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Abstract

The Conley index of an isolated invariant set is a fundamental object in the study of dynamical

systems. Here we consider smooth functions on closed submanifolds of Euclidean space

and describe a framework for inferring the Conley index of any compact, connected isolated

critical set of such a function with high confidence from a sufficiently large finite point sample.

The main construction of this paper is a specific index pair which is local to the critical set in

question. We establish that these index pairs have positive reach and hence admit a sampling

theory for robust homology inference. This allows us to estimate the Conley index, and as

a direct consequence, we are also able to estimate the Morse index of any critical point of a

Morse function using finitely many local evaluations.

Keywords Conley index theory · Homology inference · Manifold learning

1 Introduction

There is a pair of spaces at the heart of every topological quest to study gradient-like dynamics.

Such space-pairs appear, for instance, whenever one encounters a closed m-dimensional

Riemannian manifold M endowed with a Morse function f : M → R. The fundamental

result of Morse theory [19] asserts that if f admits a single critical value in an interval

[a, b] ⊂ R, and if this value corresponds to a unique critical point p ∈ M of Morse index μ,

then the sublevel set

M f ≤b := {x ∈ M | f (x) ≤ b}
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is obtained from M f ≤a by gluing a closed m-dimensional disk D along a (μ − 1)-

dimensional boundary sphere S. The relevant pair,1 in this case is (D, S), and it follows

by excision that there are isomorphisms

H•
(

M f ≤b, M f ≤a

)

≃ H• (D, S)

of (integral) relative homology groups. Thus, when working over field coefficients, the

homology groups of M f ≤b are obtained by altering those of M f ≤a in precisely one of two

ways—either the μ-th Betti number is incremented by one, or the (μ− 1)-st Betti number is

decremented by one.

Attempts to extend this story beyond the class of Morse functions run head-first into

two significant complications—first, since the critical points need not be isolated, one must

confront arbitrary critical subsets; and second, there is no single number analogous to the

Morse index which completely characterises the change in topology from M f ≤a to M f ≤b.

The first complication is encountered in Morse-Bott theory [1], where the class of admissible

functions is constrained to ones whose critical sets are normally nondegenerate submanifolds

of M . The second complication is ubiquitous in Goresky-MacPherson’s stratified Morse

theory [11], where the class of admissible functions is constrained to those which only admit

isolated critical points. In both cases, there are satisfactory analogues of (D, S) obtained by

separately considering tangential and normal Morse data; however, the constraints imposed

on functions M → R in these extensions of Morse theory are far too severe from the

perspective of dynamical systems.

1.1 The Conley Index

Conley index theory [5, 22] provides a powerful generalisation of Morse theory which has

been adapted to topological investigations of dynamics.

Consider an arbitrary smooth function f : M → R and the concomitant gradient flow

σ : R × M → M . A subset S ⊂ M is invariant under f if σ(t, x) lies in S whenever (t, x)

lies in R×S; and such an S is isolated if there exists a compact subset N ⊂ M containing S in

its interior, so that S is the largest invariant subset of f inside N . Assuming that S is isolated

in this sense, let N− ⊂ N be any compact subset disjoint from S satisfying the following two

conditions: first, any flow line in N entering N− cannot re-enter N \ N−; and second, the

flow lines that leave N− are precisely the flow lines that leave N entirely. Pairs of the form

(N , N−) are called index pairs for S, and the relative homology H•(N , N−) does not depend

on the choice of index pair; this relative homology is called the homological Conley index

of S. The notion of index pairs subsumes not only the pair (D, S) from Morse theory, but also

the analogous local Morse data for Morse-Bott functions and stratified Morse functions.

The Conley index enjoys three remarkable properties as an algebraic-topological mea-

surement of isolated invariant sets:

(1) being relative homology classes, Conley indices are efficiently computable [14, 15];

(2) if H•(N , N−) is nontrivial for an index pair, then one is guaranteed the existence of a

nonempty invariant set in the interior of N ; and finally,

(3) the Conley index of an isolated invariant set S remains constant across sufficiently small

perturbations of f : M → R even though S itself might fluctuate wildly.

As a result of these attributes, the Conley index has found widespread applications to several

interesting dynamical problems across pure and applied mathematics. We have no hope

1 Several other pairs of spaces would satisfy the same homological properties, e.g., (M f ≤b M f ≤a) itself, or

(Ma≤ f ≤b, M f =a). The goal is usually to find the simplest and most explicit space-pair.
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of providing an exhaustive list of these success stories here, but we can at least point the

interested reader to its application in the disproof of the triangulation conjecture [18], the

study of fixed points of Hamiltonian diffeomorphisms [6], travelling waves in predator–prey

systems [9], heteroclinic orbits in fast-slow systems [10], chaos in the Lorenz equations [21],

and local Lefschetz trace formulas for weakly hyperbolic maps [12].

1.2 Topological Inference

An enduring theme within applied algebraic topology involves recovering the homology of

an unknown subset X of Euclidean space R
d with high confidence from a finite point cloud

P ⊂ R
d that lies on, or more realistically, near X . This task is impossible unless one assumes

some form of regularity on X—no amount of finite sampling will unveil the homology groups

of Cantor sets and other fractals.

The authors of [23] consider the case where X is a compact Riemannian manifold and P

is drawn uniformly and independently from either X or from a small tubular neighbourhood

of X in R
d . Their main result furnishes, for sufficiently small radii ǫ > 0 and probabilities

δ ∈ (0, 1), an explicit lower bound B = BX (ǫ, δ). If the cardinality of P exceeds B, then

it holds with probability exceeding (1 − δ) that the homology of X is isomorphic to that of

the union Pǫ of ǫ-balls around points of P . Similar results have subsequently appeared for

inferring homology of manifolds with boundary [24], of a large class of Euclidean compacta

[4], and of induced maps on homology [8].

A crucial regularity assumption underlying all of these results is that the map induced on

homology by the inclusion X →֒ X ǫ is an isomorphism for all suitably small ǫ > 0. When

X is smooth, this can be arranged by requiring the radius ǫ to be controlled by the injectivity

radius of the embedding X →֒ R
d , often called the reach of X—see [7].

1.3 This Paper

Here we consider a compact, connected and isolated critical set S of a smooth function

f : M → R defined on a closed submanifold M ⊂ R
d . Our contributions are threefold:

(1) we construct a specific index pair (N , N−) for S in terms of auxiliary data pertaining to

some isolating neighbourhood of S in M ; moreover,

(2) we establish that both N and N− have positive reach when viewed as subsets of R
d ; and

finally,

(3) we provide a sampling theorem for inferring the Conley index H•(N , N−) from finite

point samples of N and N−.

The auxiliary data required in our construction of (N , N−) is a smooth real-valued function

g, which is defined on an isolating neighbourhood and whose vanishing locus equals S.

These are not difficult to find—one perfectly acceptable choice of g is the norm-squared of

the gradient ||∇ f ||2. Using any such g along with a smoothed step function, we construct

a perturbation h : M → R of f which agrees with f outside the isolating neighbourhood.

The set N is then obtained by intersecting a sublevel set of f with a superlevel set of h; and

similarly, N− is obtained by intersecting the same sublevel set of f with an interlevel set

of h. The endpoints of all intervals considered in these (sub, super and inter) level sets are

regular values of f and h, i.e., ∇ f and ∇h. Here is a simplified version of our main result,

summarising Proposition 5.2 and Theorem 5.5.
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Theorem (A) Let (N , N−) be our constructed index pair for S. Assume that X ⊂ N is a

(uniform, independent) finite point sample, and set X− := X ∩ N−. Then:

(1) If the density of (X, X−) in (N , N−) exceeds an explicit threshold t1, then H•(Xǫ, X
ǫ
−)

is isomorphic to the Conley index of S over an open interval of choices of ǫ;

(2) A point sample with sufficient density can be realised with high probability 1 − κ from

a uniform, i.i.d. sample of (N , N−), if the number of points exceeds a threshold t2; and

(3) The thresholds t1 and t2 depend only on the reach of the manifold, C1 data of f and g

on the isolating neighbourhood, and bounds on the norm of the second derivatives of f

and g.

An essential step in our proof involves showing that N and N− have positive reach. Our

strategy for establishing this fact is to prove a considerably more general result, which we

hope will be of independent interest. We call E ⊂ R
d a regular intersection if it can be

written as

E =
ℓ
⋂

i=1

fi
−1 (Ii )

for some integer ℓ > 0; here each fi : M → R is a smooth function with 0 a regular value,2

and each Ii is either the point {0} or the interval (−∞, 0]. The geometry of such intersections

is coarsely governed by two positive real numbers μ and �—here μ bounds from below

the singular values of all Jacobian minors of ( f1, . . . , fℓ) : M → R
ℓ evaluated on specific

strata of E specified in Definition 4.1, while � bounds from above the operator norm of all

the Hessians H fi .

Lemma (B) Every (μ,�)-regular intersection of ℓ smooth functions M → R has reach τ

bounded from below by

1

τ
≤ 1

τM

+
√

ℓ · �

μ
,

where τM is the reach of M .

See Lemma 4.4 for the full statement and proof of this result.

1.4 RelatedWork

Our construction of the index pair (N , N−) for an isolated critical set S is inspired by Mil-

nor’s construction for the case where S is a critical point of a Morse function [19, Secion I.3].

Index pairs for isolated critical points of smooth functions have been thoroughly explored

by Gromoll and Meyer [13]; the work of Chang and Ghoussoub [3] provides a convenient

dictionary between Conley’s index pairs and a generalised version of these Gromoll-Meyer

pairs. Also close in spirit and generality to our (N , N−) are the systems of Morse neigh-

bourhoods around arbitrary isolated critical sets in the recent work of Kirwan and Penington

[16].

1.5 Outline

In Sect. 2 we briefly introduce index pairs and the Conley index. In Sect. 3, we give an

explicit construction of (N , N−). Section 4 is devoted to proving Lemma (B). In Sect. 5,

2 That is, the gradient ∇x fi is nonzero ∀x ∈ fi
−1 (0)
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we specialise the above results for regular intersections to our index pairs (N , N−)—in

particular, we derive a sufficient sampling density for the recovery of the Conley index and

give a bound on the number of uniform independent point samples required to attain this

density with high confidence.

2 Conley Index Preliminaries

The definitions and results quoted in this section are sourced from Sects. III.4 and III.5 of

Conley’s monograph [5]; see also Mischaikow’s survey [22] for a gentler introduction to this

material.3

Let m ≤ d be a pair of positive integers, and consider a closed m-dimensional Riemannian

submanifold of d-dimensional Euclidean space R
d . Throughout this paper, we fix a smooth

function f : M → R and denote by ∇x f its gradient evaluated at a point x ∈ M . The

gradient flow of f is the solution σ : R × M → M to the initial value problem:

∂σ (t, x)

∂t
= −∇x f and σ(0, x) = x . (1)

We call x ∈ M a critical point of f if ∇x f = 0, whence σ(R, x) = x . Let Crit ( f ) denote

the set of critical points of f , and Critc ( f ) the set of compact connected components of

Crit ( f ). More generally, a subset S ⊂ M is invariant under σ whenever σ(R, S) ⊂ S. We

say that S is isolated if there exists a compact set K ⊂ M such that S is in the interior of K ,

and is precisely the set of points that cannot be sent outside of K by the flow σ ; explicitly,

we must have

S = {x ∈ K | σ(R, x) ⊂ K } ⊂ int (K ) . (2)

Any such K is called an isolating neighbourhood of S.

