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Abstract 

Measuring the mechanical properties of soft tissues in vivo is important in biomechanics and for 

diagnosis and staging of diseases, but challenging because it is difficult to control the boundary 

conditions.  We present a novel, non-invasive method for measuring tissue properties using 

gravitational loading.  MRI images of an organ in different positions are registered to measure tissue 

displacements due to gravitational forces in different positions.  Considering equilibrium between 

stresses and gravity, we established a nonlinear virtual fields method to identify the tissue properties.  

The method was applied to the human brain as a proof of concept, using an Ogden model.  Sensitivity 

analysis showed that the bulk modulus could be identified accurately whilst the shear modulus was 

identified with greater uncertainty; the strains were too small to identify the strain stiffening 

exponent.  The measured properties agreed well with published in vitro data.  The technique offers 

very promising perspectives, allowing the non-invasive measurement of otherwise inaccessible tissues 

and providing new information such as the bulk modulus under static loading, which has never 

previously been measured in vivo. 

Introduction 

Measuring the mechanical properties of soft tissues is important for analysis and simulation and has 

valuable diagnostic applications, notably in the liver but also in other tissues such as the breast, 

prostate, and kidney [1, 2], where stiffness measurements can provide an additional contrast and help 

to distinguish and stage disease.  Since the properties of soft tissues are very variable between sites 

and subjects and in different environments it would be useful to measure them in situ in the body, but 

this is difficult since the boundary conditions cannot be well defined and controlled.  Techniques such 

as shear wave elastography provide semi-quantitative measurements but only for very small strain 

perturbations, and they cannot easily be used in all tissues or measure all properties.  Applying 

external loads is difficult for many tissues that are not easily accessible from outside the body.  In this 

paper, we present a technique using gravitational loading, which offers a way of applying accurately 

known loads to otherwise inaccessible tissues, and we demonstrate the technique using a previously 

published dataset for the brain. 



Since they are generally nonlinear and undergo large deformations, the mechanical behaviour of soft 

tissues is best represented by nonlinear constitutive models.  The identification of the parameters in 

a constitutive model from experimental data is often difficult [3, 4].  The parameters cannot often be 

calculated directly, as they can in conventional tests on engineering materials, and an iterative 

approach is usually needed to estimate their values.  The most common approach has been the so-

called “inverse FE” or “FE model updating” method in which a finite element model of the experiment 
is constructed and the material parameters are iteratively optimised to try to match the experiment 

[3, 4].  Although widely used, this method has two significant disadvantages: because hundreds or 

thousands of runs of a complex, nonlinear model are needed, it can be very time-consuming, and 

there is no immediate way of knowing whether the identified parameters are the best possible fit to 

the experimental data, or what range of other values might also be possible.  In the worst case, where 

certain parameters have little effect on the quality of fit between the experiment and the model, it 

may be impossible to identify them.  For example, Masson et al. [5] attempted to identify parameters 

of a complex four fibre model from in vivo data but found that many parameters had little effect on 

the response. 

These limitations have been addressed in various ways, for example by using stochastic optimisation 

in which multiple models can be run in parallel [6,7].  Multiple optimisation runs from different starting 

points can be used to indicate whether global convergence has been reached, and mapping the 

response surface for a range of possible parameter values can show the uncertainty and uniqueness 

of the parameter values.  Often two parameters have a similar effect, so that increasing one and 

decreasing the other gives a similar error, and then it is difficult to know which is correct without 

further experiments.  Sensitivity analysis can help to characterise and explore these problems [3]. 

A more efficient approach is to use a small number of model runs to explore the possible parameter 

space and produce an emulator that will predict the model output and can then be used to test a very 

wide range of parameter values and explore their uncertainty and uniqueness in detail [8,9].  Using 

Bayesian statistics, it is also possible to quantify the uncertainty in the numerical simulation and build 

in some a priori knowledge of the smoothness of the response surface.  However, this approach still 

requires tens or hundreds of runs of a nonlinear model. 

The Virtual Fields Method [10,11] offers the possibility of calculating material properties directly from 

strain measurements for linear elastic materials, or, for nonlinear materials, of calculating an error 

measure directly from strain data without solving an FE model.  This has the potential to be several 

orders of magnitude faster than the inverse FE approach, allowing rapid parameter identification and 

uncertainty evaluation.  The method is based on the principle of virtual work, which states that if a 

hypothetical virtual displacement is applied to a system, the resulting virtual work done by the internal 

and external forces must sum to zero.  By choosing appropriate virtual displacement fields, we can 

isolate individual materials or components and remove inconvenient unknown boundary conditions.  

