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Abstract 

In this paper, we present a set of impr ov ed algorithms for r ecov ering computer aided design (CAD-type) surface models from three- 
dimensional (3D) images. The goal of the proposed fr amew ork is to gener ate B-spline or non-uniform rational B-spline (NURBS) sur- 
faces, which are standard mathematical representations of solid objects in digital engineering. To create a NURBS surface , w e first 
compute a control network (a quadrilateral mesh) from a triangular mesh using the Mar c hing Cubes algorithm and Discrete Morse 
theor y. To cr eate a NURBS surface , w e first compute a triangular mesh using the Mar c hing Cubes algorithm, then the control netw ork 
(a quadrilateral mesh) is determined from the triangular mesh by using Discrete Morse theor y. Discr ete Morse theor y uses the critical 
points of a specific scalar field defined over the triangulation to generate a quad mesh. Such a scalar field is obtained by solving a 
graph Laplacian eigenpr ob lem ov er the triangulation. Howev er, the r esulting surface is not optimal. We ther efor e intr oduce an opti- 
mization algorithm to better approximate the geometry of the object. In addition, we propose a statistical method for selecting the 
most appropriate eigenfunction of the graph Laplacian to generate a control network that is neither too coarse nor too fine, gi v en 

the precision of the 3D image. To do this, we set up a r egr ession model and use an information criterion to choose the best surface. 
F inally, w e extend our approach by taking into account both model and data uncertainty using pr oba bilistic r egr ession and sampling 
the posterior distribution with Hamiltonian Markov Chain Monte Carlo. 

Ke yw or ds: par ametric curve and surface models, NURBS surface, sampling 

1. Introduction 

NURBS surfaces are widely used in CAD software due to their con- 

tinuity and the ease with which one can interact and adjust them. 

In practice, people tend to use CAD softw ares; ho w ever, they do 

not have efficient capabilities to process triangulation. In addi- 

tion, NURBS surfaces are also used for numerical simulation us- 

ing isometric analysis (Hughes et al., 2005 ; Nguyen et al., 2015 ). 

Methods for drawing a three-dimensional (3D) object with NURBS 

surfaces in CAD software are relatively well established; howe v er, 

sometimes it is necessary to obtain a NURBS surface r epr esen- 

tation of a real object such as an organ or a bone, for example. 

Hence, we expect to reconstruct a NURBS surface from images 

such as computed tomography (CT) or magnetic resonance imag- 

ing (MRI) scans. A naiv e a ppr oac h determining suc h a surface 

would be to start from an arbitrary surface . T hen, an optimization 

process is emplo y ed to gradually minimize the distance between 

the surface and the data points. Ho w e v er, suc h a method assumes 

a priori knowledge of the topology of the object, i.e., whether it 

resembles a sphere, a torus, a double torus or not, to initialize 

the process with the correct topology. For example, in Anderson 

and Crawford-Hines ( 2000 ), some organs can be reconstructed but 

must be homeomorphic to a sphere. Indeed, the method uses a 

cylinder and then solves a mean squared error problem to fit the 

surface to the point cloud. In Boujraf et al. ( 2012 ), they also recon- 

struct objects with spher e-equiv alent topology. 

By studying the NURBS surface definition, we observe that the 

r equir ement of a control net leads to the requirement of build- 

ing a quadrangular mesh. T hus , an alternative approach would 

be to first determine a quadrangulation and then use it to draw 

NURBS surface. In this paper, we will use this method. To calculate 

a NURBS surface, a semi-regular quadrangular mesh is required 

(see Bommes et al., 2013 for the definitions of mesh types). In order 

to establish a NURBS surface, it is necessary to employ a regular 

quad mesh, as the NURBS surface is defined by a matrix of con- 

trol points. Ho w ever, when generating a CAD surface for a com- 

plex object, multiple NURBS surfaces are often required. There- 

fore, it becomes necessary to compute a coarse (irregular) quad 

mesh. Subsequentl y, eac h quad within this mesh can be subdi- 

vided and utilized as the control net for a NURBS surface. Addi- 

tionally, by ensuring that the new vertices introduced during the 

division process at the boundary of each quad are identical, we 

ensure that the distinct NURBS surfaces share the same control 

point at the boundary. This ensures that the resulting surface is 

continuous C 0 . Methods that produce irregular quad meshes, such 

as the Dual Marching Cubes , ma y not be the best option. This is 

due to the large number of quads they generate. Subdividing these 

irregular quad meshes to fit a NURBS surface on each introduces 

a significant number of patches and subsequently a large num- 

ber of parameters . T his can make it more difficult to manipulate 

them within C AD software . Various techniques have been devel- 
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oped to address this issue by utilizing a triangular mesh as in- 

put (see e.g., Bommes et al., 2009 ; Dong et al., 2006 ; Eck & Hoppe, 

1996 ; F ang et al. , 2018 ; Hormann & Gr einer, 2000 ; Kälber er et al., 

2007 ; Owen et al., 1999 ; Ray et al., 2006 ; Tarini et al., 2011 ). One no- 

table method is the a ppr oac h pr oposed by Dong et al. ( 2006 ); this 

method demonstr ates r obustness, as it can handle different types 

of topologies, and offers parameter adjustments to control the 

density of quads and subsequently the number of control points 

in the resulting NURBS surface . Moreo ver, Tierny et al. ( 2018 ) pro- 

vide an open source implementation of this method. 