Definition 2.1 Let N− ⊂ N be pair of compact subsets of M . We call (N , N−) an index

pair for the isolated invariant set S if the following axioms are satisfied:

(IP1) the closure cl (N \ N−) is an isolating neighbourhood of S;

(IP2) the set N− is positively invariant in N : that is, for any x ∈ N− with σ([0, t], x) ⊂ N

for t > 0, we have σ([0, t], x) ⊂ N−;

(IP3) the set N− is an exit set; namely, if for some x ∈ N and t > 0, we have σ(t, x) /∈ N ,

then there exists some s ∈ [0, t] with σ([0, s], x) ⊂ N and σ(s, x) ∈ N−.

Every isolated invariant set S of σ admits an index pair (N , N−)—see [5, Sect. III.4] for

a proof. The content of [5, Sect. III.5] is that if (L, L−) is any other index pair for S, then

the pointed homotopy types of N/N− and L/L− coincide. As a result, the relative integral

homology groups H•(N , N−) and H•(L, L−) are isomorphic and the following notion is

well-defined.

Definition 2.2 The (homological) Conley index of an isolated invariant set S, denoted

Con•(S), is the relative homology H•(N , N−) of any index pair for S.

It follows immediately from the additivity of homology that if S decomposes as a finite

disjoint union
∐

i Si of isolated invariant subsets, then Con•(S) is isomorphic to the direct

3 While the Conley index is defined for isolated invariant sets of any flow R× M → M or map M → M , we

have confined our presentation here to gradient flows as those are directly relevant to this paper.
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sum
⊕

i Con•(Si ). Therefore, it suffices to restrict attention to the case where S is connected.

In this paper we consider only the special case S ∈ Critc ( f ), i.e., isolated invariant sets

which are compact, connected and critical. It follows that the restriction of f to S is constant,

and we will assume henceforth (without loss of generality) that f (S) = 0.

3 Constructing Index Pairs

Let M ⊂ R
d be a closed Riemannian submanifold and f : M → R a smooth function.

We consider a (connected, compact) critical set S ∈ Critc ( f ) with f (S) = 0 and isolating

neighbourhood K , as described in Eq. (2). For each x in M , we write Hx f to denote the

Hessian matrix of second partial derivatives of f evaluated at x . Our goal in this section

is to explicitly construct an index pair for S in the sense of Definition 2.1. We describe the

ingredients of our construction below, and give an illustration of our construction in Fig. 1.

Definition 3.1 A smooth4 map g : K → R is called a bounding function for S if there

exists a pair of real numbers r0 < r1 for which the following properties hold:

(G1) S ⊂ g−1 (−∞, r0);

(G2) S = g−1(−∞, r1] ∩ Crit ( f );

(G3) g−1[r0, r1] ∩ Crit (g) = ∅.

We call [r0, r1] a regularity interval for the bounding function g.

We note that as K is itself bounded, g−1(−∞, r1] is compact. Bounding functions always

exist for isolated sets in Critc ( f )—one convenient choice is furnished by the normsquare

of the gradient ∇ f of f ,

Lemma 3.2 The function g : K → R given by g(x) = ||∇x f ||2 is a bounding function for

S.

Proof Writing ∂K for the boundary of K in M , set s = supx∈∂K ||∇x f ||2 and note that

s > 0 because K is an isolating neighbourhood of S. Since critical sets of smooth functions

are closed, and K – by virtue of being an isolating neighbourhood – is compact, we have

that Crit (g) ∩ K is compact. As g is continuous, g(Crit (g)) is compact in R, and thus

the regular values of g are open in R. Applying Sard’s theorem, regular values of g then

form an open dense subset of [0, s]. Consequently, there exists an interval of regular values

[r0, r1] ⊂ (0, s] of g. Since r0 > 0, and S is the only set of critical points in K , Items (G1)

to (G3) of Definition 3.1 are trivially satisfied. ⊓⊔

We further assume knowledge of the following numerical data.

Assumption 3.3 For a given bounding function g : K → R for S, we assume:

(G4) There is a constant q0 > 0 so that the inequality

||∇ f ||
||∇g||

(r1 − r0)

2
≥ q0

holds on g−1[r0, r1];

4 Since K has a boundary, we mean that g is smooth on an open subset of M containing K .
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(G5) There are regular values (α, r) and (α, s) of ( f , g) : K → R
2 satisfying

0 < α ≤ q0

2
and

r0 + r1

2
< s ≤ r < r1.

Remark 3.4 When using g = ||∇ f ||2, we have ∇g = 2 · H f · ∇ f , where H f is the Hessian

of f . As long as this Hessian remains nonsingular on g−1[r0, r1], the two assumptions above

are readily satisfied. In particular, we can rephrase Item (G4) to the statement that

||H f · ∇ f ||
||∇ f || ≤ (r1 − r0)

q0
;

Since the left side is bounded by the operator norm of H f , if we set

b = inf
g(x)∈[r0,r1]

‖Hx f ‖

then any q0 ≤ (r1−r0)
b

suffices. Similarly, the function ( f , ||∇ f ||2) : K → R
2 is singular at

x ∈ K if and only if ∇x f is an eigenvector of Hx f , so points of K chosen at random will

generically be regular.

A regularity interval [r0, r1] for g may be used to construct a smooth step function which

decreases from q0 to 0. In turn, the function q facilitates the construction of a local perturbation

of f near S, which we call h. This perturbation h is the last piece of information required to

construct an index pair for S (Fig. 1).

Fig. 1 Left: the sublevel set f −1(−∞, α]; Centre left: orange contour lines correspond to those of h, black

dashed contour lines correspond to those of f , and grey contour lines correspond to g = r0 and g = r1. Note

how outside g−1(−∞, r1], the functions f and h coincide, while within g−1(−∞, r1], the local addition

of a non-zero q(g) perturbation causes the contours of h to deform and deviate away from f . Centre right:

an example of (N , N−). The green region corresponds to N− and the union of the green and blue regions

constitute N . The orange lines are contour lines of h = β and h = γ ; the black lines are the contour lines of

f = α; and the grey lines are contour lines of g = r and g = s. Right: (N , N−) depicted with a stream plot

of the flow along −∇x f superimposed (Color figure online)
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Definition 3.5 The step function q : R → R≥0 is defined as

q(t) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

q0 t < r0

q0

(

1 + exp
(

r1−r0
r1−t

+ r1−r0
r0−t

))−1
t ∈ [r0, r1]

0 t > r1

, (3)

and the q-perturbation of f is the smooth function h : M → R given by

h(x) =
{

f (x) + q (g(x)) if x ∈ K

f (x) otherwise
. (4)

Item (H3) of Lemma 3.6 shows that h is smooth despite its piecewise definition: f only

disagress with h on a strict subset of the interior of K .

Define the constants

β = α + q(r) and γ = α + q(s), (5)

where α has been chosen in Item (G4) while r and s are chosen in Item (G5). Let (N , N−)

be the pair of spaces given by

N = f −1(−∞, α] ∩ h−1[β,∞) and N− = f −1(−∞, α] ∩ h−1[β, γ ]. (6)

(Note that N− ⊂ N ⊂ K holds by construction). Here is the main result of this section.

We now show that (N , N−) from Eq. (6) satisfy (IP1) to (IP3), and thus form an index

pair for S. Lemma 3.7 establishes how (N , N−) satisfy (IP1), and Lemma 3.8 establishes

how (N , N−) satisfy (IP2) and (IP3). Before proceeding to prove these lemmas, we outline

some relevant features of the function h from Eq. (4).

Lemma 3.6 The function h : M → R satisfies the following properties:

(H1) f (x) ≤ h(x);

(H2) g(x) ≤ r0 ⇐⇒ h(x) = f (x) + q(0);

(H3) g(x) ≥ r1 ⇐⇒ h(x) = f (x);

(H4) 〈∇h,∇ f 〉 ≥ 0 with equality only attained on Crit ( f ); and,

(H5) Crit (h) = Crit ( f ).

Proof The only properties here which don’t follow directly from Definition 3.5 are Item (H4)

and Item (H5). For Item (H4), note by Eq. (4) that ∇h = ∇ f holds outside g−1[r0, r1] since

the derivative of q vanishes in this region. So we consider x ∈ g−1[r0, r1], and calculate

∇x f = ∇x f + q ′(g(x)) · ∇x g.

It is readily checked that |q ′(t)| is maximised at t = r0+r0
2

, where its value is
2q0

r1−r0
. Therefore,

〈∇x h,∇x f 〉 = 〈∇x f ,∇x f 〉 + q ′(g(x)) 〈∇x g,∇x f 〉

≥ ||∇x f || ||∇x g||
( ||∇x f ||
||∇x g|| − |q ′(g(x))|

)

Cauchy-Schwarz, item (G2)

≥ ||∇x f || ||∇x g||
( ||∇x f ||
||∇x g|| −

2q0

r1 − r0

)

Bound on |q ′|

> 0 i tem(G4)

As a consequence of item (H4), we know that∇h �= 0 on the set g−1[r0, r1]. Since∇h = ∇ f

whenever g ≤ r0 or g ≥ r1, have Crit ( f ) = Crit (h), as required by Item (H5). ⊓⊔
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The next result forms the first step in our proof of Theorem 3.9.

Lemma 3.7 (N , N−) satisfy (IP1) : the closure cl (N \ N−) is an isolating neighbourhood

of S.

Proof Before verifying Eq. (2) with K := cl (N\N−), we first check that the closed set K

is compact by confirming that the ambient set N is bounded. To this end, note that for any

x ∈ N , we have:

h(x) = f (x) + q(g(x)) by Eq. 4

≤ α + q(g(x)) by Eq. 6

A second appeal to Eq. (6) gives h(x) ≥ β for x ∈ N , whence β − α ≤ q(g(x)). But

β −α = q(r) by Eq. (5) and q is strictly decreasing on [r0, r1], which forces g(x) ≤ r ≤ r1.

Thus N lies within g−1(−∞, r1], which is compact as it is a closed subset of an isolating

neighbourhood which is compact itselfe.

Next we establish that S lies in the interior of K by showing that S ⊂ f −1 (−∞, α) ∩
h−1 (γ,∞). For this purpose, note that f (S) = 0 by assumption and α > 0 by Item (G4), so

S ⊂ f −1(−∞, α] is immediate. And since S ⊂ g−1(−∞, r0] by Item (G1), we have from

Item (H2) that h(S) = q0. Now,

γ = α + q(s) by Eq. 5

≤ α + q0

2
sinces >

r0 + r1

2
by Item (G5)

< q0 sinceα <
q0

2
by Item (G5)

Thus, h(S) = q0 exceeds γ , and so S ⊂ h−1[γ,∞) as desired.

Finally, to see that S is the maximal invariant subset of K , begin with the facts S ⊂ N

and N ⊂ g−1(−∞, r ] established above, so we have

S ⊂ N ∩ Crit ( f ) ⊂ g−1(−∞, r ] ∩ Crit ( f ).

Item (G2) guarantees g−1(−∞, r ] ∩ Crit ( f ) = S, so we conclude that S = N ∩ Crit ( f ).

Since S lies on a single level set f = 0, there are no connecting orbits between points of S,

and so S is the maximal invariant subset of K . ⊓⊔

Lemma 3.8 N− is positively invariant in N , satisfying (IP2); and furthermore, it is an exit

set of N , thus satisfying (IP3).

Proof We note from Eq. (1) that σ flows along the gradient−∇ f , so f is non-increasing along

the flow. Thus if x ∈ N , then f (σ (t, x)) ≤ α; and by Item (H4), h is also non-increasing

along the flow. Thus if x ∈ N−, then γ ≥ h (σ (t, x)). Since N− = f −1(−∞, α]∩h−1[β, γ ],
if x ∈ N−, then any σ(t, x) ∈ N is in N− if t > 0, therefore it is positively invariant in N

and satisfies Item (IP2).