The method thus allows us to sum the stresses in a material or region and test whether they are in 

equilibrium with the external forces.  If we calculate the stresses from a measured strain field using a 

particular constitutive model and set of parameters, we can test whether the internal forces it predicts 

are consistent with the known external forces, and any difference gives us a measure of the error in 

the model and its parameters. 

Applying the virtual fields method to nonlinear, large displacement problems is mathematically 

complex and requires care to avoid errors in calculating rates or using incorrect frames of reference.  

Rossi et al. [12] and Jones et al. [13] used virtual fields techniques to identify material parameters 

during plastic deformation of stainless steel, using two-dimensional strain data measured by digital 

image correlation.  A systematic approach to large deformation parameter identification using virtual 



fields was presented by Mei et al. [14], in which they calculated the sensitivities of the stresses to the 

material parameters and hence produced a system of equations that could be solved to find the 

parameters.  This provided a framework for the choice of virtual fields, multiple fields being needed 

in general where there are multiple material parameters to identify.  For simple cases it is possible to 

use arbitrary fields such as a linearly increasing virtual displacement in one direction, but for more 

complex cases it is better to generate the fields using linear finite element models. 

The aim of this study was to use a novel large deformation formulation of the virtual fields method to 

identify the material properties of the brain in vivo, using displacement data from a previous study 

[15] in which we MRI scanned subjects lying prone and supine and used image registration to calculate 

the displacement field.  We also used a finite element model to generate simulated displacement data 

to optimise the image registration process and test the accuracy of the method. 

Methods 

Theoretical framework 

We use the weak form of solid mechanics [16], similar to the formulation used by Rossi et al. [12] but 

with the addition of body forces: ∫ 𝛔: 𝐃∗𝑑𝑉 = ∫ (𝐛 − 𝐚) ⋅ 𝐯∗𝜌𝑑𝑉 + ∫(𝛔 ⋅ 𝐧𝐭) ⋅ 𝐯∗𝑑𝑆𝑆𝑉𝑉 (1) 

where σ is the Cauchy stress tensor, a is an acceleration force vector, b is a body force vector, nt is a 

surface traction acting on a solid of volume V, surface S and density ρ; v* is an arbitrary test function, 

considered here to be a virtual velocity field, and D* is the virtual rate of deformation tensor defined 

by: 𝐃∗ = 12 (∇𝐯∗ + ∇𝑻𝐯∗) (2) 

The volume, surface area and density are in the current configuration, not the undeformed 

configuration, and the gradient of the virtual velocity field is with respect to the current position, not 

the original position.  It is possible to formulate the same principle in the reference configuration, but 

that would require changes to the stresses and surface tractions too [12,17].  

In the virtual fields method, the test function v* is usually conceived as a virtual displacement and an 

equation similar to Equation 1 then follows from the principal of virtual work, in which the virtual work 

done by a virtual deformation should be zero.  For linear problems this virtual work is easy to calculate 

by multiplying the actual stress by the virtual strain (and the actual forces by the virtual 

displacements), but for nonlinear problems this integration becomes more complicated than a simple 

multiplication and it would be necessary either to assume that the virtual displacement is infinitesimal 

compared to the actual displacement or to use numerical integration over multiple steps to find the 

virtual work.  Here we describe the test function v* instead as a virtual velocity, which avoids these 

conceptual problems.  It should be noted though that these problems arise only from the concept of 

the test function as a virtual displacement and in fact any arbitrary function that can be differentiated 

in Equation 2 can be used.  The idea of a test function is perhaps clearer and it avoids the confusion 

between the virtual and real displacement fields that often arises with the conventional virtual fields 

terminology.  Similarly in the conventional virtual fields terminology there are additional restrictions 

on the test function to make it kinematically admissible, but these are not inherent to the weak form 

in Equation 1 and we prefer to describe them below as convenient ways to choose the function to suit 

the available data, rather than inherent restrictions. 



The left-hand side of Equation 1 describes the internal virtual power due to the stresses within the 

material and the right-hand side describes the external virtual power due to external loading.  We aim 

to choose virtual fields that will allow us to calculate the internal virtual power by calculating the stress 

from the measured deformation, using a suitable constitutive model, and adjust the material 

parameters so that it matches the external virtual power found from known external forces.   