This structure allows us to calculate a NURBS surface on each 

of the patches . T he calculation of such a mesh is based on the 

Discrete Morse theory, (see Forman, 2002 for a complete introduc- 

tion). The main idea of this theory is to obtain information about 

the topology of a manifold by considering a well-chosen function 

defined on this v ariety. Mor e pr ecisel y, in our case, a scalar field is 

computed on the triangulation by solving a gr a ph La placian eigen- 

pr oblem. This giv es us the ‘well-c hosen’ function and then by cal- 

culating the critical points and integral lines, a topological data 

structure called the Morse-Smale complex is determined, as de- 

scribed in Tierny ( 2017 ). This structure reveals a representation in 

the form of patches . T hus , by subdividing each patch, a quadran- 

gulation is obtained. Then, on each of these patches a NURBS sur- 

face can be calculated and finally, by juxtaposing all the NURBS 

surface a complete r epr esentation of the object is obtained. 

To generate the Morse-Smale complex and the quadrangular 

mesh, we use the Topology ToolKit (TTK) library (Tierny et al., 

2018 ). When calculating the quadrangular mesh, the quadrilat- 

er als ar e adjusted to fit the triangulation; ho w e v er, the patc hed- 

NURBS surface is not interpolated into its control net. We there- 

for e intr oduced an optimization step using a quasi-Ne wton 

method to reduce the distance between the patched-NURBS sur- 

face and the triangulation (see Byrd et al., 1995 ; Nocedal & Wright, 

2006 ). Mor eov er, the scalar field being determined in an eigenvalue 

pr oblem, we hav e at our disposal different scalar fields and thus 

differ ent quadr angular meshes . T hus , we can ask ourselves how 

to choose the scalar field. As we want to use the NURBS surface 

r epr esentation in C AD software , the number of control points has 

to be as small as possible while k ee ping a surface that accur atel y 

r epr esents the data. 

Since the triangulation may be inaccurate or too dense com- 

pared to the real data, we will compare the patched-NURBS sur- 

faces dir ectl y with the images. To do this, we suggest building a 

r egr ession model generating new images from a given patched- 

NURBS surface . T his r egr ession model allows us to consider the 

real noise into account, i.e., the noise in the data. Then, using 

a maximum likelihood technique and an information criterion 

(Akaike, 1998 ), a model with a minimal number of control points 

and r epr esenting accur atel y the data is c hosen in the set of all 

possible quad meshes generated with Dong et al. ( 2006 ), i.e., the 

set of models generated from a given Laplacian eigenproblem. 

Once the statistical model generation is established we are going 

one step further, by not only taking into account the noise in the 

data but also by encoding our lack of knowledge in the patched- 

NURBS surface itself via a prior probability density distribution. 

Hence, we will seek to obtain a surface probability distribution. 

To do this, the control points will be considered as random vari- 

ables, as some parameters of the regression model. We therefore 

will estimate a probability distribution of these r egr ession par am- 

eters. Mor e pr ecisel y, we seek to determine P (θ | Y ) where Y is the 

data and θ the parameters. Using the Bayes theorem, this is equiv- 

alent to sampling P (Y| θ ) P (θ ) . T hus , with a sampling method, here 

Hamiltonian Markov Chain Monte Carlo (HMCMC), we will obtain 

Figure 1: B-spline basis functions. 

the probability distribution of the control points which is effec- 

tiv el y a probability distribution of patched-NURBS surfaces. 

This paper is organized as follows. In the first section of this pa- 

per, we will provide an introduction on using Discrete Morse the- 

ory to construct patched-NURBS surfaces. In the second part, we 

will carry out a model selection based on images. And finally, we 

will adopt a Bayesian point of view in order to obtain a probability 

distribution of surfaces. 

2. NURBS Surface Gener a tion 

As parametric surfaces, NURBS surfaces can be expressed in a 3D 

space as 

S (u, v ) = (x (u, v ) , y (u, v ) , z (u, v )) 

for u and v in a parametric space, generally [0, 1] 2 . 

Mor eov er, they ar e constructed ov er surface basis functions de- 

fined by a tensor product of two curve basis functions. 

In this section, we give a brief overview of the traditional 

method for constructing NURBS surfaces. We start by giving the 

definition of B-spline basis functions and then construct the ten- 

sor product basis in order to define NURBS surfaces. 

By looking at the definition of NURBS surfaces, we will fig- 

ure out that control points define a quad mesh. This will lead us 

to explore Morse theory to construct a quad mesh and then to use 

this mesh to compute NURBS surfaces. 

2.1. A short introduction to NURBS surfaces 
We define B-spline basis functions as follows (Piegl & Tiller, 1996 ): 

Definition 1 (Carl De Boor formula) Let m + 1 nodes (t i ) 
m 
i =0 in [0, 1] 

such that 0 ≤ t 0 ≤ t 1 ≤ … ≤ t m ≤ 1. The B-spline basis functions of 

degree n are defined by the recursive formula: 

N i, 0 (u ) := 

⎧ 
⎨ 

⎩ 

1 if t i ≤ u < t i +1 

0 otherwise 

and for n ≥ 1 

N i,n ( u ) := 
u − t i 
t i + n − t i 

N i,n −1 ( u ) + 
t i + n +1 − u 

t i + n +1 − t i +1 
N i +1 ,n −1 (u ) . 

The ( t i ) i sequence will be called the knot vector in the NURBS 

surface definition. 

The Fig. 1 shows an example of B-spline basis functions of de- 

gree 2. 

From an implementation point of view, the recursive aspect of 

this formula is quite convenient. 

Mor eov er, the (N 
p 
i ) i basis is used to expr ess NURBS curv e: C(u ) = 

∑ n 
i =0 w i P i N 

p 
i (u ) . 
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Figure 2: Tensor product surface. 

Figure 3: P ar ametric space. 

To construct the surface basis functions, we will use a tensor 

product of two B-spline basis functions, as in Fig. 2 : 

Then we can define NURBS surface with other definition. 

Definition 2 Let p , q , r , s , n , and m integers such that r = n + p + 1 

and s = m + q + 1. 