We now show that N− satisfies the exit set condition Item (IP3). Consider any x ∈ N ,

such that σ(t, x) /∈ N for some t > 0. Then either f (σ (t, x)) > α or h(σ (t, x)) < β. Since

f cannot increase along σ(t, x) and f (x) ≤ α, we have f (σ (s, x)) ≤ α. Similarly, because

h cannot increase along σ(t, x), then we must have h(σ (t, x)) < β. As h(x) ≥ β, there must

be some s ∈ [0, t) where h(σ (s, x)) = β by continuity. Therefore, there is some s ∈ [0, t]
such that σ(s, x) ∈ N− for any x ∈ N that flows outside N at some t > 0. ⊓⊔
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We can now state the main result of this section, which follows from (N , N−) satisfying

(IP1) to (IP3), which we have shown in Lemmas 3.7 and 3.8.

Theorem 3.9 The pair (N , N−) from Eq. (6) is an index pair for S.

4 The Geometry of Regular Intersections

Given our definition of (N , N−) in Eq. (6), the problem of inferring Conley indices is

subsumed by the more general task of inferring the homology of subsets generated by taking

finite intersections of level and sublevel sets of smooth functions at regular values. We

parametrise this class of subsets as follows.

Definition 4.1 A non-empty subset E of a compact Riemannian manifold M is called a

(μ,�)-regular intersection for real numbers μ > 0 and � ≥ 0 if there exist (finitely many)

smooth functions f1, . . . , fℓ : M → R, such that E can be written as a finite intersection

E =
ℓ
⋂

i=1

fi
−1 (Ii ) (7)

where each fi
−1 (Ii ) is either a level set with Ii = {0} or a sublevel set with Ii = (−∞, 0],

with 0 being a regular value of each fi ; moreover, these fi satisfy the following criteria:

(R1) For any 1 ≤ k ≤ ℓ and set of indices 1 ≤ i1 < i2 < · · · < ik ≤ ℓ with f(i1,...,ik ) =
( fi1 , . . . , fik

) : M → R
k , the Jacobian dp f(i1,...,ik ) is surjective at all points p in

the intersection f(i1,...,ik )
−1 (0) ∩ E , and the smallest non-zero singular value of this

Jacobian is greater or equal to μ.

(R2) The supremum supp∈M ‖Hp fi‖ of the norm of each fi ’s Hessian on M is bounded

above by �; here

∣

∣

∣

∣Hp fi

∣

∣

∣

∣ := sup
‖X‖Rm =1

∣

∣

∣

∣Hp fi (X)
∣

∣

∣

∣

Rm . (8)

Next we show that regular intersections are topologically well-behaved; in the statement

below, we write int (A) to indicate the interior of a subset A of M , and cl (A) to denote its

closure in M .

Lemma 4.2 Every regular intersection of the form

E =
ℓ
⋂

i=1

fi
−1(−∞, 0]

is a regular closed subset of M, i.e. E = cl (int (E)). In particular,

int (E) =
ℓ
⋂

i=1

fi
−1 (−∞, 0).

Proof We first check that int (E) has the desired form; to this end, note that for each sublevel

set fi
−1(−∞, 0] taken at a regular value, the open sublevel set fi

−1 (−∞, 0) is the interior

of fi
−1(−∞, 0] (see [17, Proposition 5.46]). Thus, as fi

−1 (−∞, 0) is the largest open set in
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fi
−1(−∞, 0], the intersection

⋂ℓ
i=1 fi

−1 (−∞, 0) must contain any open set of E , including

int (E). However, as
⋂ℓ

i=1 fi
−1 (−∞, 0) ⊂ E , it follows that

int (E) ⊆
ℓ
⋂

i=1

fi
−1 (−∞, 0) ⊂ E �⇒ int (E) =

ℓ
⋂

i=1

fi
−1 (−∞, 0).

Since it follows from the definition of closure that E ⊇ cl (int (E)), it suffices to show that

E ⊆ cl (int (E)). Consider p ∈ E\int (E), where without loss of generality we assume that

f1(p) = · · · = fk(p) = 0 and fi (p) < 0 for i > k. Let ui = ∇p fi

||∇p fi || . Let ũi be the

component of ui orthogonal to all u j where j �= i and 1 ≤ j ≤ k. Since E is a regular

intersection (Definition 4.1), we have ũi �= 0 and
〈

ũi , u j

〉

is positive and non-zero if and only

if i = j . Define

v = −
k
∑

i=1

ũi , (9)

so 〈v, ui 〉 < 0 for all i = 1, . . . , k (thus patently v �= 0). Consider a continuous curve γ (t)

on M where γ (0) = p and γ̇ (0) = v. As fi are continuous, fi (p) = 0 and
〈

∇p fi , γ̇ (0)
〉

< 0

for i ≤ k; and fi (p) < 0 for i > k, there is some sufficiently small ǫ > 0 such that for all

t ∈ (0, ǫ), we have fi (γ (t)) < 0 for all i ∈ {1, . . . , n}. We thus have for any p ∈ E\int (E)

a sequence of points γ (−t) for t ∈ (0, ǫ) in E , whose limit is p. Therefore, E ⊆ cl (int (E))

as desired. ⊓⊔

We now proceed to analyse the geometry of regular intersections through the perspective

of [7]. For any closed subset A ⊂ R
d , let dA(x) := dRd (x, A) denote the distance of any

point x ∈ R
d to A, and let NNA (x) ⊆ A be the set of nearest neighbours of x in A. As A

is closed, NNA (x) is a non-empty closed subset of R
d . We let UP (A) be the set of points

x ∈ R
d for which admit a unique nearest neighbour in A:

UP (A) :=
(

x ∈ R
d : #NNA (x) = 1

)

, (10)

There is a projection map ξA : UP (A) ։ A that sends each x to its unique nearest neighbour

in A. For p in A, we define the subset UP (A, p) = (x ∈ UP (A) : ξA (x) = p).

We also consider the complement of UP (A) in R
d , which is the medial axis of A:

Med (A) :=
(

x ∈ R
d : #NNA (x) > 1

)

= R
d \ UP (A) . (11)

The local feature size of p ∈ A is

τA (p) := dRd (p, Med (A)). (12)

We say A has positive local feature size if τA (p) > 0 for all p ∈ A.

Definition 4.3 The reach of A is the infimum of the local feature size over A

τA := inf
p∈A

τA (p) . (13)

We say that A has positive reach if τA > 0.

One can also show that

τA = inf
x∈Med(A)

dA(x). (14)
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Closed submanifolds of Euclidean space have positive reach [17], but in general the class of

positive-reach subsets of R
d includes many non-manifold spaces. Our goal in this Section is

to prove the following result, which is Lemma (B) from the Introduction.

Lemma 4.4 Every (μ,�)-regular intersection E =
⋂ℓ

i=1 f −1 (Ii ) has its reach bounded

from below by ρk > 0, which is given by

1

ρk

= 1

τM

+
√

k · �

μ
(Eq. 28)

where for any p ∈ E, the number of functions fi which is zero on p is at most k ≤ l.

In order to arrive at this result, we first recall some fundamental facts about the reach.

4.1 Geometric Consequences of the Reach

If A ⊂ R
d has positive reach, then every x ∈ R

d with d(x, A) < τA has a unique projection

ξA(x) in A. This is expressed in Federer’s tubular neighbourhood theorem [7], recalled below.

Theorem 4.5 Let A be a subset of R
d with τA > 0. Then for r ≤ τA, the set

Ar :=
⋃

p∈A

Br (p)

is entirely contained within UP (A) from Eq. (10).

The reach also places constraints on the length of shortest paths between two points on a

shape; here is the content of [2, Theorem 1 & Corollary 1]. In the statement below, Br ([) x]
denotes a closed Euclidean ball around a point x whereas Br (x) denotes the corresponding

open ball.

Theorem 4.6 Assume that A ⊂ R
d has positive reach. Consider points p, q ∈ A contained

Br ([) x] with r < τA. Then:

(i) There is a geodesic path connecting p and q in A which lies entirely within Br (x)∩ A.

(ii) The length of this geodesic path is bounded above by

dA(p, q) ≤ 2τAasin

( ||p − q||
2τA

)

. (15)

Let Med (A, p) = (x ∈ Med (A) : p ∈ NNA (x)). For A ⊂ R
d closed, consider the

function τ+A : A → [0,∞] defined by

τ+A (p) =
{

dRd (p, Med (A, p)) ifMed (A, p) �= ∅
∞ ifMed (A, p) = ∅.

(16)

This function furnishes lower bounds for the reach in the following sense.

Lemma 4.7 Let A ⊂ R
d be a closed subset. Then:

(i) For any p ∈ A, we have τ+A (p) ≥ τA (p); and

(ii) inf p∈A τ+A (p) = τA.
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Fig. 2 An illustration of the

constraint placed on points q ∈ A

in relation to point p ∈ A due to

Lemma 4.8: implies any point

q ∈ A must lie outside the ball of

radius τ+
A (p) (boundary

indicated by a dashed line), if the

radial vector from p to the centre

of the ball points along x − p for

some x ∈ UP (A, p)

Proof If Med (A, p) = ∅, then it follows from Eq. (16) that τ+A (p) = ∞ ≥ τA (p).

Otherwise, Med (A) is non-empty since it contains Med (A, p). Therefore,

τ+A (p) = dRd (p, Med (A, p)) ≥ dRd (p, Med (A)) = τA (p) .

We turn now to the second assertion. For x ∈ Med (A), choose some point px ∈ A such that

px ∈ NNA (x). From the definition of τ+A in Eq. 16, we have d(x, A) ≥ τ+A (px ). Thus

τA = inf
x∈Med(A)

d(x, A) ≥ inf
x∈Med(A)

τ+A (px ) ≥ inf
p∈A

τ+A (p) .

As we have shown above that τ+A (p) ≥ τA (p), we also have an inequality in the

opposite direction: inf p∈A τ+A (p) ≥ τA. Combining these two inequalities, we obtain

τA = inf p∈A τ+A (p).

⊓⊔

We have considered τ+A (p) rather than the local feature size due to a convenient geometric

property [7, Theorem 4.8(7)].

Lemma 4.8 Let A be a closed subset of R
d and consider x ∈ UP (A, p). Then for any q ∈ A,

||q − p||
2τ+A (p)

>

〈

q − p

||q − p|| ,
x − p

||x − p||

〉

. (17)

The geometric implications of this inequality are illustrated in Fig. 2.

4.2 The Reach of Manifolds

Here we collect some relevant facts about the reach of closed submanifolds of Euclidean

space.

Fix a closed m-dimensional submanifold M ⊂ R
d , and let Tp M ⊂ TpR

d be the plane

tangent to M at p in the ambient Euclidean space. By ζp : M → Tp M we denote the

restriction to M of the orthogonal projection R
d

։ Tp M . The normal space Np M to M at

p is the kernel of this projection, i.e., the (d − m)-dimensional orthogonal complement to

Tp M in R
d . For any non-zero vectors u ∈ Tp M and v ∈ Tq M (where p is not necessarily

the same point as q), we let ∠ (u, v) be the angle between u and v parallel transported in

the ambient Euclidean space to T0R
d where 0 is the (arbitrarily chosen) origin. Here is [7,

Theorem 4.8(12)].
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Theorem 4.9 For any p ∈ M and r < τM (p), we have

UP (M, p) ∩ Br (p) =
(

p + Np M
)

∩ Br (p) . (18)

Below we have reproduced [2, Lemma 5 & Corollary 3].