The virtual velocity field (or test function) v* is arbitrary, and in principle any differentiable function 

of the position should satisfy Equation 1, but a careful choice can allow us to isolate individual 

materials, remove unknown boundary conditions and maximise the identifiability of the parameters.  

By choosing a velocity field which is zero except in a single material, component or region of interest, 

we can isolate the contribution of that region and identify its properties independently of any other 

materials that may be present.  If there is sufficient resolution in the measurements, this method can 

be used to map out the spatial variation of properties.  Similarly, if there are unknown surface 

tractions, we can choose a velocity field that is zero in the region where the unknown traction is 

applied, so that the third term in Equation 1 disappears.  We cannot identify material properties from 

displacements alone, however; we need a known force somewhere in the system, so that the external 

virtual work is non-zero.  There are two convenient techniques we can use to achieve this. If we know 

the total force applied over a region of the surface but not the distribution of that force, we can choose 

a velocity field which is constant over the region and calculate the resulting external virtual power as 

the product of the force and the virtual velocity without the need to integrate over the surface of the 

region.  Secondly, if there is a known body force such as gravity, we can choose a virtual field which is 

zero at all of the unknown boundaries, so that the third term of Equation 1 disappears, and use only 

the first and second terms. 

In order to solve Equation 1 numerically, we need to evaluate the internal and external virtual power 

at a series of integration points and sum over the volume of interest.  These integration points could 

be defined in various ways, but it is convenient to define them by a finite element mesh representing 

the region of interest.  This finite element model can be used to calculate suitable virtual fields using 

any convenient linear material properties, as described below.  The measured displacement field can 

be interpolated to find the displacements at the nodal coordinates and conventional finite element 

calculations can then be used to find the resulting stresses and integrate them over the volume of the 

elements to find the internal and external virtual power [18]. 

Magnetic resonance imaging and image analysis 

The measurement of the movement of the brain has been described in detail in a previous paper [15].  

Briefly, three male subjects aged 30 to 60 were imaged.  Each subject was positioned prone in either 

a Siemens 7T Magnetom or a Siemens 3T Prisma MRI scanner and after resting in that position for 20 

mins to allow the brain to reach equilibrium, they were scanned using a T1-weighted MPRAGE 

sequence with either 0.8x0.75x0.75mm resolution (7T scanner) or 1mm isotropic resolution (3T 

scanner).  They then turned over into a supine position and were scanned again, ten minutes after the 

first scan.  In a pilot study, subjects were repeatedly scanned at shorter intervals after turning over, 

using a faster 2D sequence, in order to verify that the brain had reached equilibrium after ten minutes, 

the time of the second scan. 

Extensive distortion correction was applied using GradUnwarp (github.com/Washington-

University/gradunwarp) [19] as well as proprietary algorithms in the Siemens software to minimise 

image distortion, which was a particular problem with the 7T scanner.  A semi-automated 

segmentation process was carried out to extract the skull and brain masks, using the brain extraction 



tool (BET) command of the FSL software library [20]; the segmentations were amended manually 

where necessary using Seg3D (Scientific Computing and Imaging Institute). 

The prone and supine images were then registered using the symmetric image normalisation (SyN) 

method [21], starting with an affine registration of the skull only to align the head, followed by an 

elastic registration of the brain and surrounding soft tissues.  The registration algorithm was optimised 

using simulated images generated with a displacement field from the finite element model, in order 

to find the registration parameters that most closely recaptured the known displacement field.  This 

allowed very accurate measurement with subpixel resolution.  The displacement data was then 

mapped to the MNI152 average brain [22] and averaged for all the subjects to provide a single 

experimental displacement field. 

Finite element model 

It is convenient to calculate the virtual fields using a finite element model, which also provides a 

framework for calculating the internal and external virtual power.  For this study we used a more 

elaborate finite element model of the brain, dura and cerebro-spinal fluid (CSF) [23] which was used 

in its full form to generate simulated displacement data in order to verify the virtual fields algorithm.  