A NURBS surface of degree p in the u direction and degree q 

in the v direction is a bivariate vector-valued piecewise rational 

function, Fig. 3 : 

S (u, v ) = 

n 
∑ 

i =0 

m 
∑ 

j=0 

w i, j P i, j R 
p,q 
i, j (u, v ) 

(i) P i, j ∈ R 3 are the control points. 

(ii) R p,q 
i, j are the tensor product NURBS basis functions defined 

on the knot vectors: 

U = { 0 , . . . , 0 
︸ ︷︷ ︸ 

p+1 

, u p+1 , . . . , u r−p−1 , 1 , . . . , 1 
︸ ︷︷ ︸ 

p+1 

} 

V = { 0 , . . . , 0 
︸ ︷︷ ︸ 

q +1 

, u q +1 , . . . , u s −p−1 , 1 , . . . , 1 
︸ ︷︷ ︸ 

q +1 

} 

R p,q 
i, j (u, v ) = 

N p 
i ( u ) N 

q 
j ( v ) 

∑ n 
i =0 

∑ m 
j=0 w i, j N 

p 
i ( u ) N 

q 
j ( v ) 

with w i, j ∈ R . 

As we can see in Fig. 4 , a quad mesh is r equir ed (the dashed line 

r epr esenting the contr ol net forms a quad mesh). To have an al- 

gorithm that works on arbitr ary sha pes, we ar e using the method 

described in Dong et al. ( 2006 ) and the algorithm fr om TTK (Tiern y 

et al., 2018 ). This method computes a quad mesh over a triangula- 

tion by using a topological data structure named the Morse-Smale 

complex related to Morse theory. 

Figure 4: NURBS surface with control net (Piegl & Tiller, 1996 ). 

Figure 5: Triangulation (left-hand panel), scalar field (middle panel), and 
Morse-Smale complex (right-hand panel). 

2.2. Morse theory and Morse-Smale complex 

The definition of NURBS surface shows that the control net is de- 

fined by a quad mesh. To generate such a quad mesh, we will use a 

topological data structure, the Morse-Smale complex which gives 

a mesh topologically equivalent to a quad mesh. The Morse-Smale 

complex is derived from Discrete Morse theory, introduced by For- 

man ( 2002 ), which involves a function f defined from a triangula- 

tion T to R that encodes enough information about T to analyse 

its topology. More precisely, Discrete Morse theory studies the rela- 

tionships between the topology of a shape represented by the tri- 

angulation and the critical points of a Discrete Morse function de- 

fined on it. To generate the Morse-Smale complex in practice, we 

will use the method of Dong et al. ( 2006 ) implemented in the TTK 

(Tierny et al., 2018 ). Ho w ever, the generated Morse-Smale complex 

pr ovides lar ge quads that corr espond to an inaccur ate quadr an- 

gulation, and ther efor e, eac h patc h is subdivided to form a finer 

quad mesh. The different steps are represented in Fig. 5 . 

To obtain a Morse-Smale complex with the most e v enl y spaced 

r egions ov er the surface, we can use an eigenfunction of a gr a ph 

La placian ov er the input mesh. The critical points of suc h an 

eigenfunction are indeed well spaced over the mesh. Then, we 

solve the Laplacian eigenproblem with cotangent weight as sug- 

gested in Dong et al. ( 2006 ): 

( � f ) i = 
∑ 

j∈N (i ) 

(

cot ( αi, j ) + cot (βi, j ) 
) (

f j − f i 
)

where N (i ) is the set of neighbours of the vertex i . 

Ho w e v er, the eigenfunctions obtained by solving this problem 

ar e not Discr ete Morse functions, but we can a ppr oximate an y 

scalar field with a Discrete Morse function (see Shivashankar et al., 

2012 for details). Mor eov er, the computation of the discrete gradi- 

ent, hence of the V -path is done with the method described in 

Gyulassy et al. ( 2008 ). 

Let us remark that the La placian pr oblem giv es differ ent scalar 

fields and hence different Morse-Smale complexes (see Fig. 6 ). If 

we select a Discrete Morse function, the ascending and descend- 
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Figure 6: Different Morse-Smale complexes. 

Figure 7: Quad patch (left-hand panel) and NURBS patch (right-hand 
panel). 

Figure 8: P atc hed-NURBS surface . T he partitions on the patched-NURBS 
surface correspond to the Mores-Smale complex cell, i.e., NURBS surface 
patches. 

ing manifolds will intersect in a tr ansv ersal manner, r esulting in 

the Morse-Smale complex. In Section 4 , we are going to present a 

method to choose one of them. 

In the next section, we will explain how we can compute a quad 

mesh from the Morse-Smale complex. 

2.3. Quadr angula tion and NURBS surface 

The patc h structur e of the Morse-Smale complex is used to gen- 

erate a quadrangulation. To do so each critical point of the Morse- 

Smale complex is considered as a vertex of the quadrangulation. 

Ther efor e, they ar e linked by a ppr oximating the V -path by a line. 

This gives a coarse-quad mesh. To impr ov e the quadrangulation, 

a subdivision step is r equir ed. To do so, the authors in the code 

of Tierny et al. ( 2018 ) suggest three steps which are subdivision, 

r elaxation, and pr ojection. 

We can extract each quad patch and compute a NURBS surface 

on each one (Fig. 7 ). 

Then by juxtaposing all patches together we obtain a NURBS 

surface r epr esentation of the object (Fig. 8 ). 

In the rest of the paper, the following definitions will be em- 

plo y ed: 

(i) The term ‘NURBS surface’ will denote a NURBS surface as 

defined in Definition 2. 

(ii) ‘NURBS patch’ will denote a NURBS surface that shares 

boundary control points with another NURBS surface. 

(iii) ‘P atc hed-NURBS surface’ will refer to the 3D surface rep- 

resentation of an object composed of multiple NURBS 

patches. 