Lemma 4.10 For any p and q in M with ||p − q|| ≤ 2τM , consider a geodesic γ : [0, s] →
M (given by Theorem 4.6) with γ (0) = p and γ (s) = q. Let v(t) ∈ Tγ (t)M be the parallel

transport of a unit vector v ∈ Tγ (0)M along γ to Tγ (t)M. Then

∠ (v(0), v(t)) ≤ t

τM

and (19)

sin

(

∠ (v(0), v(t))

2

)

≤ ||γ (t) − γ (0)||
2τM

. (20)

And finally, we recall the following result from [23, Proposition 6.1] relating the curvature

of manifolds to the reach.

Lemma 4.11 If M ⊂ R
d is a compact Riemannian submanifold, then for any p ∈ M and unit

vectors u, v in Tp M, the operator norm of the second fundamental form II : Tp M ×Tp M →
Np M is bounded above by

||IIuv|| ≤ 1

τM

. (21)

4.3 Projection onto Tangent Planes

Let M be a smooth closed submanifold of R
d . For each point p ∈ M , we write Br (p) to

indicate the Euclidean ball of radius r > 0 around p, and ζp : M → Tp M to indicate the

restriction of the orthoginal projection from R
d onto Tp M . The following result is a variant

of [23, Lemma 5.4].

Proposition 4.12 For each p ∈ M and r <
√

2τM , the restriction of ζp to Br (p) ∩ M is a

local diffeomorphism.

Proof It suffices to show that the Jacobian dqζp is injective at all q ∈ Br (p) ∩ M , as the

dimensions of the domain and codomain are the same (see [17, Proposition 4.8]).

Suppose dζp is singular at some q ∈ Br (p)∩M . Then there is some unit vector u ∈ Tq M ,

when parallel transported in the ambient Euclidean space to TpR
d along the line segment

qp, is orthogonal to Tp M ⊂ TpR
d . As ||p − q|| < 2τM , we can apply Theorem 4.6 and

infer that there is a geodesic γ : [0, s] → M where γ (0) = q and γ (s) = p. Let v ∈ Tp M

be the parallel transport of u ∈ Tq M along this geodesic.

As u ∈ Np M , it is orthogonal to v ∈ Tp M and we have ∠ (u, v) = π
2

. Applying the

bound for ∠ (u, v) in Lemma 4.10, we have

t

τM

≥ π

2
.

Substituting this into Theorem 4.6, we obtain

r ≥ 2τM sin

(

t

2τM

)

≥ 2τM sin
(π

4

)

=
√

2τM .

which contradicts our assumption that r <
√

2τM ; thus, dζp is injective at q as desired. ⊓⊔
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Fig. 3 Geometric illustrations for the proof of Proposition 4.13. A Illustration of a geometric argument in

deriving Eq. (23) in the proof of Proposition 4.13. N.B. for ambient dimension d ≥ 2, ζp(q) need not lie

on the line joining q and (q ′). B Illustration of a geometric argument in deriving Eq. (24) in the proof of

Proposition 4.13

Next we prove a slight extension of this result.

Proposition 4.13 For all p ∈ M, the map ζp is a smooth embedding of BτM (p) ∩ M into

Tp M.

Proof Consider r <
√

2τM . It sufficies to show that ζp restricted to Br (p) ∩ M is a smooth

immersion (i.e. dζp is injective), that ζp is an open map, and that ζp is injective (see [17,

Proposition 4.22]). As ζp is a local diffeomorphism on Br (p) for r <
√

2τM (see Proposition

4.12), it is an open map ([17, Proposition 4.6]). Thus all that remains is to show that ζp is

injective for r sufficiently small.

Suppose ζp is not injective on Br (p)∩M and consider the illustration in Fig. 3a. Suppose

there are two distinct points q and q ′ in Br (p) ∩ M that project onto the same point in

ζp(q) = ζp(q
′) ∈ Tp M . Since Theorem 4.9 implies q − ζp(q) and q ′ − ζp(q

′) are vectors

in Np M , the vector w = q − q ′ = (q − ζp(q)) − (q ′ − ζp(q
′) is also a vector in Np M .

As a shorthand, let v = q − p and v′ = q ′ − p. Consider then θ = ∠ (w,−v) and

θ ′ = ∠
(

w, v′
)

; applying Lemma 4.8,

cos(θ) =
〈 −v

||−v|| ,
w

||w||

〉

≤ ||v||
2τM

<
r

2τM

, (22)

and similarly, cos(θ ′) < r
2τM

. As r < τM , angles θ and θ ′ must be strictly greater than π
3

.

Consider then the triangle formed by p, q and q ′. Applying the cosine rule, we have

||w||2 = ||v||2 +
∣

∣

∣

∣v′
∣

∣

∣

∣

2 − 2 ||v||
∣

∣

∣

∣v′
∣

∣

∣

∣ cos(π − (θ + θ ′))

< 2r2(1 + cos(θ + θ ′))

= 4r2 cos[2]
(

θ + θ ′

2

)

.

The inequality is due to the bound q and q ′ being in Br (p), whence ||v|| = ||q − p|| and
∣

∣

∣

∣v′
∣

∣

∣

∣ =
∣

∣

∣

∣q ′ − p
∣

∣

∣

∣ are both strictly less than r . Maximising the right hand side by choosing

θ and θ ′ to be as small as possible subject to the constraints of Eq. (22), we obtain

||w|| <
r2

τM

. (23)
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Suppose now w ∈ Nq M and consider the point qmid = q + w
2

= q+q ′
2

. Since we have

assumed r <
√

2τM , Eq. (23) implies ||w|| < 2τM , and thus ||qmid − q|| < τM . Since we

have assumed (qmid − q) ∝ w ∈ Nq M , Theorem 4.9 implies qmid has a unique projection

onto M , which is q . However, qmid is equidistant to both q and q ′ which lie in M ; hence

we reach a contradiction and w must thus have a non-zero component in Tq M (as a vector

subspace of TqR
d ).

Consider the illustration in Fig. 3b. Let u be the non-zero projection of w onto Tq M and

let φ = ∠ (u, w). If w = u, then φ = 0; else, if w − u �= 0, w has a component w − u in

Nq M . Thus we can apply Lemma 4.8 once again and obtain a

sin(φ) = cos
(π

2
− φ

)

=
〈

w

||w|| ,
w − u

||w − u||

〉

≤ ||w||
2τM

<
r2

2τ 2
M

(24)

where we substituted Eq. (23) in the final line.

As ||p − q|| <
√

2τM , there is a geodesic γ on M such that γ (0) = q and γ (s) = p due

to Theorem 4.6. Let us parallel transport u ∈ Tq M along γ to Tp M . Let u′ be the transported

vector in Tp M . Applying Lemma 4.10,

sin

(

∠
(

u, u′
)

2

)

≤ r

2τM

�⇒ cos(∠
(

u, u′
)

) ≥ 1 − 1

2

(

r

τM

)2

.

As r <
√

2τM , the right hand side is positive and hence ∠
(

u, u′
)

< π
2

.

The triangle inequality on §d−1 implies

φ = ∠ (u, w) ≥ ∠
(

u′, w
)

− ∠
(

u, u′
)

= π

2
− ∠

(

u, u′
)

(25)

where the last equality is due to u′ ∈ Tp M and w ∈ Np M . As u is a non-zero projection of

w onto Tq M , the angle φ = ∠ (u, w) between u and w is at most φ < π
2

. In addition, as we

have shown that ∠
(

u, u′
)

< π
2

, the sine function is montonic on both sides of the inequality.

Hence, we can combine the inequalities of Eqs. 24 and 25 and obtain the following:

r2

2τ 2
M

> sin(φ) ≥ sin
(π

2
− ∠

(

u, u′
)

)

= cos(∠
(

u, u′
)

) ≥ 1 − 1

2

(

r

τM

)2

.

�⇒ r > τM .

We have thus shown that any two points q and q ′ that project onto the same point in Tp M

must be at least τM away from p. Thus the projection is injective on Br (p) ∩ M . ⊓⊔

4.4 Bounding the Reach of Regular Intersections

It will be helpful to first focus on the cases where the regular intersection at hand is a level

set or sublevel set of a single smooth function f : M → R on a compact submanifold M of

R
d . We suppose without loss of generality that 0 is a regular value of f . Consequently, the

level set f −1 (0) is a codimension-1 submanifold of M , and f −1(−∞, 0] is a codimension-0

submanifold of M with f −1 (0) as its boundary (see [20]). Since f is continuous, both sets

f −1 (0) and f −1(−∞, 0] are closed in M . As M is compact in R
d , it follows that these sets

are also compact. Thus f −1 (0) is a compact submanifold of R
d , and therefore f −1 (0) has

positive reach.
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Proposition 4.14 Suppose f : M → R is smooth on a positive reach closed submanifold

M ⊂ R
d . Consider x ∈ R

d and p ∈ f −1 (0). Assume
∣

∣

∣

∣∇p f
∣

∣

∣

∣ = μ > 0. Then:

(i) If p ∈ NN f −1(0) (x), then x − p = n + λ∇p f where n ∈ Np M.

(ii) Let � be an upper bound on the norm of the Hessian of f on BτM ([) x] ∩ M and

1

ρ
= �

μ
+ 1

τM

. (26)

If x − p = n + λ∇p f and ||x − p|| < ρ, then ξ f −1(0) (x) = p.

(iii) Consequently, we have

UP
(

f −1 (0), p
)

∩ Bρ (p) =
(

x ∈ Bρ (p) : x − p = n + λ∇p f and n ∈ Np M
)

,

(27)

along with τ+
f −1(0)

(p) ≥ ρ.

(iv) Consider some x ∈ R
d such that Br (x)∩M �= ∅, and r < τM . If Br ([) x]∩ f −1 (0) =

p and Br (x)∩ f −1 (0) = ∅, then f is either non-negative or non-positive on Br (x)∩M.

Proof Let g(y) = ||x−y||2
2

and g̃ : M → [0,∞) be the restriction of g to M . We note that

∇ g̃ is the projection of x − p onto Tp M .

(i) If ∇p g̃ = 0, then x − p⊥Tp M ; else, g̃−1
(

r2/2
)

is tangent to f −1 (0) at p, and ∇p g̃

is parallel with ∇p f . As ∇ g̃ is the projection of x − p onto Tp M , we can thus write

x − p = n + λ∇p f where n ∈ Np M .

(ii) As f −1 (0) is closed, x must have a nearest neighbour in f −1 (0). Suppose p /∈
NN f −1(0) (x) and consider q ∈ NN f −1(0) (x). Then ||x − q|| ≤ ||x − p|| = r . Suppose

r < τM . Then, Br ([) x] ∩ M is connected by Theorem 4.6. Thus there is a geodesic

γ : [0, s] → M between γ (0) = p and γ (s) = q parametrised by arc length. Consider

f̂ = f ◦ γ : [0, s] → R and ĝ = g ◦ γ : [0, s] → R. Then by definition f̂ (0) = f̂ (s)

and ĝ(0) ≥ ĝ(s). If we Taylor expand f̂ and ĝ, we have for some s1 and s2 in (0, s)

f̂ (s) = f̂ (0) + d f̂

dt

∣

∣

∣

∣

t=0

s + 1

2

d2 f̂

dt2

∣

∣

∣

∣

t=s1

s2 �⇒ d f̂

dt

∣

∣

∣

∣

t=0

+ 1

2

d2 f̂

dt2

∣

∣

∣

∣

t=s1

s = 0

ĝ(s) = ĝ(0) + dĝ

dt

∣

∣

∣

∣

t=0

s + 1

2

d2 ĝ

dt2

∣

∣

∣

∣

t=s2

s2 �⇒ dĝ

dt

∣

∣

∣

∣

t=0

+ 1

2

d2 ĝ

dt2

∣

∣

∣

∣

t=s2

s ≤ 0.