This model was based on the MNI 152 standard space [22].  Images were segmented using Simpleware 

ScanIP (Synopsys, Mountain View, USA) and manually optimised.  The final model consisted of three 

main volumes: the brain, the CSF filled space and the dural septa.  The model was meshed in ScanIP 

using four noded tetrahedral elements, with 432,059 elements for the brain, 367,752 elements for 

the CSF and 376,309 for the dural septa.  The model was then imported into FEBio [24, www.febio.org] 

and modified using Matlab (Mathworks, Natick, MA) to add an additional layer of shell elements to 

the surface of the brain to represent the pia mater and spring elements bridging the dural space to 

represent the arachnoid trabeculae, as shown in Fig. 1.  The brain was modelled as an Ogden material, 

the pia mater as a neo-Hookean material and the dura mater as a rigid body as it was assumed to be 

fixed to the skull.  The CSF, including in the dural septa, was modelled as a Newtonian fluid.  

It is important to note that the full model was used only to generate test data to verify the 

implementation of the virtual fields algorithm.  For the latter, only the mesh of the brain itself was 

needed, firstly to generate the virtual fields and secondly for the calculation and integration of the 

virtual work.  For the virtual fields, we need a displacement field which is zero at the boundaries of 

the brain (where there are unknown tractions), so all nodes on the boundary of the brain and in the 

other tissues were fixed and a body load was applied to the brain to generate a displacement field.  

The body load was smaller than the actual gravitational load (0.001m/s2), in order to ensure that the 

deformations were small.  The model was then run again with different values of each of the material 

parameters in turn and the first virtual field was subtracted from each of these fields, in order to 

produce three fields that best represented the effects of each of the material parameters, which were 

then used as the virtual velocity fields.   

Numerical implementation 

The virtual velocity fields were chosen to be equal to the displacement u in the finite element models 

that were used to generate them.  The gradient of the virtual velocity was calculated from the 

displacement u and the resulting deformation gradient F using the chain rule as follows: ∇𝐮 = 𝜕𝐮𝜕𝐱 =  𝜕𝐮𝜕𝐗 𝜕𝐗𝜕𝐱 = (𝐅 − 𝐈)𝐅−1 (3) 

where X is the original position, x is the current position and I is the identity tensor. 



The internal and external virtual power were discretised using a single integration point at the centre 

of each element, which is sufficient for four node tetrahedral elements, which have constant strain 

throughout their volume.  The internal virtual power was calculated as: 𝑃𝑖𝑛𝑡 ≡ ∫ 𝛔: 𝐃∗𝑑𝑉 ≈ ∑ 𝛔: 𝐃∗ ∙ 𝐽𝑉𝑖0𝑁𝑖=1𝑉 (4) 

where N is the number of elements, V0
i is the undeformed volume of element i and J = det F is the 

ratio of the deformed to the undeformed volume.  For the brain under gravitational loading there are 

no other acceleration forces (a) and surface tractions were eliminated by choosing a virtual field that 

was zero at the surfaces, so the external virtual power was calculated as: 𝑃𝑒𝑥𝑡 ≡ ∫ (𝐛 − 𝐚) ⋅ 𝐯∗𝜌𝑑𝑉 ≈𝑉 ∑ 𝐛 ∙ 𝐯∗ ∙ (𝜌𝐽) 𝐽𝑉𝑖0 =𝑁𝑖=1 ∑ 𝐛 ∙ 𝐯∗ ∙ 𝜌𝑉𝑖0𝑁𝑖=1 (5) 

in which ρ is the original density of the material and hence ρ/J is its density in the deformed 

configuration.   

The brain was modelled as a compressible Ogden material [25] with the following strain energy 

function, also used in the virtual power calculation: 𝜓 = ∑ 2𝜇𝛼2 (𝜆̃1𝛼+𝜆̃2𝛼+𝜆̃3𝛼 − 3) + 𝑈(𝐽) (6) 

in which μ is the small strain shear modulus, α is a material parameter describing stiffening at large 

strains, 𝜆̃𝑖 are the deviatoric principal stretches and U(J) is a volumetric term such that the volumetric 

part of the Cauchy stress is given by: 𝛔𝑉 = 𝐾 𝑙𝑛(𝐽)𝐽 𝐈 (7) 

in which K is the bulk modulus of the material. 

These calculations were implemented in a Matlab script (Mathworks, Natick, MA) which read in the 

element connectivity and node coordinates from the FE model, the experimental displacements at 

each node, and the virtual fields.  The deformation gradients and element volumes were calculated 

using conventional finite element mathematics [18] and used to calculate the stresses and hence the 

internal and external virtual power for different combinations of material parameters.   

