and lenet_z. The
Xception model with resized pseudo-images (75 × 75 × 3) as input has the best performance,
and its confusion matrix is shown in Figure 13. The FLOPs, parameters, and average FPS
(within 100 times) are shown in Table 5. After conversion through the TFLiteConverter [36],
the derived lightweight Xception model can be deployed on Raspberry Pi for practical
applications. This demonstrates that data fusion and model training for IFD with the triaxial
signals can be achieved through the proposed framework by leveraging AutoML-CNN
and the proposed image-like data fusion.

Table 5. SEU model FLOPs and parameters.

Models LeNet_x LeNet_y LeNet_z LeNet_xyz
Mobile-
Net_xyz

Xception_xyz

FLOPs 6.58 × 105 8.66 × 106 6.58 × 105 6.58 × 105 6.58 × 105 5.62 × 108

Params 6.16 × 104 4.06 × 106 6.16 × 104 6.16 × 104 6.16 × 104 2.09 × 107

FPS 5778 5585 5726 6003 3493 1161
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5. Discussion and Conclusions

This work proposes an efficient and unified framework by leveraging AutoML and
image-like data fusion for IFD with time-series signals from uniaxial or triaxial sensors.
The popular built-in and self-defined DL architectures can be easily integrated into the
framework to select the most suitable IFD model for different datasets or scenarios. Their
training can be carried out consecutively or parallelly, and the evaluation can be taken
automatically by comparing the model performance on the test set according to different
metrics.. In the proposed spatial reconstruction method, the time-series data from a uniaxial
sensor can be reshaped into a 2D matrix after normalisation and then duplicated into a
three-channel pseudo-image. Similarly, the data from a triaxial sensor can be reconstructed
into a three-channel pseudo-image by stacking the single-channel image from each axis,
thereby achieving data fusion.

The proposed IFD framework and the data fusion method were validated via two case
studies based on uniaxial and triaxial vibration signals from the CWRU and SEU datasets,
respectively. The experiments demonstrate that it can automatically achieve model training
and evaluation through the proposed IFD framework, thereby enhancing the development
efficiency for practical applications. Moreover, the fused triaxial time-series data through
the proposed image-like data fusion method can improve the model performance effectively.
Moreover, the recommended DL model can be easily deployed on a cloud server or an



Machines 2023, 11, 932 13 of 14

edge device (such as Raspberry Pi) via tinyML for inference to satisfy the requirement for
practical applications, such as in a DT manufacturing system, which requires timely and
resilient decision-making, even under communication-constraint circumstances.

Although the proposed framework can benefit practical IFD application by leveraging
AutoML and image-like data fusion, it still has some limitations. Firstly, the proposed
data-level fusion method is only suitable for the signals from a single triaxial sensor or no
more than three uniaxial sensors at the same sampling frequency. Hence, fusion methods
for heterogeneous data from multiple sensors (more than three) with different sampling
frequencies are required for future research. Secondly, as there is a trade-off between
neural network performance and computing complexity, a more in-depth study for model
recommendation considering practical scenarios, such as device computing capability,
storage, and power, is also necessary for future work.
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