Evaluating the derivatives, and substituting x − p = n + λ∇p f , we obtain

〈

γ̇ (0),∇p f
〉

+ 1

2

〈

γ̇ (s1),∇γ̇ (s1)∇ f (γ (s1))
〉

s = 0 and

λ
〈

γ̇ (0),∇p f
〉

+ 1

2
(1 + 〈γ (s2) − x, γ̈ (s2)〉) s ≤ 0,

�⇒ 1 − λ
〈

γ̇ (s1),∇γ̇ (s1)∇ f (γ (s1))
〉

+ 〈γ (s2) − x, γ̈ (s2)〉 ≤ 0.

As Bt (x) ∩ M is geoesically convex for t < τM and ||x − q|| ≤ ||x − p|| < τM , we

thus have γ ([0, s]) ⊂ Br ([) x]. Hence ||γ (s2) − x || ≤ r . Applying the bound on ||γ̈ ||
Lemma 4.11 and the Hessian of f , we have

|λ|� + r

τM

≥ 1.

123



Journal of Dynamics and Differential Equations

In addition, since x − p = n + λ∇p f and n ⊥ ∇p f , we have |λ| ≤ r
μ

. Thus the

existence of q ∈ NN f −1(0) (x) not equal to p, and ||x − q|| ≤ ||x − p|| = r implies

r ≥
(

�

μ
+ 1

τM

)−1

=: ρ

Hence, if r = ||x − p|| < ρ, the point x must project onto f −1 (0) at p.

(iii) As a consequence of Items Proposition 3.14 (i) and Proposition 3.14 (ii), any x ∈ Bρ (p)

that projects onto f −1 (0) at p is a linear combination of some n ∈ Np M and ∇p f ,

and vice versa any x ∈ Bρ (p) that is a linear combination of some n ∈ Np M and ∇p f

projects onto f −1 (0) at p. For x ∈ Med
(

f −1 (0), p
)

, Item Proposition 3.14 (i) implies

x − p = n + λ∇p f . As x /∈ UP
(

f −1 (0), p
)

, ||x − p|| ≥ ρ. Thus τ+
f −1(0)

(p) ≥ ρ.

(iv) Since r < τM , then Theorem 4.6 implies Br ([) x] ∩ M is connected. We claim that

Br (x) ∩ f −1 (0) = ∅ implies the sign of f must be non-positive or non-negative on

Br ([) x]∩ M . Suppose that is not the case; then there are two points of opposite sign in

Br ([) x] ∩ M . Consider a path connecting those two points contained in Br (x) ∩ M .

As f is continuous, there must be some point along the path where f is zero. However

this contradicts Br (x) ∩ f −1 (0) = ∅.

⊓⊔

The above observations about sublevel and level sets give us a stepping stone towards

deriving the bound for the reach of regular intersections of multiple sublevel and level sets.

Proposition 4.15 Consider a (μ,�)-regular intersection as in Definition 4.1:

E =
ℓ
⋂

i=1

fi
−1 (Ii ) (Equation 7)

For 0 ≤ k ≤ ℓ, define

1

ρk

= 1

τM

+
√

k
�

μ
. (28)

Consider x ∈ R
d and p ∈ E. Without loss of generality, assume fi (p) = 0 for i ≤ k, and

fi (p) < 0 otherwise. Then:

(i) If p ∈ NNE (x), then there are coefficients λi and n ∈ Np M, such that

x − p = n +
k
∑

i=1

λi∇p fi , (29)

where λi ≥ 0 if Ii = (−∞, 0].
(ii) Conversely, if x − p can be written in the form Eq. (29), and if ||x − p|| < ρk , then we

have ξE (x) = p.

(iii) Consequently,

UP (E, p) ∩ Bρk (p) =
(

x ∈ Bρk (p) : x − p satisfiesEq.29
)

. (30)

and τ+E (p) ≥ ρ.

Proof Let r = ||x − p|| and consider the open Euclidean ball Br (x).
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(i) If Br (x) ∩ M = ∅, then p ∈ NNM (x) and x − p ∈ Np M . Else, consider the case

Br (x)∩M �= ∅ and write x− p = n+ t+
∑k

i=1 λi∇p fi , where t ∈ Tp M is orthogonal

to ∇p f1, . . . ,∇p fk . Let γ : [0, 1] → M be a smooth curve wholly contained in E ,

with γ (0) = p and γ̇ (0) = ν. As fi (p) = 0 for i ≤ k, for Ii = (−∞, 0]

∃ǫ > 0 s.t . fi (γ (t)) < 0 ∀t ∈ (0, ǫ) ⇐⇒
〈

ν,∇p fi

〉

< 0

and for all i ,

fi (γ (t)) = 0 ⇐⇒
〈

γ̇ (t),∇γ (t) fi

〉

= 0

As p ∈ NNE (x), the ball Br (x) cannot intersect any point in E ; as such, we also have

〈ν, x − p〉 ≤ 0 �⇒ 〈ν, t〉 +
k
∑

i=1

λi

〈

ν,∇p fi

〉

≤ 0 (∗)

where we substituted our expression for x − p and noted that n ∈ Np M and ν ∈ Tp M .

Choosing γ so that fi (γ (t)) = 0 for i ≤ k and ν = t , we substitute into (∗) and deduce

〈t, t〉 ≤ 0 �⇒ t = 0.

Then, as ∇p f1, . . . ,∇p fk are linearly independent, we can choose ν such that for one

j ≤ k where I j = (−∞, 0], we have
〈

ν,∇p f j

〉

< 0 and
〈

ν,∇p fi

〉

= 0 for i �= j .

Substituting this choice of ν into (∗),

λ j

〈

ν,∇p f j

〉

≤ 0 and
〈

ν,∇p f j

〉

< 0 �⇒ λ j ≥ 0.

Thus x − p = n +
∑k

i=1 λi∇p fi where λi ≥ 0 if Ii = (−∞, 0].
(ii) First, let us consider the case where λi = 0. Then x − p ∈ Np M . As r = ||x − p|| <

τM (p), we can apply Theorem 4.9 and deduce that ξM (x) = p. As E ⊂ M , therefore

ξE (x) = p. Then let us consider the case where λi �= 0 for some i . Let f̃ =
∑k

i=1 αi fi

where αi = λi/ ||λ||, where where ||λ|| =
√

∑k
i=1 λ2

i . Since fi (q) ≤ 0 for q ∈ E we

note that E ⊂ f̃ −1(−∞, 0]. In particular, p ∈ f̃ −1 (0). Since E is a regular intersection,

we can check that

∣

∣

∣

∣

∣

∣∇ f̃

∣

∣

∣

∣

∣

∣ ≥ μ > 0 due to Item (R1). Furthermore, due to Item (R2),

for any q ∈ M and unit vector X ∈ Tq M ,

|
〈

X ,∇X∇ f̃
〉

| = |
k
∑

i=1

αi 〈X ,∇X∇ fi 〉 |

≤ � sup
||α||=1

k
∑

i=1

αi =
√

k�.

Thus �̃ =
√

k� is an upper bound on the Hessian of f̃ . Because (x− p) ∝ (n+∇ f̃ (p))

and

r = ||x − p|| < ρk =
(

1

τM

+ �̃

μ

)−1

,

we can apply Proposition 4.14 to p in f̃ −1 (0) and deduce that ξ
f̃ −1(0)

(x) = p. Consider

Br ([) x] ∩ M . Since ξ
f̃ −1(0)

(x) = p, we have Br ([) x] ∩ f̃ −1 (0) = p and Br (x) ∩
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f̃ −1 (0) = ∅. Furthermore, since r < τM , the sign of f̃ is either non-negative or non-

positive on Br ([) x] ∩ M according to Item Proposition 3.14 (iv). We now determine

the sign of f̃ on Br ([) x]∩ M . Since there is some i for which λi �= 0, let us consider a

smooth curve σ(t) on M where σ(0) = p and σ̇ (t) = ∇σ(t) f̃ . Since 〈σ̇ (0), x − p〉 ∝
∣

∣

∣

∣

∣

∣∇p f̃

∣

∣

∣

∣

∣

∣

2
> 0, the curve enters Br ([) x] at p. As f̃ increases away from 0 along the

curve and for sufficiently small ǫ > 0, σ(ǫ) ∈ Br (x) ∩ M , we deduce that f̃ > 0

on Br (x) ∩ M as we have shown that f̃ is of constant sign on Br (x) ∩ M . In other

words, f̃ −1(−∞, 0]∩ Br (x) = ∅. As we have shown that Br ([) x]∩ f̃ −1 (0) = p, the

continuity of f̃ implies f̃ −1(−∞, 0] ∩ Br ([) x] = p. Because E ⊂ f̃ −1(−∞, 0] and

f̃ −1(−∞, 0]∩Br ([) x] = p, we must therefore have E∩Br ([) x] = p i.e. ξE (x) = p.

(iii) Follows the reasoning of the proof of Item Proposition 3.14 (iii).

⊓⊔

We have now arrived at the proof of Lemma 4.4.

Proof of Lemma 4.4 As we have produced a bound on τ+E (p) for any p ∈ E , Item Proposition

3.14 (iii), this follows from applying Item 3.7 (ii) that τE = inf p∈E τ+E (p) ≥ ρk where ρk

is as defined in Eq. (28).

In the next subsection, we establish theoretical guarantees for recovering the homology

of regular intersections via the more general homology inference results for subsets with

positive reach.

4.5 Homological Inference of Subsets with Positive Reach

It was shown in [23, 24] that a sufficiently dense point sample of compact manifolds with and

without boundary can be used to recover their homotopy type. These arguments are readily

generalised to the following inference result for Euclidean subsets with positive reach.

Proposition 4.16 Let A be a subset of R
d with positive reach τA. Suppose we have a finite

point sample X ⊂ A that is δ-dense in A where δ < τ̄
4

, where τ̄ ∈ (0, τA] is some positive

lower bound on the reach of A. Then X
ǫ deformation retracts to A if

ǫ

τ̄
∈
(

1

2
−
√

1

4
− δ

τ̄
,

1

2
+
√

1

4
− δ

τ̄

)

. (31)

Given the explicit lower bound for the reach of regular intersections in Lemma 4.4, the fol-

lowing homology inference result for regular intersections is a direct corollary of Proposition

4.16.

Corollary 4.17 Suppose we have a finite point sample X ⊂ E is δ-dense in a regular inter-

section E =
⋂l

i=1 fi
−1 (Ii ) (as given in Eq. (7)) where Ii is either 0 or (−∞, 0]. Let k be

the maximum number of level sets fi
−1 (0) that intersect in E. If δ <

ρk

4
, where ρk is given

by Eq. (28), then X
ǫ deformation retracts to A if

ǫ

ρk

∈
(

1

2
−
√

1

4
− δ

ρk

,
1

2
+
√

1

4
− δ

ρk

)

. (32)

We devote the remainder of this subsection to deriving Proposition 4.16, closely following

the original argument for manifolds in [23, Proposition 4.1].
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Lemma 4.18 Let A be a subset of R
d with positive reach. Suppose for some B ⊂ R

d , we

have A ⊂ B ⊂ UP (A). If B is star-shaped relative to A – i.e. if for every p ∈ B, the line

segment pξA (p) is also contained in B – then B deformation retracts to A.

Proof Let us consider the function F : [0, 1] × B → R
d

F(t, p) = (1 − t) · p + t · ξA(p).

Since projection maps ξA are continuous [7, Theorem 4.8(2)], the map F is continuous.