Parameter identification 

Having calculated the internal and external virtual power Pint and Pext for each virtual field, the virtual 

power error for each virtual field j was defined as the difference between them, normalised by the 

external virtual power, which is independent of the material properties: 𝑃𝑒𝑟𝑟𝑗 = 𝑃𝑖𝑛𝑡 − 𝑃𝑒𝑥𝑡𝑃𝑒𝑥𝑡 (8) 

The total virtual power error was then defined as the Pythagorean sum of these errors for the 

individual fields: 

𝑃𝑒𝑟𝑟𝑡𝑜𝑡𝑎𝑙 = √𝑃𝑒𝑟𝑟1 2 + 𝑃𝑒𝑟𝑟2 2 + 𝑃𝑒𝑟𝑟3 2 (9) 



This error was then minimised using two different algorithms, Levenberg-Marquardt (Matlab 

lsqnonlin) and Nelder-Mead simplex optimisation (Matlab fminsearch), and each was repeated from 

multiple startpoints.  To assess global convergence and uncertainty, 2,800 random parameter sets 

over a feasible parameter space were also tested. 

Effects of measurement errors 

In order to test the effect of noise in the displacement data, simulated data from the FE model was 

used with the addition of varying amounts of noise, generated by adding normally distributed random 

values to each displacement component with a mean of zero and a standard deviation corresponding 

to the RMS noise level.  This synthetic displacement data was processed as before and the resulting 

errors in the internal virtual power were evaluated.  This process was repeated twice for three 

different noise levels (0.25, 0.5 and 1μm RMS).  A further test was carried out by using a synthetic MRI 

image generated by warping an image of one of the subjects using a displacement field generated 

from the FE model; this synthetic image was then used in the registration process to generate a 

displacement field with typical registration errors.  The results from this synthetic image were 

compared to the known displacement field from the FE model to simulate the actual errors likely to 

arise in the registration process. 

Results 

Fig. 2 shows the average displacement data.  The movement of the brain was predominantly in the 

anterior-posterior direction but there were also some rotations and lateral movements.  The 

movement occurred primarily by deformation of the brain itself with only small displacements near 

the outer surface where the brain is tied to the skull by the pia-arachnoid complex.  The maximum 

displacement was 1.15 mm in the left side of the cerebellum. 

Fig. 3 shows the three test functions v* that were used to identify the material parameters.  In each 

case, the function was zero at the outer surfaces in order to remove the effects of the unknown 

boundary conditions where the brain is attached to the skull.  We evaluated the internal and external 

virtual power Pint and Pext and defined the virtual power error as the difference between them.  The 

total virtual power error was then defined as the Pythagorean sum of these errors for the three fields.  

This error was then minimised using two different algorithms, Levenberg-Marquardt (Matlab 

lsqnonlin) and Nelder-Mead simplex optimisation (Matlab fminsearch).  Fig. 4 shows the results of the 

optimisation process, using both algorithms from multiple start points. Both algorithms produced a 

range of possible values with very small errors.  K and μ were identified precisely, with values around 

254 kPa and 1.25 kPa respectively.  Parameter sets with negligible error were possible for any value 

of α from -100 to +100, and so it was not possible to identify this parameter. 

Fig. 5 shows the errors for 2,800 random parameter sets as a function of the material parameters, 

showing the uncertainty in the identification process.  Allowing even substantial errors resulted in very 

little change in K (note the limited scale), but a much wider range of values for μ was possible. 

Fig. 6 shows the change in the virtual field error for each field when adding increasing amounts of 

synthetic random noise.  There was no systematic bias due to noise and each field was affected 

differently and independently.   

The effect of realistic errors in the image correlation process was assessed by registering synthetic 

images with a known, realistic displacement field, generated from the FE model.  This produced an 

error in the virtual power of less than 5%, suggesting that the accuracy of the stiffness measurement 

should be of this order.       



The stresses with the optimised parameters were very low and approximately normally distributed.  

95% of elements had shear stresses smaller than 30 Pa; the maximum was 160 Pa.  Larger triaxial 

stresses were present, with 95% of elements between -10.9 kPa and 10.1 kPa, compared to an 

expected hydrostatic pressure of approximately 2 kPa.   