In our experiments, we hav e consider ed a uniform knot vector 

and control point weights equal to 1, ther efor e, the NURBS sur- 

faces are in fact B-spline. 

3. F itting Optimiza tion Accor ding to the 

Triangle Mesh 

3.1. Problem settings 
The methodology described in the pr e vious section is limited as 

the quads are fitted to the triangulation in the projection step pro- 

posed in TTK code . T her efor e, the NURBS surface will not fit the 

triangles as they pass under or over the quad mesh. We suggest 

minimizing the sum of squared distances between the surface S 

and the set of vertices V according to the control points. 

Let P k = (P k i, j ) i, j∈ � 0 ,n �� 0 ,m � be the control net of the NURBS patch 

number k . Each P k can be rewritten as a 1D vector (P l ) l∈ � 0 ,nm � . Then, 

let us consider the vector P = (P k ) k ∈ � 0 , N� , N being the number of 

patc hes, ensuring that eac h element of P is distinct. A table with 

the corresponding position of each control point in the different 

patc hes is cr eated at the same time. P is ther efor e the set of con- 

trol points of the patched-NURBS surface S . With each element of 

P being distinct, we ensure that the optimized surface will be C 0 . 

The dependency of P is written S ( P ), i.e., the surface S is seen as a 

function of the control points P . Then we are considering V the set 

of triangle vertices, and we are going to adjust the surface accord- 

ing to V. We are trying to minimize the sum of squared distances 

between the surface S and V, which is equivalent to find P ⋆ such 

that 

P ⋆ = arg min 
P 

∑ 

v ∈V 

|| S (P) − v || 2 2 . 

To compute || S ( P ) − v || 2 for a given vertex v , first we determine a 

set of potential closest NURBS patches by computing the distance 

from v to each control point P i , j for i, j ∈ � 0 , n � × ∈ � 0 , m � as a vec- 

tor (P k ) k ∈ � 0 ,nm � . Then, for each of these potential closest patches, 

the distance between these NURBS patches and the vertex v is 

computed with the algorithm provided by Li et al. ( 2019 ) and the 

one with the minimum distance is considered as the closest one. 

Let us write F (P) = 
∑ 

v ∈V 

|| S (P) − v || 2 . To minimize this function, we 

will use a quasi-Newton method, limited-broyden fletcher gold- 

farb shanno (L-BFGS), (Liu & Nocedal, 1989 ), defined by the itera- 

tion: 

P n +1 = P n + γn 

where γ n is the direction of the steepest descent and verify 

B n γn = −∇F (P n ) 

where B n is an approximation of the Hessian matrix of F at P n . 

3.2. Examples 
Here, the example we are considering is the vertebra. A triangula- 

tion of the v ertebr a is shown in Fig. 9 . 

To demonstrate the effect of the optimization according to the 

vertices, let us take the scalar field shown in Fig. 10 . The generated 

patched-NURBS surface without optimization is shown in Fig. 11 . 

Then by using our optimization algorithm, we obtain the 

patched-NURBS surface in Fig. 12 . 

The evolution of the distance between the triangle mesh and 

the patched-NURBS surface is shown in Fig. 13 . Figure 14 shows 
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Figure 9: Triangle mesh of a v ertebr a. 

Figure 10: Triangle mesh of a v ertebr a. 

Figure 11: Non-optimized patched-NURBS surface. The non-optimized 
patched-NURBS surface is in gold and the vertices of the triangulation 
ar e r epr esented by the blac k dots. 

Figure 12: Optimized surface with initial surface shown in Fig. 11 . 

the evolution of the distance with respect to the iteration with a 

log-scale. 

Now, let us consider a very fine Morse-Smale complex. Figure 15 

shows that the L-BFGS does have little effect on the patched- 

NURBS surface . T his is not surprising since the more control 

F igure 13: Ev olution of the distance with r espect to BFGS iter ation count. 

F igure 14: Ev olution of the distance with respect to BFGS iteration count 
(log-scale). 

Figure 15: Non-optimized (left-hand panel) and optimized (right-hand 
panel). 

points a NURBS surface has, the more it approximates the quad 

mesh defined by the control points (Piegl & Tiller, 1996 ). 

We are now able to generate a patched-NURBS surface that 

corresponds to a specific eigenfunction of the gr a ph La placian 

eigenproblem and optimize the fitting of the patched-NURBS sur- 

face according to the triangle mesh. Ne v ertheless, the selection 

of the eigenfunction is not based on any specific criteria. Conse- 

quently, we will be presenting a model selection algorithm in the 

next section that will determine the most accurate model for the 

data, i.e ., images , with a minimal number of parameters , i.e ., con- 

trol points . T he model selection process is carried out indepen- 

dently of the triangle mesh. The surface triangulation using the 

Marching Cubes algorithm is performed using the raw 3D image. 

It produces a deterministic estimate of the ‘true’ surface. Ho w ever, 

when fitting the NURBS surface, one should e v aluate the quality of 

the a ppr oximation with r espect to the r aw data, not with r espect 

to a prior reconstruction that is not equipped with a measure of 

uncertainty. Seeing from a different perce pti ve, how could one se- 
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lect an a ppr opriate thr eshold for an acceptable le v el of discrep- 

anc y betw een tw o reconstructed surfaces? As our statistical gen- 

er ativ e model is natur all y equipped with uncertainty measures, 

model selection with respect to the raw data may be performed 

using the Occam’s razor: we wish for the simplest surface model 

that can explain the raw data. 

4. Model Selection According to the Images 

In this section, we introduce a methodology to determine the sur- 

face with the fewest control points that still represents the data 

(gr eyscale ima ges) accur atel y independentl y of the triangulation. 