Furthermore, if pξA(p) is contained in B, then F(t, p) ⊂ B. We can easily check that

F(0, p) = p, F(1, p) = ξA(p) ∈ A, and F(t, p) = ξA(p) = p. Therefore, F is a strong

deformation retraction F : [0, 1] × B → B of B onto A. ⊓⊔

Lemma 4.19 Assume the conditions of Proposition 4.16. Consider x ∈ X and p ∈ Bǫ (x) ∩
UP (A, q) where ǫ ∈ (0, τA). If q /∈ Bǫ (x), then there is a unique point y = ∂ Bǫ (x) ∩ qp,

such that

||y − q|| ≤ ǫ2

τA

.

Proof Since ǫ < τA, and p ∈ Bǫ (x), we know p has a unique projection ξA(p) = q . By

assumption q /∈ Bǫ (x) and therefore q �= x . As q is the nearest neighbour of p in A, we

have r = ||p − q|| < ||p − x || < ǫ < τA.

Let q(t) = (1 − t)q + tp for t ∈ [0, 1] parametrise the line segment qp. Since q ∈
Btr ([) q(t)] ∩ A ⊂ Br ([) q] ∩ A = q for all t ∈ [0, 1], the entire line segment qp lies in

UP (A, q) Since.

We consider the continuous function c(t) = ||q(t) − x ||. Since g(0) > ǫ and g(1) < ǫ,

by continuity there must be some t∗ ∈ (0, 1) such that c(t∗) = ||q(t∗) − x || = ǫ. Since p

is in the interior of Bǫ (x) and Bǫ (x) is convex, t∗ must be unique. Thus for y = q(t∗), we

have yp ⊂ Bǫ ([) x].
Since π(y) = q ∈ A and x ∈ A, we can now apply Lemmas 4.8 and 4.7, and deduce that

〈

y − q

||y − q|| ,
x − q

||x − q||

〉

≤ ||x − q||
2τA

.

As such,

ǫ2 = ||y − x ||2 = ||(y − q) + (x − q)||2

= ||y − q||2 + ||x − q||2 − 2 〈y − q, x − q〉

≥ ||y − q||2 + ||x − q||2
(

1 − ||y − q||
τA

)

≥ ||y − q||2 + ǫ2

(

1 − ||y − q||
τA

)

�⇒ ||y − q|| ≤ ǫ2

τA

.

where in the fourth line we applied our assumption that q /∈ Bǫ (x) and the fact that ||y − q|| =
||c(t∗) − q|| < τA. ⊓⊔

Here is the promised proof of Proposition 4.16.
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Proof of Proposition 4.16 Consider any point p ∈ X
ǫ and let ξA(p) = q . Since p ∈ X

ǫ ,

the point p is contained in at least one open Euclidean ball Bǫ (x) for some x ∈ X. If

q ∈ Bǫ (x) for one such x , then pq is also contained within Bǫ (x) as Euclidean balls are

convex. Therefore, pq is contained in X
ǫ .

Let us consider the case where q is not contained in any of the Euclidean balls containing p.

From Lemma 4.19, there exists some y ∈ qp such that pq ⊂ Bǫ ([) x], and ||y − q|| ≤ ǫ2/τA.

We can subdivide the line segment pq into two segments qy and py, the latter being contained

in Bǫ (x). If there is some x ′ ∈ X such that the closed line segment qy is contained in Bǫ

(

x ′
)

,

then the entirety of pq is contained in X
ǫ . This can be achieved if both q and y are contained

in Bǫ

(

x ′
)

. By the δ-density assumption, we can pick a point x ′ ∈ X such that q ∈ Bδ

(

x ′
)

.

If we assume δ < ǫ, then q ∈ Bǫ

(

x ′
)

.

If y is to be contained in Bǫ

(

x ′
)

, we require
∣

∣

∣

∣x ′ − y
∣

∣

∣

∣ < ǫ. If we choose δ < ǫ − ǫ2/τ̄ ,

then by the triangle inequality,
∣

∣

∣

∣x ′ − y
∣

∣

∣

∣ ≤
∣

∣

∣

∣x ′ − y
∣

∣

∣

∣+ ||q − y||

< δ + ǫ2

τA

< ǫ − ǫ2

τ̄
+ ǫ2

τA

≤ ǫ.

Therefore for choices of ǫ that satisfy δ < ǫ − ǫ2/τ̄ , the line segment pq is contained in

X
ǫ . Since this holds for any choice of p, by the Lemma 4.18, this implies X

ǫ deformation

retracts to A.

Finally, we have δ < ǫ − ǫ2/τ̄ if and only if

ǫ

τ̄
∈
(

1

2
−
√

1

4
− δ

τ̄
,

1

2
+
√

1

4
− δ

τ̄

)

.

5 Homological Inference of Index Pairs from Point Samples

Having constructed an index pair (N , N−) of S in Sect. 3, we will show in this Section that

the Conley index Con•(S) ∼= H•(N , N−) can be inferred from a sufficiently large finite point

sample X ⊂ N as described in Theorem (A) of the Introduction. We proceed by showing

that N and N− are both regular intersections, and thus have positive reach.

Lemma 5.1 If the Hessians of f and g are bounded, then N and N− as constructed for

S ∈ Critc ( f ) as defined in Eq. (6) are regular intersections.

Proof As the Hessians of f and g is bounded and q has bounded second derivative, the

Hessian of h (Eq. (4)) is also bounded. Thus item (R2) is satisfied.

Since Crit ( f ) = Crit (h) ((Item (H5)) and S = Crit ( f ) ∩ N ⊂ h−1 (γ,∞) ∩
f −1 (−∞, α) ((Item 3.7), ∇ f and ∇h are non-zero on level sets f −1 (α), h−1 (β), and

h−1 (γ ). Because we have assumed (Item (G5), the Jacobian of ( f , h) : M → R
2 is surjec-

tive on f −1 (α)∩ h−1 (β) and f −1 (α)∩ h−1 (γ ) respectively. Since these are bounded and

thus compact, the infimum of the second largest singular value of the Jacobian of ( f , h) on

these sets is positive. We thus satisfy Item (R1). ⊓⊔

Given this characterisation of (N , N−) in terms of regular intersections, the following

homology inference guarantee follows from Corollary 4.17.
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Proposition 5.2 Let N and N− be as constructed in Eq. (6); these are (μ,�)-regular inter-

sections for parameters μ > 0 and � > 0 by Lemma 5.1. Fix δ ∈ (0,
ρ2

4
), where

1

ρ2
= 1

τM

+
√

2
μ

�
,

Let X ⊂ N be a finite point sample that is δ-dense in N so that X− := X ∩ N− is δ-dense

in N−. Then H• (N , N−) ∼= H•(Xǫ, X
ǫ
−) for ǫ in the open interval

ǫ

ρ2
∈
(

1

2
−
√

1

4
− δ

ρ2
,

1

2
+
√

1

4
− δ

ρ2

)

. (33)

Proof A positive lower bound on the reaches of N and N− is prescribed by Lemma 4.4. In

particular, since each point in either N or N− lies at the intersection of at most two level sets

of f and h, the reaches of N and N− are bounded below by ρ2 > 0 (where ρ2 is given by

Eq. (28) for the case k = 2). We can then apply Proposition 4.16 to recover the homotopy

type of N and N− from X
ǫ and X

ǫ
−. As we have isomorphisms H•(N )

∼=−→ H•(Xǫ) and

H•(N−)
∼=−→ H•(Xǫ

−), applying the five lemma to the two long exact sequences of the pairs

(Xǫ, X
ǫ
−) and (N , N−) gives the isomorphism H• (N , N−) ∼= H•(Xǫ, X

ǫ
−). ⊓⊔

5.1 Homology Inference via Uniform Sampling

We now consider random i.i.d. samples from a compactly supported measure on a Riemannian

manifold M . A Riemannian manifold is endowed with a unique Riemannian measure μg;

for p ∈ M and coordinate neighbourhood (U , {xi }) of p such that dpxi are orthonormal in

the cotangent space T ∗
p M ,

μg(p) = |dpx1 ∧ · · · ∧ dpxm |. (34)

The authors of [23] studied how many random i.i.d. draws from a probability measure

ν would suffice to obtain an ǫ-dense point sample of some measurable subset of M . We

consider ν that is continuous with respect to μg: that is, for any measurable subset A ⊂ M ,

μg(A) = 0 implies ν(A) = 0. Here we will follow the argument from [23, Proposition 7.2],

summarised below.

Lemma 5.3 Let A be a compact, measurable subset of a properly embedded Riemannian

submanifold of R
d . Suppose ν is a probability measure supported on A that is continuous

with respect to μg , and let X be a finite set of i.i.d. draws according to ν. If

#X ≥ 1

K
(

ǫ
2

)

(

log

(

ν(A)

K
(

ǫ
4

)

)

+ log

(

1

κ

)

)

. (35)

where

K (r) = inf
p∈A

ν (A ∩ Br (p)) , (36)

then X is ǫ-dense in A with probability > 1 − κ .

The key parameter that controls the bound on the right hand side of Eq. (35) is K (r); in

particular, we require K (r) > 0 for r > 0 so that the bound is finite. That is the case if A is

a compact, regular closed subset of M .
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Lemma 5.4 Let A ⊂ M be a compact regular closed subset. For any r > 0, and measure ν

supported on A that is continuous with respect to μg on M,

K (r) = inf
p∈A

ν(Br (p) ∩ A) > 0.

Proof We first show that ν(Br (p) ∩ A) > 0 for p ∈ E . Since ν is supported on A, and

continuous with respect to μg , it suffices to show that Br (p)∩ A contains some open subset

of M for all p ∈ A. Since A is a regular closed subset of M , p ∈ cl (int (A)) = A, and

thus we also have Br (p) ∩ int (A) �= ∅. Since Br (p) ∩ A contains a non-empty open set

Br (p)∩int (A) for any p ∈ A, we therefore surmise that ν(Br (p)∩A) > 0. As ν(Br (p)∩A)

is continuous with respect to p and positive (Lemma 6.1), and A is compact, its infimum

K (r) over p ∈ A is positive. ⊓⊔

As regular intersections are regular closed sets (Lemma 4.2), Lemma 5.4 implies that a

finite sampling bound on the type in Eq. (35) can be obtained if K (r) is bounded below

away from zero. We focus on the case where the regular intersection can be written as an

intersection of two function sublevel sets for simplicity of analysis. Furthermore, our index

pairs constructed above

N = h−1[β,∞) ∩ f −1(−∞, α] and N− = f −1(−∞, α] ∩ h−1[β, γ ], (Eq. (6))

fall under this category: N− is the intersection of f −1(−∞, α] with the sublevel set

h̃−1(−∞, 0] of h̃ = (h − β)(h − γ ). The remainder of this section is devoted to prov-

ing the following result.

Theorem 5.5 Let E = f1
−1(−∞, 0] ∩ f2

−1(−∞, 0] be a regular intersection on M and

f1
−1 (0) ∩ f2

−1 (0) �= ∅. Let X be a finite set of i.i.d. draws according to the Riemannian

density μg on M, restricted to E. Then for ǫ < ρ2, if

#X ≥ 1

K
(

ǫ
2

)

(

log

(

ν(E)

K
(

ǫ
4

)

)

+ log

(

1

κ

)

)

. (37)

then X is ǫ-dense in A with probability > 1 − κ , where

K (r) = inf
p∈A

μg(A ∩ Br (p)) ≥ V
(m)
HS2

(

ηE (r)

2
cos(θ

(

ηE (r)

2

)

), ρ, φ12

)

> 0, (38)

and φ12, V
(m)
HS2 (·, ·, ·), and ηE are as defined in Lemma 5.14, Notation 5.6, and Proposition

5.12 respectively.

This bound captures two aspects of how the volume of a Euclidean ball intersected with M

can be diminished when we restrict to E . One aspect is the local geometry near the ‘cusps’

of the intersection f1
−1 (0) ∩ f2

−1 (0), and this is parametrised by an angle parameter φ12.