Discussion 

The virtual fields method, or family of methods, have many advantages, but they have not been widely 

used due to their perceived mathematical complexity and the need for full field displacement data.  

Previous formulations of the VFM have mostly been based on virtual work, which is straightforward 

to calculate for linear elasticity but more problematic for nonlinear systems with large displacements 

as conceptually it would require either numerical integration over multiple steps or an assumption 

that the virtual deformation is infinitesimal [14].  The formulation presented here using virtual power 

is simpler and easier to implement for large displacements.  The identity with the weak form of 

continuum mechanics is also valuable and gives confidence in the robustness of the approach.  In the 

weak form, the virtual velocity field is usually referred to as a test function, which is perhaps less 

confusing and makes it clear that this is an arbitrary function used to test for equilibrium and not a 

real velocity or displacement field.  This also confirms that any appropriate test function could be used 

and there is no need for it to be infinitesimal compared to the actual displacements or to carry out an 

additional numerical integration; these requirements appear only from the concept of the test 

function as a virtual displacement, and they are not mathematically necessary for a correct solution. 

The virtual power must be numerically integrated over the volume of interest, and this could be done 

in many different ways.  Using a finite element mesh has several advantages: it is easy to construct, 

optimise and evaluate using well established mathematics and software, it allows the virtual fields to 

be generated easily, and it can be used to generate simulated data to test the algorithm, the sensitivity 

of the parameters and the effects of noise.  It is also an efficient way of representing the deformation 

field without requiring a very large number of integration points.   

This virtual fields method is much faster than the conventional inverse finite element approach.  The 

computation required to evaluate one parameter set is equivalent to a part of a single iteration for a 

nonlinear finite element model, where the solution requires thousands of iterations.  The deformation 

gradients, element volumes and external virtual power need only be calculated once and so the 

calculation of the stress and internal virtual power is very fast, allowing efficient exploration of many 

parameter values.  This makes it possible to explore thoroughly the sensitivity of the different material 

parameters and the uncertainty in their identification, which is often impractical with an inverse FE 

approach.  The calculation of the stress and internal virtual power is done on an element-by-element 

basis, so it can be parallelised efficiently.  We used the same finite element model with a Bayesian 

emulator approach to estimate the material parameters using displacement data from a larger group 

of subjects [23] and this required 120 runs taking 12-24 hours each on a supercomputer using 12 

2.4GHz cores, plus subsequent processing to generate the emulator and evaluate numerous possible 

parameter sets.  In contrast, the present method required only a few hours of computing time using 

uncompiled Matlab, which could be reduced to a few minutes with more efficient code.  An inverse 

finite element approach would have required thousands of model runs and was prohibitively slow. 

The displacements due to gravitational loading are somewhat larger than those due to the cardiac 

cycle (maximum 1.15 mm, in the cerebellum), whereas cardiac movement is typically less than 0.5 mm 

[26].  Magnetic resonance elastography typically applies much smaller displacements of around 5 m 

[27,28] though some studies have used much larger displacements up to 60 m [29].  Another 

method that has been used is mild impact loading [30] which produces similar strains to the present 



method, although the displacement is unclear.  All of these methods produce only small displacements 

and small strains and hence none of them allow measurement of the nonlinear behaviour of the brain 

at larger strains; it is difficult to see how this could be achieved in vivo in human subjects.  The 

displacements are smaller in all cases than the MRI voxel resolution and noise is a significant issue for 

all these techniques. 

The effect of noise in the displacement measurements was assessed by using simulated data 

generated by a finite element model to which noise was added.  Using random, normally distributed 

noise added independently to each displacement component caused an increasing error, as shown in 

Fig. 6, but did not lead to a systematic bias in the results.  Each virtual field was affected differently 

and independently, so that averaging the results from multiple virtual fields could reduce the effect 

of noise. Since the elements were small, adding even small amounts of random noise generated 

significant strains and hence significant errors.  A real error field is not random but arises mostly from 

the image registration process which imposes continuity and some smoothing on the displacement 

field.  Testing using an actual error field generated by registering an artificial image resulted in a 

similarly small error (5.6%), even though the RMS error was many times larger. This is less than the 

difference between the three virtual fields and is acceptable for this type of measurement. 