We will explain how to construct a r egr ession model by assum- 

ing that the greyscale data is noisy. Then, by using a maximum- 

likelihood process we will be able to estimate the r egr ession pa- 

r ameters. Finall y, we will show how to perform a statistical model 

selection using an information criterion. 

4.1. Gener a ti v e model 
The basic idea of our model is to assume how far away we are from 

the patched-NURBS surface utilizing the voxel colour. The voxels 

ar e blac k and as w e get close to the surface the v oxels become 

white. 

This allows establishing the following r egr ession model, by ex- 

plaining the greyscale behaviour of a voxel, r epr esented by a ran- 

dom variable Y in R , as a certain function of the voxel position in 

the space, r epr esented by a r andom v ector X in R 3 . 

We have at our disposal: 

(i) A giv en patc hed-NURBS surface S (contr ol points ar e fixed). 

(ii) Observations ( x i , y i ) of the r andom v ariables pair ( X , Y ), 

wher e x i ∈ R 3 r epr esents the position of the voxel i and 

y i ∈ R the greyscale value (i.e., the colour of the voxel) of 

the voxel i . 

Then we construct the r egr ession model: 

Y = 
−
g θ (X) + ε σ (1) 

where 
−
g θ is a given function depending on the distance between X 

and the surface S , and on r egr ession par ameters θ . ε σ is the noise 

of the r egr ession model, and we have ε σ ∼ N (0 , σ ) . Then we have 

to estimate the r egr ession par ameters θ = ( θ i ) i and σ . To do so 

we are going to use a maximum-likelihood method. This method 

seeks to find the r egr ession par ameters with the highest proba- 

bility of r epr oducing the r eal v alue fr om the observ ed sample. In 

our case, find the most probable θ and σ such that the model de- 

fined by ( 1 ) r epr oduces at best the observed data, i.e., the greyscale 

value. 

4.2. Maxim um-lik elihood and information 

criterion 

To determine the parameters of the regression abo ve , a maximum 

likelihood method is used. We wish ther efor e to maximize the log- 

likelihood. Let y = ( y 1 , …, y n ) and x = ( x 1 , …, x n ) where n is the 

number of observation and x i , y i the i th observation and let L M = 

P (y | x, θ, σ ) be the likelihood of the model. 

T hus , by maximizing ln ( L M ) or equiv alentl y by minimizing 

− ln (L M ) according to θ , we obtain θML and σML which are the pa- 

rameters maximizing L M . T herefore , for a gi ven vo xel position x 

we can determine the associate distribution of greyscale value by 

sampling Y dir ectl y fr om N ( 
−
g θML , σ

2 
ML ) . 

No w, w e aim to find the model with the fewest number of pa- 

rameters , i.e ., with the fewest number of control points, but which 

still r epr esents accur atel y the data. To do this an information cri- 

terion can be used. An information criterion is a measure of the 

quality of the statistical model. It is based on the fit of the model 

to the data and the complexity of the model. Here the complex- 

ity is the number of control points of the patched-NURBS surface 

with the parameters of the regression function. 

For each model, M , we define the information: 

IC M = α − ln (L M ) 

where α is a penalty term that usually depends on the number of 

r egr ession par ameters, and L M is the maxim um-likelihood of the 

model M . 

Then, an information criterion tells us to choose the model with 

the least information. 

4.3. Examples 
4.3.1. MRI: vertebrae 

Since the MRI does not give a uniform greyscale representation for 

a given object, considering noise becomes problematic, we will use 

a gradient filter in order to use a simple model for the noise. Usu- 

all y, the gr adient filter will show the contour of the object. Here, 

the Sobel operator in 3D is used with three filters of size 3 × 3 × 3 

(see Sobel, 2014 for the definition). 

This operator produces the following results: 

As we wish to colour the voxels in function of the distance be- 

tween their positions and the patched-NURBS surface, we com- 

pute all the distances between the patched-NURBS surface and 

the voxels. To do so we are considering the patched-NURBS sur- 

face inside the voxel grid. 

Then to compute the distance to each v oxel, w e are using the 

vtkDistancePolyDataFilter method in VTK (Schroeder et al., 2006 ). 

In order to use the VTK filter, we first tessellate the patched- 

NURBS surface. 

Algorithm 1 Compute signed distance from the patched-NURBS 

surface to the voxel grid 

1: procedure signedDistanceGrid ( N URBS, voxelGrid ) 

2: t essel l at ion = tessellate( NURBS ) 

3: distance = computeSignedDistance( t essel l at io n, vo xelGrid) 

4: end procedure 

The details on the signed distance computation can be found 

in Bærentzen and Aanæs ( 2005 ). 

As the filter highlights the contour of the objects, we are con- 

sidering a Gaussian noise around the contours . T his allows us to 

construct the following r egr ession model. 

(i) X voxel position 

(ii) Y greyscale value 

Y = 
−
g g max ,l (X) + ε σ

with: ε ∼ N (0 , σ 2 ) and 
−
g g max ,l (x ) = g max e 

−
d(x ) 2 
2 l 2 where d ( x ) is the dis- 

tance of x to the patched-NURBS surface S , where g max is the 

gr eyscale maxim um v alue of the contour, l determines how 

‘spread’ the contour will be, and σ is the image noise. 

In our analysis, we are addressing the presence of noise in the 

ima ge whic h can be modelled as a random variable with a vari- 
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Figure 16: Original (left-hand panel) and filtered (right-hand panel). 
Images courtesy of Synopsys. 

Figure 17: In red the generated images and the original image in the 
bac kgr ound. The r egr ession par ameters : g max , l , and σ are the ones 
obtained with the maximum likelihood method for a given 
patched-NURBS surface. 

ance of σ . This is particularly relevant due to the non-uniform 

nature of the vertebrae contour depicted in Fig. 16 . By considering 

the stochastic nature of the noise, we establish a suitable frame- 

work that enables us to employ maximum likelihood techniques 

and the Akaike Information Criterion (AIC) for further analysis 

and inference. 