This angle, which we formally define in Lemma 5.14, is the smallest angle subtended by∇ f1

and ∇ f2 in Tp M for p ∈ f1
−1 (0) ∩ f2

−1 (0), and V
(m)
HS2 (·, ·, φ12) is a strictly decreasing

function of φ12 which is non-zero for φ12 < π . The closer ∇ f1 and ∇ f2 are to aligning

oppositely, the thinner the intersection is near the cusps, and the smaller the volume.

The other pertinent aspect of the geometry of E is the thickness of E away from the

cusps. This is parametrised by ηE (r), which takes into account the curvature effects of the

individual level sets fi
−1 (0)∩ ∂ E in the boundary, as well as the thickness at which the two

individual level sets approach each other. The interaction of the two level sets is parametrised

by what we call a bottleneck thickness, which we define in Definition 5.11, and illustrate in
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Fig. 5. We provide a lower bound on ηE (r) in terms of properties of the constituent functions

f1 and f2 in Proposition 5.12.

Notation 5.6 Our volume bounds will be phrased in terms of the volumes of the following

geometric quantities and objects:

(1) For a manifold with reach τM , let θ(r) = arcsin( r
2τM

);

(2) Br denotes a ball of radius r in Tp M, centered at the origin of Tp M which is identified

with p in the ambient Euclidean space. We denote the volume of Br as

V
(m)
B (r) = vol (Br ) . (39)

(3) For v ∈ Tp M, we let B(v) denote the ball in Tp M centred at v with radius ||v|| (so that

v is a radial vector of the ball). We let

V
(m)
HS (r , s, :) = vol (B(su) ∩ Br ) (40)

be the volume of the hyperspherical cap that arises from the intersection on the right

and side. for any unit vector u ∈ §p M. If t is another unit vector in §p M, and ∠ (u, t) =
ϕ > 0, then we let

V
(m)
HS2 (r , s, ϕ) := vol (B(su) ∩ B(st) ∩ Br ) . (41)

We give an illustration of B(su) ∩ B(st) ∩ Br in the two dimensional case in Fig.4.

5.2 Review: the Case of Manifolds and Regular Domains

In [23], they bounded the volumes and probability measure of A ∩ Br (p) (where in their

case A = M) by considering the volume of its image under the orthogonal projection

ζp : M → Tp M onto the hyperplane Tp M . We proceed with the same argument and begin

by stating the following two lemmas that [23] implicitly relies on. These lemmas in turn rely

on the result in Proposition 4.13 which gives a lower bound on the maximum radius r such

that ζp is a diffeomorphism onto its image when restricted to Br (p) ∩ M .

We first recall if we have a smooth map F : M → N between two Riemannian manifolds

of the same dimensions, then we can pull back a density ν on N to obtain a density F∗ν on

M . Locally, if ν = u|dy1 ∧ · · · ∧ dym | on some local coordinate patch (V , (yi )) of F(p),

then we can locally express the pullback F∗ν as

F∗ν(p) = F∗(u|dy1 ∧ · · · ∧ dym |)(p) = | det(dp F)| · u(F(p)) · |dx1 ∧ · · · ∧ dxm |. (42)

where (U , (xi )) is a local coordinate patch of p in M , and dF is the Jacobian matrix of F

with respect to coordinates (xi ) and (yi ) on U and N respectively. The pullback satisfies an

important property: if F is a diffeomorphism, then one can show that
∫

M

F∗ν =
∫

N

ν. (43)

Lemma 5.7 Suppose U ⊆ Br (p) ∩ M where r ≤ τM . Then

vol (U ) ≥ vol
(

ζp(U )
)

. (44)

where vol(U ) = μg(U ), and vol(ζp(U )) is the m-dimensional volume of ζp(U ) in the tangent

plane.
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Fig. 4 An illustration of the volume B(su)∩B(st)∩Br (as defined in Notation 5.6) in the plane containing

vectors s and t in Tp M . The shaded region represents the intersection of the three balls, where the ball with solid

boundary represents Br , and the the balls with dashed boundaries represent B(su) and B(st) respectively

Proof Let ν be the Riemannian density of the tangent plane. Recall ζp restricted to U is a

diffeomorphism onto its image and let F = ζp
−1 be its inverse. Then

vol(U ) =
∫

U

μg =
∫

ζp(U )

F∗μg.

Let y1, . . . , ym be a set of coordinates on the tangent plane that are orthonormal with respect

to the ambient Euclidean metric restricted to the tangent plane, and consider the density at

z = ζp(q) ∈ ζp(U ). If x1, . . . , xm is an orthonormal set of coordinates at q ∈ Tq M , then we

can explicitly write the density F∗μg as

F∗μg(z) = F∗|dx1 ∧ · · · ∧ dxm |(z)
= | det dF ||dy1 ∧ · · · ∧ dym |

= 1

| det dζp|
|dy1 ∧ · · · ∧ dym |

≥ |dy1 ∧ · · · ∧ dym |.
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where the inequality in the final line is due to | det dζp| ≤ 1 (Lemma 6.2). Since |dy1 ∧ · · · ∧
dym | is the Riemannian density on the tangent plane at z = ζp(q),

vol (U ) =
∫

ζp(U )

F∗μg ≥ vol
(

ζp(U )
)

.

⊓⊔

We now derive a lower bound on vol (Bǫ (p)) by describing the image of such balls in

Tp M under the projection ζp . We first recall such descriptions for manifolds with boundary,

where [24] differentiates into two cases where p ∈ ∂ M or p ∈ int (M).

Lemma 5.8 [[23, Lemma 5.3] and [24, Lemma 4.7]] Let M be a properly embedded mani-

folds with positive reach. Recall Notation 5.6, we have for any p ∈ M and r < τM ,

ζp (Br (p) ∩ M) ⊃ Br cos(θ(r)) (45)

Consequently, vol (Br (p) ∩ M) ≥ V
(m)
B (r cos(θ(r))).

Lemma 5.9 [[24, Lemma 4.6]] Let M ⊂ R
d be a properly embedded submanifold with

boundary. For p ∈ ∂ M, let n ∈ Tp M ∩ Np∂ M be the inward pointing unit normal at p. If

ζp is a diffeomorphism when restricted to Bδ (p) ∩ M, where δ < min(τM , τ∂ M ), then for

ǫ ∈ (0, δ),

ζp(Bǫ (p) ∩ M) ⊃ Bǫ cos(θ(ǫ)) ∩ B(ǫn)

where we recall notaion from Notation 5.6. Consequently, vol (Br (p) ∩ M) ≥ V
(m)
HS (ǫ cos(θ(ǫ)), ǫ).

Applying Proposition 4.13 to deduce the minimal radius δ in Lemma 5.9, we obtain the

following result for regular domains.

Lemma 5.10 Consider f −1(−∞, 0], where f : M → R is a smooth function on a subman-

ifold M of R
d with positive reach τM and f satisfies Items (R1) and (R2). Suppose for any

p ∈ f −1 (0), we have
∣

∣

∣

∣∇p f
∣

∣

∣

∣ ≥ μ > 0. Let

1

ρ
= 1

τM

+ �

μ
. (46)

Recall Notation 5.6. If ǫ < ρ, then

(i) For p ∈ f −1 (0), and n = − ∇p f

||∇p f || ,

ζp(Bǫ (p) ∩ f −1(−∞, 0]) ⊃ Bǫ cos(θ(ǫ)) ∩ B(ρn),

(ii) Consequently, for any q ∈ f −1(−∞, 0],

vol (Bǫ (q) ∩ E) ≥ V
(m)
HS

( ǫ

2
cos(θ

( ǫ

2

)

), ρ
)

(47)

is a function of ǫ, ρ, τM , and the dimension of the manifold m.

Proof (i) Becauseρ < τM , Proposition 4.13 implies ζp is a diffeomorphism on Bρ (p)∩M ;

thus, combined with the fact that ρ < min(τ fi
−1(0), τ fi

−1(−∞,0]) (Lemma 4.4), we can

apply Lemma 5.9 and deduce the inclusion as stated.
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(ii) The proof adopts the proof of [24, Lemma 4.6] for regular domains being a special case

of submanifolds with boundary, which breaks down the analysis into two cases, whether

d(p, ∂ E) > ǫ
2

or otherwise. In the first case, we can trivially bound vol (Bǫ (p) ∩ E)

from below by vol
(

Bǫ/2 (p) ∩ E
)

. Since Bǫ/2 (p)∩ ∂ E = ∅, we have Bǫ/2 (p)∩ E =
Bǫ/2 (p) ∩ M . The volume of the latter is bounded below by V

(m)
B

(

ǫ
2

cos( ǫ
2
)
)

(by

Lemma 5.8), which is in turn bounded below by V
(m)
HS

(

ǫ
2

cos(θ
(

ǫ
2

)

), ρ
)

by definition

(see Notation 5.6). For the case where d(p, ∂ E) ≤ ǫ
2

, choose a nearest neighbor x of

in ∂ E . As Bǫ/2 (x) ⊂ Bǫ (p), we can bound the volume of the former by the latter. The

latter’s volume is bounded by that of its projection (Lemma 5.7), and we arrive at the

stated bound.

⊓⊔

5.3 Regular Intersections of Two Functions

We now consider a regular intersections of two function E = f1
−1(−∞, 0]∩ f2

−1(−∞, 0].
We bound the volume of Bǫ (p) ∩ E from below by dividing the set of points p ∈ E into

two cases. Let Er denote the set of points

Er =
(

x ∈ E : d
(

x, f1
−1 (0) ∩ f2

−1 (0)
)

≥ r
)

. (48)

Then either:

(Case 1) p ∈ Eǫ , i.e., Bǫ (p) may intersect both f1
−1 (0) and f1

−1 (0), but not f1
−1 (0) ∩

f2
−1 (0); else

(Case 2) p /∈ Eǫ , i.e., Bǫ (p) intersects f1
−1 (0) ∩ f2

−1 (0).

In Item (Case 1), we require an additional lengthscale to control the geometry of E in the

ǫ-ball about p, which we illustrate in Fig. 5.

Definition 5.11 Let E be a regular intersection where E = f1
−1(−∞, 0] ∩ f2

−1(−∞, 0].
The r -bottleneck thickness ηE (r) of E is

ηE (r) = sup
(

ǫ ∈ (0, r) : ∀x ∈ Er , Bǫ (x) ∩ fi
−1 (0) �= ∅ for at most one i ∈ (1, 2)

)

.(49)

Fig. 5 An illustration of the bottleneck distance ηE (r) of a regualar intersection of two sublevel sets
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Note that in the case where f1
−1 (0) ∩ f2

−1 (0) = ∅ (i.e. E = Er for all r ), we can write

∂ E = f1
−1 (0)⊔ f2

−1 (0). The bottleneck thickness ηE is then the largest radius for which we

can thicken ∂ E such that the thickenings of f1
−1 (0) and f2

−1 (0) do not intersect. Thus ηE is

a homological critical value in the thickening of ∂ E , implying the bottleneck thickness ηE is

an upper bound on the reach of the manifold ∂ E in R
d . Furtheremore, writing ∂ E = F−1 (0)

for F = f1 f2, one can check that dF is nowhere zero on ∂ E and we can derive an explicit

bound on the reach of ∂ E using Proposition 4.14, thus in turn providing a lower bound on

ηE .

In the more general case, we can also interpret ηE as thus. For any point x on E that are

at least r away from f1
−1 (0)∩ f2

−1 (0) on E , the bottleneck thickness ηE (r) prescribes the

largest radius such that for t < ηE (r),

Bt (x) ∩ E = Bt (x) ∩ fi
−1(−∞, 0]

for i either 1 or 2. Thus, for such points, we can apply results such as Lemma 5.10 to bound

the volume of Br (x) ∩ M . We now derive a positive lower bound on ηE (r).