The optimisation process using both algorithms and multiple start points converged in every case to a 

shear modulus of around 1.2 kPa and a bulk modulus of 254 kPa.  However, solutions were found with 

negligible errors (<10-6) over the whole range of values of α from -100 to +100.  For positive values of 

α there was a weak coupling with the shear modulus while for negative values the shear modulus was 

constant at around 1.25 kPa.  Since α is generally believed to be negative this latter value is most likely 

to be correct.  Budday et al. [31] reviewed numerous experimental measurements in the range 0.1 

kPa – 3kPa, with the majority in the range 0.5 – 1.0 kPa.  Since different test methods give different 

results and there are significant regional variations, it is difficult to be more precise, but clearly the 

present results match well with experimental data for in vitro brain tissue.  Elastography 

measurements by Hiscox et al. [27] gave a shear modulus in the range 2.21-3.76 kPa, whilst Sack et al. 

[32] measured shear moduli from 2.17-4.50 kPa.  These are higher than our measurements, but this 

is to be expected as elastography uses a much higher frequency of loading which will increase the 

apparent stiffness of the tissue.  The measured shear and bulk moduli correspond to a Poisson’s ratio 
of 0.4977, which is consistent with literature data and typical assumptions about near 

incompressibility, and to a Young’s modulus of 3,744 Pa. 

The gravitational deformation of the brain was too small to allow full characterisation of the material 

properties.  The Ogden exponent α describes stiffening of the tissue at large strains and could not 

therefore be determined from an experiment in which only very small strains were applied.  A very 

wide range of values are reported in the literature (from +34.8 to -73.5 in Budday et al. [33], for 

example), suggesting that in general α is variable and difficult to measure accurately.  The ability to 

recognise where parameters cannot be identified accurately is an important advantage of this method 

over the usual inverse finite element approach. 

In order to explore the uncertainty in the parameter identification process, it is informative to see how 

the range of possible parameter values increases if small errors are allowed in the virtual power.  Fig. 

5 shows the error distribution for 2,800 random parameter sets; while the bulk modulus can still be 

identified precisely, allowing small errors greatly increases the uncertainty in the shear modulus.  Since 

the brain is constrained by the skull, it is difficult for it to move unless regions in compression reduce 

in volume and those in tension expand; movement of the brain is very dependent on movement of 

CSF within and around it.  Volumetric stiffness is therefore the most important factor determining the 

amount of deformation and hence it could be identified most accurately.  Shear stiffness and strain 



stiffening have much less effect and so could not be identified so precisely.  Significant volumetric 

strains were found; in preliminary experiments it was shown that the brain reached equilibrium within 

a few minutes and so this represents the drained configuration after poroelastic fluid flow through 

the tissue has taken place.  This is different from impact experiments or other situations where rapid 

loading occurs.   

Budday et al. [34] and Voyiadjis et al [35] demonstrated that the compressibility of brain tissue is 

different in tension, compression and shear and a more complex material model is required to 

represent this, so perhaps it is not surprising that it was difficult to identify unique values for the shear 

stiffness and bulk modulus in this study, where different parts of the brain experienced different 

combinations of tension, compression and shear.  A more complex model with multiple terms could 

fit the measured behaviour better, although there may be insufficient information in the 

measurements to allow the identification of several more material parameters. 

In our previous study using the same finite element model with data from a larger group of subjects 

[23] we found average values of μ=670 Pa, K=148 kPa and α=-19, which compare well with the present 

results, although K was lower with much more uncertainty.  It was possible to estimate all three 

parameters, but the present method quantified K much more precisely and enabled a systematic error 

analysis which revealed uncertainty in μ and α.   

One limitation of this approach, which applies also to other methods such as the inverse finite element 

approach, is that errors in the finite element model such as insufficient mesh refinement will bias the 

results.  This technique provides a convenient way to test for such errors, by calculating the internal 

and external virtual power for simulated displacements, which should match accurately.  For the 

simplified models used to create the virtual fields, each can be tested using its own output as both the 

displacement field and the virtual field.  This is a useful technique that may have other applications in 

assessing the accuracy of FE simulations. 

Another important limitation is that full field displacement data is needed.  In the past this has typically 

limited the use of virtual fields methods to structures such as thin plates where the full displacement 

field can be inferred from measurements at the surface, but increasingly it is possible to measure full 

three-dimensional displacement fields using techniques such as MRI and there is an increasing interest 

in measuring mechanical properties of tissues from such images.  It is to be hoped, therefore, that the 

technique may find useful applications. 