Then, the greyscale can be expressed as a random variable Y of 

probability N ( 
−
g (X) , σ 2 ) where X is a given position in the 3D space. 

T hus , with the data ( x i , y i ) where x i is the position of the voxel i 

and y i the greyscale value of the voxel i , the log-likelihood is given 

by 

L (g max , l, σ | y i , x i ) = 

( 

−
1 

2 σ 2 

n 
∑ 

i =1 

(
−
g (x i , g max , l) − y i 

)2 

−
n 

2 
log (σ 2 ) 

) 

. 

By minimizing the log-likelihood according to g max , l , and σ , 

with a quasi-Newton method, L-BFGS, we can generate new im- 

ages, see Fig. 17 , in order to compare them with the original im- 

ages to run a model selection. 

We will now use the log-likelihood to determine the model that 

accur atel y r epr esents the ima ges with the fe west possible par am- 

eters. 

For each model, we compute this log-likelihood, and we will 

choose the one with the lo w est v alue, the maxim um likelihood 

estimation. T hus , we ha v e the following gr a ph: 

Ho w e v er, the gr a ph in Fig. 18 does not allow us to make a clear 

decision. The minimum is non-obvious . T his is why we are using 

an information criterion, which will help us to make a clear deci- 

sion for the model selection. 

Let us remark that the different peaks in the gr a ph corr espond 

to poor Morse-Smale complexes , i.e .,: low eigen value , but with a 

larger subdivision step. T hus , the number of control points in- 

creases but the Morse-Smale complex fails to ca ptur e the geom- 

etry of the object corr ectl y. 

F igure 18: Likelihood accor ding the number of contr ol points. Incr easing 
the number of parameters is done by increasing both the eigen-number 
and subdivision step. 

Figure 19: Information criterion for v ertebr ae model selection. 

Her e, we ar e using the Akaik e criterion (Akaik e, 1998 ), defined 

as follows: 

(i) For a model M , compute the information: 

AIC M = 2 k − 2 ln ( ̂  L M ) = 2 k + 2 ̂ l M 

where k is the number of parameters of the model, ˆ L M 

the maximum likelihood value for the model M , and ˆ l M = 

− ln ( ̂  L M ) . 

(ii) We choose the model with the minimum information value. 

The AIC criterion is based on the likelihood function of a sta- 

tistical model and considers both the model’s goodness of fit and 

the number of parameters used in the model. Because it balances 

the trade-off between model complexity and goodness of fit, it is 

a useful tool for model selection. In our case, models with more 

parameters tend to fit the data better, but they also tend to be 

ov er par ametrized, whic h can lead to poor performance in terms 

of stor a ge and manoeuvr ability in CAD softwar e. Since the AIC 

criterion penalizes models with mor e par ameters, it is a useful 

tool for selecting a model that provides a good balance of model 

complexity and goodness of fit. 

Here, the best model in the set of models generated from 

a giv en La placian eigenpr oblem is the one with a ppr oximatel y 

11 850 r egr ession par ameters, marked by the r ed cr oss in Fig. 19 . 

The best model and extreme cases are shown in Fig. 20 . 

Let us remark, that if the fitting optimization is not used we 

have the following result, Fig. 21 . 
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Figure 20: Sub-par ametrization, minim um AIC, and 
ov er par ametrization. 

Figure 21: Sub-par ametrization, minim um AIC, and 
ov er par ametrization. 

Mor eov er, we can compute the r elativ e likelihood of a model 

thanks to the AIC information (Wagenmakers & Farrell, 2004 ): 

RL M i = exp 

(
AI C i − AI C min 

2 

)

. 

Then we can normalize this value to obtain the Akaike weights: 

w i = 

exp 
(
AI C i −AI C min 

2 

)

∑ n 
k =0 exp 

(
AI C k −AI C min 

2 

)

where n is the total number of models . T hese Akaike weights can 

be inter pr eted as the probability that the model M i is the best 

model. For example, the probability that the best model is the one 

with 10 800 r egr ession par ameters is w i = 0. In fact, due to the 

difference between the AIC value, the only acceptable model is 

the minimal one with probability 1. 

4.3.2. CT: femur 

In the case of the CT, the use of a gradient filter is not r ele v ant. 

Indeed, the interior part of the femur is por ous, and ther efor e the 

gradient filter does not take into account the porous area. This 

is why we are using the original images without a pr e-pr ocessing 

step. We have at our disposal: 

(i) x i = position of the voxel i 

(ii) y i = greyscale value in voxel i 

Then, we can construct the following model: 

y i = 
−
g (x i ) + ε 

with: ε ∼ N ( 0 , σ 2 ) , 
−
g ( x ) = g max 

1 
1+ exp ( ad( x i )+ b) 

, and d ( x i ) r epr esenting 

the distance between the voxel i and the patched-NURBS surface. 

With a maximization according to the likelihood, we can gen- 

er ate ne w ima ges, as illustr ated in Fig. 22 . The evolution of ˆ l M = 

− ln ( ̂ L M ) according to the number of parameters is shown in 

Fig. 23 . 

As for the v ertebr ae, it is difficult to make a clear decision on 

which model to choose. Let us try the AIC criterion as before to 

determine which model represents accurately the data with the 

least number of parameters. 

Ho w e v er, we ar e facing a pr oblem because the AIC gr a ph Fig. 24 

looks like the likelihood gr a ph. This is due to the fact that the 

value of ˆ l M is of the order of 10 11 and the number of r egr ession 

parameters is of the order of 10 5 . T herefore , penalizing ̂  l M with the 

Figure 22: In red the generated images and in the background the 
original image (the CT scan). 