Proposition 5.12 Let E be a regular intersection where E = f1
−1(−∞, 0] ∩ f2

−1(−∞, 0].
Let τi denote the reach of the submanifold fi

−1 (0) for i ∈ (1, 2). Let F = f1 f2 : M → R.

For 0 < r/2 < min (τ1, τ2), let μF (r) = inf x∈Er/2∩F−1(0) ||∇F ||, and �F be the supremum

of the norm of the Hessian of F on M. Let

1

ρF (r)
= 1

τM

+ �F

μF (r)
. (50)

Then ηE (r) ≥ ηE (r) where

ηE (r) = min
( r

2
, ρF (r)

)

> 0. (51)

Proof We show that ρF (r) > 0 by showing μF (r) > 0. For x ∈ Er/2 ∩ F−1 (0), since Er/2

excludes f1
−1 (0) ∩ f2

−1 (0), we observe that f1(x) and f2(x) cannot both be zero at x .

Moreover, since E is a regular intersection, by Definition 4.1 we have d fi �= 0. Thus, for

such a point x , either

dF(x) = f1d f2 �= 0 ordF(x) = f2d f1 �= 0.

Furthermore, one can check that Er/2 ∩ F−1 (0) is compact and thus the quantity

μF (r) = inf
x∈Er/2∩F−1(0)

||∇F ||

is positive.

Consider then the Euclidean ball Bǫ (p) where p ∈ Er and ǫ < r
2

. Since we have restricted

p ∈ Er , the ball Bǫ (p) cannot intersect f1
−1 (0) ∩ f2

−1 (0). Assume

Bǫ (p) ∩ f1
−1 (0) �= ∅, and Bǫ (p) ∩ f2

−1 (0) �= ∅.

Since ǫ < r/2 < τi by assumption, p has unique projections onto f1
−1 (0) and f1

−1 (0)

respectively (Theorem 4.5); let these projections be pi and note that ||p − pi || < r/2. Note

that f1(p1) = f2(p2) = 0, but f1(p2), f2(p1) �= 0. As p ∈ Er , and ||p − pi || < r/2, we

see that pi ∈ Er/2.

Since Bǫ (p) cannot intersect f1
−1 (0) ∩ f2

−1 (0), we can suppose without loss of gen-

erality that p �= p1 and ||p − p1|| ≥ ||p − p2||. Since p1 is a nearest neighbour of p in
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f1
−1 (0), Item Proposition 3.14 (i) implies

p − p1 = n + λ∇ f1(p1) = n + λ

f2(p1)
∇F(p1)

for some n ∈ Np1 M . Because p1 ∈ Bǫ (p) and Bǫ (p)∩ f1
−1 (0)∩ f2

−1 (0) = ∅, we observe

that f2(p1) �= 0, and ∇F(p1) = f2(p1)∇ f1(p1). Thus, we can write

p − p1 = n + λ

f2(p1)
∇F(p1).

In other words, the unit vector of p − p1 lies in the normal space of F−1 (0) at p. If

ǫ ≤ ρF (r), then we have ||p − p1|| < ρF (r). Item Proposition 3.14 (ii) then implies p1 is

the unique nearest neighbour of p in F−1 (0). However, this contradicts our assumption that

||p − p1|| ≥ ||p − p2||, as p2 ∈ F−1 (0) too. Therefore, ǫ > ρF (r).

Put in other words, either ηE (r) ≥ r
2

; else, ηE (r) ≥ ρF (r). We conclude that

ηE (r) ≥ min
( r

2
, ρF (r)

)

.

⊓⊔

Having obtained a lower bound for ηE (r), we can bound the volume Br (p) ∩ E for

p ∈ Er .

Lemma 5.13 Consider E = f1
−1(−∞, 0] ∩ f2

−1(−∞, 0]. Suppose f1 and f2 satisfy the

conditions placed on f in Lemma 5.10, and ρ be as defined in Lemma 5.10. Let ηE (ǫ) is as

defined in Proposition 5.12. Then for p ∈ Eǫ ,

vol (Bǫ (p) ∩ E) ≥ V
(m)
HS

(

ηE (ǫ)

2
cos

(

θ

(

ηE (ǫ)

2

))

, ρ

)

.

Proof By definition, ηE (ǫ) ≤ ǫ (Proposition 5.12). As ǫ < ρ, and ρ is a lower bound on the

reaches τi of fi
−1 (0) by Lemma 4.4), we have ηE (ǫ) < τi . And the conditions of Proposition

5.12 are satisfied so that ηE (ǫ) is a positive lower bound on ηE (ǫ). Thus, for p ∈ Eǫ , the

Euclidean ball BηE (ǫ) (p) can only intersect at most one level set fi
−1 (0). In other words,

we can write without loss of generality that

Bǫ (p) ∩ E ⊃ BηE (ǫ) (p) ∩ E = BηE (ǫ) (p) ∩ f1
−1(−∞, 0]

Since f1 satisfies the conditions placed on f in Lemma 5.10, we apply the volume bound in

Lemma 5.10 to deduce

vol (Bǫ (p) ∩ E) ≥ vol
(

BηE (ǫ) (p) ∩ f1
−1(−∞, 0]

)

≥ V
(m)
HS

(

ηE (ǫ)

2
cos

(

θ

(

ηE (ǫ)

2

))

, ρ

)

.

⊓⊔

Lemma 5.14 Consider E = f1
−1(−∞, 0] ∩ f2

−1(−∞, 0], and suppose f1 and f2 satisfy

the conditions placed on f in Lemma 5.10, and ρ be as defined in Lemma 5.10. Then, if

ǫ < ρ, and p ∈ f1
−1 (0) ∩ f2

−1 (0), then

vol (Bǫ (p) ∩ E) ≥ vol
(

Bǫ cos(θ(ǫ)) (p) ∩ B(ρn1) ∩ B(ρn1)
)

=: V
(m)
HS2 (ǫ cos(θ(ǫ)), ρ, φ12) > 0

where cos(φ12) = inf x∈ f1
−1(0)∩ f2

−1(0) | 〈n1(x), n2(x)〉 | > −1 for ni (x) = ∇x fi

||∇x fi || .
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Proof Given fi satisfy the conditions placed on f in Lemma 5.10, and ρ be as defined in

Lemma 5.10,

ζp

(

Bǫ (p) ∩ fi
−1(−∞, 0]

)

⊃ Bǫ cos θ(ǫ) ∩ B(ρni )

Because ǫ < ρ, the projection ζp is a diffeomorphism on Bǫ (p) ∩ M , and thus

ζp (Bǫ (p) ∩ E) = ζp

(

Bǫ (p) ∩ f1
−1(−∞, 0]

)

∩ ζp

(

Bǫ (p) ∩ f2
−1(−∞, 0]

)

⊃ Bǫ cos θ(r) ∩ B(ρn1) ∩ B(ρn2).

As E is a regular intersection, n1 and n2 are linearly independent (Item (R1)); and ϕ12 > 0

as the supremum is taken over a compact set by assumption that E is a regular intersection

(Definition 4.1). We now show that this implies B(ρn1) ∩ B(ρn2) �= ∅. We make two

observations, first, that B(ρn1) and B(ρn2) are tangent to the origin; and second, the centres

ρn1 and ρn2 of B(ρn1) and B(ρn2) respectively are not collinear with the origin as n1 and

n2 are linearly independent. Thus B(ρn1) ∩ B(ρn2) �= ∅.

Since p is in the closure of B(ρn1) ∩ B(ρn2), for ǫ > 0,

Bǫ cos(θ(ǫ)) (p) ∩ B(ρn1) ∩ B(ρn2) �= ∅.

Finally, since this subset is a non-empty intersection of open sets, it is also open, and it has

positive volume.

⊓⊔

Lemma 5.15 Consider E = f1
−1(−∞, 0] ∩ f2

−1(−∞, 0], and suppose f1 and f2 satisfy

the conditions placed on f in Lemma 5.10, and ρ be as defined in Lemma 5.10. Then, if

ǫ < ρ, and p ∈ E, then

vol (Bǫ (p) ∩ E) ≥ V
(m)
HS2

(

ηE (ǫ)

2
cos(θ

(

ηE (ǫ)

2

)

)), ρ, φ12

)

> 0

where φ12, V
(m)
HS2 (·, ·, ·), and ηE are as defined in Lemma 5.14, Notation 5.6, and Proposi-

tion5.12 respectively.

Proof Combining Lemma 5.13 and Lemma 5.14, we have, for p ∈ E and ǫ < ρ,

vol (Bǫ (p) ∩ E) ≥

⎧

⎪

⎪

⎨

⎪

⎪

⎩

V
(m)
HS2 (ǫ cos(ǫ), ρ, φ12) i f p /∈ Eǫ

V
(m)
HS

(

ηE (ǫ)

2
cos(θ

(

ηE (ǫ)

2

)

)), ρ
)

otherwise.

Since ǫ > ηE (ǫ) (Proposition 5.12), and for any t > 0,

V
(m)
HS2 (t, ρ, φ12) = vol

(

Bt cos(θ(t)) ∩ B(ρn1) ∩ B(ρn2)
)

≤ vol
(

Bt cos(θ(t)) ∩ B(ρn1)
)

= V
(m)
HS (t cos(θ(t)), ρ) ,

our bound holds for either p ∈ Eǫ or otherwise. ⊓⊔
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6 Technical Lemmas

Lemma 6.1 Let A be measurable subset of a Riemannian manifold M ⊂ R
d with μg(A) > 0,

where μg is the Riemannian density on M. If ν is a measure supported on M that is continuous

with respect to μg , then for any radius r > 0 the function p %→ ν(Br (p))∩ A is continuous

on A.

Proof Consider c such that ||c − p|| = δ < r . Then

Br−δ (p) ⊂ Br (c) ⊂ Br+δ (p)

�⇒ ν(Br−δ (p) ∩ A) ≤ ν(Br (c) ∩ A) ≤ ν(Br+δ (p) ∩ A).

As ν(Br+δ (p)∩ A) monotonically increases with δ, as we decrease δ, the monotonicity and

continuity of the measure with respect to δ ensures that ν(Br±δ (p)∩ A)
δ→0−−→ ν(Br (p)∩ A).

Thus, by the sandwich theorem,

lim
c→p

ν(Br (c) ∩ A) = ν(Br (p) ∩ A).

Thus, ν(Br (p) ∩ A) is continuous with respect to p. ⊓⊔
For M ⊂ R

d Recall that ζp : M → Tp M is the orthogonal projection onto the m-

dimensional hyperplane tangent to M at p.

Lemma 6.2 Let dqζp be the Jacobian of ζp at q ∈ M with respect to orthonormal coordinates

in Tq M and Tp M. Then | det dpζp| ≤ 1.

Proof Let P : R
d → R

m be the orthogonal projection onto an m-dimensional hyperplane

in R
d . As ζp is the restriction of P to M , therefore dζp : T (M) → R

m is the restriction

of P : T
(

R
d
)

→ R
m to T (M). Choosing an orthonormal set of coordinates (xi ) in R

d

such that P(x1, . . . , xd) = (x1, . . . , xm), we can write dP = 1m ⊕ 0m,d−m where 1m is the

identity matrix corresponding to the first m coordinates, and 0m,d−m is the m×(d−m) matrix

of zeros. Since dζp is a restriction of dP to an m-dimensional subspace Tp M ⊂ TpR
d , the

absolute value of the determinant of dpζp is at most 1. ⊓⊔
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