The virtual power formulation includes an acceleration term which could be used to include dynamic 

effects such as wave propagation [36].  Since shear wave propagation depends on shear stiffness, a 

combination of the present technique (which is more sensitive to bulk modulus) with shear wave 

elastography might provide more complete parameter identification. 

Using gravitational loading also has some valuable advantages.  The density of most tissues is 

accurately known and so the load can be precisely quantified.  The boundary conditions are also well 

defined and well understood.  Gravity acts equally on inaccessible tissues deep within the body, such 

as the brain, loading them precisely and non-invasively.  This is a valuable tool that has great potential 

for measuring the properties of internal organs such as the liver, where stiffness measurements have 

considerable diagnostic value in quantifying fibrosis and other diseases.  In the brain, which is 

supported on all sides by the skull and CSF, the gravitational deformation is small and difficult to 

measure accurately and only a limited amount of material property information could be extracted 

assuming the tissue properties were constant throughout the whole organ.  For tissues such as the 

breast which undergo much larger gravitational deformations it should be possible to obtain much 



more detailed information and potentially to map out tissue properties and hence delineate and 

assess suspected tumours.  
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Figures 
 

 
Fig. 1.  The finite element model of the brain: the right side of the model showing the ventricles and 

the fluid-filled subarachnoid space with spring elements representing the arachnoid trabeculae.  The 

dura mater and CSF have been hidden for clarity. 



 
Fig. 2.  Displacement data from the MRI measurements [15].  The vectors show the displacements, 

scaled by a factor of 5 for clarity.  Letters show anatomical directions: A=anterior, P=posterior, 

S=superior, I=inferior, L=left, R=right; transverse section (left), sagittal section (top right) and frontal 

section (lower right); the position of each section is indicated by the dashed lines in the other views 

which match the colours of the vectors in each view. 

 

 

 

  

  

 

 

  

 

 

 

 

  

  

 

 

  

 

 



Fig. 3(a).  The first virtual field optimised to identify μ, plotted in the same way as Fig. 2 but with the 

vectors scaled by 105.  

 

Fig. 3(b).  The second virtual field optimised to identify , plotted in the same way as Fig. 2 but with 

the vectors scaled by 105.  

 

Fig. 3(c).  The third virtual field optimised to identify K, plotted in the same way as Fig. 2 but with the 

vectors scaled by 105.  

 

 

  

  

 

 

  

 

 

 

 

  

  

 

 

  

 

 



 

Fig. 4.  Error function 𝑃𝑒𝑟𝑟𝑡𝑜𝑡𝑎𝑙 plotted as a function of the material parameters from multiple 

optimisation runs using two different optimisation algorithms: green stars show parameter sets with 

an error less than 1x10-8, yellow asterisks 1x10-8< 𝑃𝑒𝑟𝑟𝑡𝑜𝑡𝑎𝑙<1x10-6, red + signs 1x10-6< 𝑃𝑒𝑟𝑟𝑡𝑜𝑡𝑎𝑙<1x10-4 and 

blue x symbols 1x10-4< 𝑃𝑒𝑟𝑟𝑡𝑜𝑡𝑎𝑙<0.01.  (Left) the parameter space shown in 3D; (right) projection on to 

the μ - K plane.  Extremely small errors were possible for any value of α but the other parameters were 

identified consistently and precisely.  

 
Fig. 5.  Errors for 2,800 random parameter sets.  Green stars show points with errors less than 1%, 

yellow asterisks 1%< 𝑃𝑒𝑟𝑟𝑡𝑜𝑡𝑎𝑙<2%, red plus signs 2%< 𝑃𝑒𝑟𝑟𝑡𝑜𝑡𝑎𝑙<5%, blue x signs 𝑃𝑒𝑟𝑟𝑡𝑜𝑡𝑎𝑙>5%.  Note the axis 

scales: K was identified with very little uncertainty, but a much wider range of values for μ result in 

only small errors. 



 
Fig. 6.  The effect of adding synthetic noise to the displacement data.  The graph shows the values of 

the error function Perr plotted against the RMS noise level for each of the three virtual fields; this was 

repeated twice so that there are two sets of points.  It is evident that there was no systematic bias in 

the error function 𝑃𝑒𝑟𝑟𝑡𝑜𝑡𝑎𝑙 as a result of adding noise and that the three virtual fields were affected 

independently and differently. 
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