Exploring the Role of Seasonal Variation in Livestock Feed Composition on Diet Quality and Methane Emissions in Kenyan Livestock

J. Mutua^{1, 3}, A. Duncan^{2,3}, S. Fraval¹, T. Robinson³, A. Notenbaert⁴, G. Watmough¹

¹School of Geosciences, University of Edinburgh, UK
 ²International Livestock Research Institute, Kenya
 ³Global Academy of Agriculture and Food Systems, UK
 ⁴Independent Researcher, UK
 ⁵Alliance of Bioversity International and CIAT, Kenya

Livestock Sector and Greenhouse Gas Emissions

- Responsible for 11-17% of total global greenhouse gas emissions.
- Emissions primarily from enteric fermentation and manure decomposition.
- Diet is a key determinant of production and GHG emissions from the livestock sector.

Variation in the Quality of Livestock Feed Items

- Nutritive value of feed items varies widely.
- Higher variation exists
 across geographical zones
 and seasons.
- Types of crop residues fed to livestock are determined by the crops grown in a specific region.

Data source: SSA Feeds

Role of Feed Composition in Diet Quality and Emissions

- Quality of livestock diet is intricately shaped by feed composition.
- Diet of better quality is linked to lower GHG emissions.
- Feed composition varies both spatially and temporally.
- Year-round feed composition fluctuations alter diet quality and emissions.

Current Livestock Emission Estimates using Global Models

- Livestock diet data is based on expert opinion.
- Diet composition data is available as a stable annual distribution.
- Models unable to account for seasonality in diet composition.
- Ground measurement has been done in limited locations.

Modelling Implications of Diet Changes on Methane Emissions

Assumption: Animal diet is based on feed production at a pixel.

Results: Livestock Diet Composition

- Livestock diets vary across the landscape.
- Coarse stemmed cereals and legume crops are prominent in the central highlands.
- Western Kenya has a diverse mix of feed resources including cultivated forages
- Arid and semi-arid areas are dominated by pasture.

Results: Livestock Diet Quality

560

		•	Diet quality varies across
DMD (g/kg DM)			livestock systems (Mean=581.3
			g/Kg DM, IPCC default value =
	620		550 g/Kg DM).
	600	•	Greater variability in mixed (crop and livestock) systems
	580		

Results: Methane Emissions

- Notable variation exist between and within production systems.
- Highest dry matter intake in the mixed systems.

Production system	Agro- ecological zone	Live weight (Kg)	Metabolizable energy requirement (MJ/head/day)	Dry matter intake (Kg)	Methane production (Kg/head/year)
	Arid	182.8	42.6	4.8	36.6
Livestock only	Humid	254.6	60.9	6.9	52.0
	Temperate	261.2	59.5	6.7	50.9
	Arid	203.1	49.9	5.6	42.4
Mixed rainfed	Humid	282.9	71.8	8.0	60.1
	Temperate	290.2	67.3	7.5	56.4
	Arid	213.3	61.9	7.2	54.6
Mixed irrigated	Humid	297.1	79.4	8.9	67.5
	Temperate	304.7	74.9	8.4	63.8
Other	Tree based	270.0	59.3	6.7	50.8

*Temperate includes tropical highlands

Results: Sensitivity of Methane Emissions to Changes in Diet Composition

- Notable variation exist between and within production systems.
- Livestock only and tree-based systems have relatively low variability.

Does the Seasonal Variation in Diet Quality Matter?

- It does matter when comparing it to an annual value.
- Highest variation exist in mixed systems.
- Substantial spread of estimated methane emissions.

Production system	Agro-ecological zone	Variance (kg/head/year^2)	Standard deviation	p-value
	Arid	0.6	0.8	0.727
Livestock only	Humid	0.8	0.9	0.181
	Temperate	23.1	4.8	0.000***
	Arid	14.4	3.8	0.005**
Mixed rainfed	Humid	26.3	5.1	0.001***
	Temperate	14.2	3.8	0.049*
Mixed	Arid	12.0	3.5	0.002**
irrigated	Humid	27.4	5.2	0.000***
	Temperate	41.2	6.4	0.000***
Other	Tree based	2.3	1.5	0.240

*Temperate includes tropical highlands

Implications and Conclusion

- Diet composition varies by location and is climate-influenced.
- Seasonal fluctuations in feed availability alter diet composition.
- Livestock diet impacts methane emissions, especially with changing feed composition.
- These seasonal changes need to be incorporated in livestock emission assessment models.

Questions?

THE UNIVERSITY of EDINBURGH Global Academy of Agriculture and Food Systems

Food and Agriculture Organization of the United Nations