Figure 23: Likelihood femur. 

Figure 24: Information criterion for femur model selection. 

number of r egr ession par ameters does not affect its v alue . T here- 

fore, we will use a slightly different information for this model. In- 

stead of using the log-likelihood, we will use the residual squared 

sum, RSS, as described in (Miao et al., 2009 ): 

RSS = 

n 
∑ 

i =0 

( y i −
−
g ( x i )) 

2 

wher e y 0 , …y n ar e the data, i.e., gr eyscale v alue, 
−
g is the function 

defined abo ve , and x 0 , …, x n the position of the voxels. 
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Figure 25: Information criterion with RSS for femur model. 

Figure 26: 450 Control points (left-hand panel), 19 600 control points –
AIC minimum (middle panel), and 61 965 control points (right-hand 
panel). 

Then the AIC information for a given model M can be r eform u- 

lated as follows: 

AIC M = n log 

(
RSS M 

n 

)

+ 2 k 

where n is the number of data points and k the number of param- 

eters of the model M . 

The gr a ph of the AIC information with RSS is shown in Fig. 25 . 

The minimum of information is shown with the red cross. 

Different examples of the femur are shown in Fig. 26 . The AIC 

minimum is the one in the middle. 

We have been able to obtain the best model in the sense of the 

definition abo ve , no w w e will try to obtain a surface probability 

distribution around these fixed optimal control points . T hus , we 

will use the gener ativ e model defined above and then a sampling 

method based on Markov chains, the HMCMC. 

5. Hamiltonian Markov Chain Monte Carlo 

Probabilistic modelling is of general interest to computational en- 

gineering. It first simplifies model selection, which is largely dis- 

cussed in c ha pter 1 of Bishop and Nasrabadi ( 2006 ). Secondly, it al- 

lows for uncertainties to be pr opa gated when doing inference. For 

instance, if shape biomarkers are to be extracted from the recon- 

structed surfaces, confidence intervals can be calculated for these 

biomarkers, whic h full y encode the effect of data uncertainty and 

that of the surface reconstruction process. Confidence intervals 

could also be obtained if partial differential equations , (e .g., hyper- 

elasticity) are to be solved to compute physics-based quantities of 

interest. 

In our case, the statistical model generation has been estab- 

lished, and further advances have been made by incor por ating 

a prior probability density distribution that encodes the lack of 

knowledge about the patched-NURBS surface. Utilizing a Bayesian 

a ppr oac h, a pr obability distribution of surfaces will be deter- 

mined, with the aim of creating an interval of confidence based 

on both the noise present in the image and the prior knowledge 

of the r egr ession model weights (Bishop & Nasrabadi, 2006 ). This 

interval will provide a measure of certainty in the estimates de- 

riv ed fr om the scan data. Additionall y, an automatic r egulariza- 

tion method of the ridge type will be incor por ated to address the 

calibr ation pr oblem; the weight associated with this regulariza- 

tion being determined basing ourselves on the ratio of knowledge 

to noise in the data. This will ensure that the model does not 

ov er par ametrize the data. Ther efor e, we ar e using the HMCMC, 

mor e pr ecisel y the Lange vin Monte Carlo. We will briefly present 

the method and then a ppl y it to the v ertebr ae example. Mor e de- 

tails about HMCMC and Langevin Monte Carlo can be found in 

Girolami and Calderhead (2011 ), Neal et al. ( 2011 ), and Betancourt 

( 2018 ). 

5.1. Vertebrae example 

The model we built in Section 4 for the v ertebr ae, was used in a 

statistical a ppr oac h. Now to use the HMCMC method, this model 

is considered in the Bayesian setting. Ther efor e, let us consider the 

control points and the regression parameters as random variables, 

and let θ = ( g max , l , σ , P 1 , …, P n ) be the associated random vector. 

T hus , we wish to determine the probability destruction P (θ | X, Y ) . 

Let us write Z = ( X , Y ). By using the Bayes theorem we have 

P (θ | Z ) 
︸ ︷︷ ︸ 

posterior 

∝ P (Z | θ ) 
︸ ︷︷ ︸ 

likelihood 

P (θ ) 
︸ ︷︷ ︸ 

prior 

. 

In order to sample P (θ | Z ) , we will draw a sample from 

P ( Z | θ ) P ( θ ) by using the HMCMC sampling method. 

Let us recall the vertebrae generative model: 

(i) X random vector in R 3 representing the position of a voxel. 

(ii) Y r andom v ariable r epr esenting the gr eyscale v alue of the 

voxel in position X . 

Y = 
−
g (X) + ε σ

with: ε ∼ N (0 , σ 2 ) and 
−
g (x ) = g max e 

−
d(x ) 2 
2 l 2 . 

In this model the only parameters are the parameters of the 

r egr ession; ho w e v er, w e w ould also lik e to tak e into account the 

parameters of the patched-NURBS surface . T hus , let us write the 

dependency of the optimal patched-NURBS surface S in the way S P 
wher e P = (P i ) i ∈ � 0 ,N� r epr esents the contr ol points of the patc hed- 

NURBS surface without redundancy as in Section 2.3 . Hence, we 

can r e write the model as follows: 

Y = 
−
g (X) + ε σ

with: ε ∼ N (0 , σ 2 ) and 
−
g (x ) = g max exp ( −

|| x −S P || 2 

2 l 2 ) . 

T hus , with x = ( x i ) i and y = ( y i ) i , the log-likelihood is given by 

L (g max , l, σ, P| x, y ) = −
1 

2 σ 2 

n 
∑ 

i =1 

(
−
g (x i , g max , l, P) − y i 

)2 

−
n 

2 
log ( σ 2 ) . 
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Now, let us write the random vector θ = ( g max , l , σ , P 1 , …, P n ) 

since we let all the parameters be random variables. We aim to 

sample the distribution P (θ | Z ) where Z = ( X , Y ), by using the Bayes 

theorem as in the previous section, we have 

P (θ | Z ) ∝ P (Z | θ ) P (θ ) . 

P (Z | θ ) is given by L (g max , l, σ, P| Z ) . Ho w e v er, since we do not 

kno w P (θ ) , w e can make the assumption that the prior probability 

is Gaussian, ther efor e θ ∼ N (m θ , 
θ ) . m θ is taken as the value min- 

imizing the r egr ession model and 
θ as a multiple of the identity 

matrix. 

T hus , by introducing the auxiliary variable, ν for the HMCMC 

method and by denoting the data z = ( x i , y i ) i , we can e v aluate the 

kinetic energy K and the potential energy E : 

(i) K(v ) = 1 2 ν
−1 νT and 

(ii) E(θ ) = L (g max , l, σ, P| z ) + 1 2 (θ − m θ )

−1 
θ (θ − m θ ) T . 

To gener ate tr ansitions, we dr aw a sample of ν from the multi- 

variate Gaussian distribution. Then, we wish to use the Hamilton 

equation to generate a possible new value for θ . To do so, we will 

use the lea pfr og integr ator. These two steps can be summarized 

as follows: 

(i) Dr aw ν i fr om N (0 , 
) 

(ii) Lea pfr og integr ation: 

⎧ 
⎪ 
⎪ 
⎪ 
⎨ 

⎪ 
⎪ 
⎪ 
⎩ 

νi −1 / 2 = νi −
ε 
2 ∇E(θi ) 

θi +1 = θi + ε
νi −1 / 2 

νi −3 / 2 = νi −1 / 2 −
ε 
2 ∇E(θi +1 ) 

where ε is a given time step. We drop the dependency in Z because 

Z r epr esents the data, ther efor e Z can be replaced by the observed 

value to evaluate K and E . 

No w, w e have a new state ( θ i + 1 , ν i − 3/2 ). We will k ee p with the 

sample as a sample of the posterior according to the probability 

defined by the Metropolis acceptance rate: 

min ( 0 , H( θi , νi ) − H(θi +1 , νi −3 / 2 )) . 

If the ne wl y pr oposed state is r ejected, the pr e vious v alue is 

used again for the next iteration. By repeating this process nu- 

merous times, the all-probability distribution is explored, there- 

fore the distribution P (θ | Y ) is determined. 

We tried to run the HMCMC with a mass matrix equal the iden- 

tity matrix. Ho w e v er, the size of the gr adient in the r egr ession pa- 

rameters was larger than the one for the control points, there- 

fore the effect of the HMCMC on the control points was negligible. 

Hence, we tried with the Hessian matrix at the maximum a poste- 

riori, �E ( θMAP ) and the inverse of the prior covariance matrix, 
−1 
θ . 

This leads us to a better r epr esentation of the probability distri- 

bution. 

We plot se v er al samples of patched-NURBS surfaces in Figs. 27 

and 28 . In fact, the results are close to each other, therefore choos- 

ing the Hessian matrix or the inverse of the covariance does not 

make a difference. 

Figur e 29 illustr ates two differ ent samples for one slice of 

gr eyscale ima ges and Figur e 30 shows the pr e-pr ocessed ima ge 

and a generated greyscale image. 

6. Conclusions 

We have proposed an automatic method for the generation of 

patc hed-NURBS surfaces fr om ima ges, with a stoc hastic model 

Figur e 27: T hr ee patc hed-NURBS surface samples obtained with the 
Hessian matrix. 

F igure 28: Tw o patched-NURBS surface samples obtained with the 
in verse co variance matrix. 

F igure 29: Tw o gr eyscale r econstructions fr om two differ ent samples, 
the white voxels r epr esenting the surfaces. 

Figure 30: Left-hand panel: Pr e-pr ocessed ima ge data. Right-hand panel: 
Gener ated gr eyscale ima ge, the white voxels r epr esenting the surface. 

selection. First, our method is based on the Discrete Morse theory 

and more precisely on the generation of the Morse-Smale com- 

plex. The generation of such a structure is done using the critical 

points and integral lines of a scalar field. In practice , we ha ve used 

the eigenfunctions of the gr a ph La placian to obtain suc h a scalar 

field. The adv anta ge of using such functions is that their critical 

points are uniformly spaced on the object, thus allowing to cap- 

ture the general shape of the object and to preserve its topology. 

Ho w e v er, the quad mesh obtained with TTK is optimal with re- 

spect to the triangulation, ther efor e it leads to a patched-NURBS 

surface that is not faithful to the triangulation. Hence, we intro- 

duced an optimization process using a quasi-Newton method, L- 
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BFGS. This optimization step allows us to consider valid surfaces 

with a smaller number of control points . T hen, to allow a choice 

among the models generated using the eigenvalue problem, we 

used a method comparing the patched-NURBS surface obtained 

dir ectl y to the images, by introducing a regression model to gen- 

er ate ne w gr eyscale ima ges . T hen, by maximizing the likelihood 

and using the AIC criterion which penalizes the likelihood with 

the number of parameters, we can choose the model with the 

smallest number of parameters but which still accurately rep- 

resents the data. Furthermore, we used the generative model by 

letting the control points become random variables in order to 

obtain a surface probability distribution. T hus , we used a sam- 

pling method based on the dynamic Hamiltonian and Metropo- 

lis algorithm, HMCMC. Hence, we have access now, not only to 

one patched-NURBS surface but to a complete probability distri- 

bution. 

Future work is needed to adapt the patch density according to 

the local complexity of the 3D object, either by taking into account 

the density of the triangulation or the curv atur e of the surface. 
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