Enhancing food security and nutrition in Africa: Flash dryer

THIERRY TRAN

ON BEHALF OF THE POSTHARVEST QUALITY LAB, CASSAVA PROGRAM

CASSAVA RETREAT, CIAT PALMIRA, 14/02/2023

RESEARCH PROGRAM ON Roots, Tubers and Bananas

Drying represents 70-80% of energy use for cassava starch or flour

production in Thailand, Vietnam and Colombia

Energy represents 7-20% of production

Key components of a flash dryer

No consensus on the design of flash dryers

- Pipe length: 15 60 m
- Temperature: 130 180°C
- Air velocity: 10 25 m/s
- Diversity of shapes of the drying tube

Nigeria

2-4 t starch/day

CIRAD, CIAT, IITA

Paraguay (Larsson)

CIRAD, CIAT, Univalle, Clayuca, KMUTT

Argentina (S.A.1)

CIRAD, CIAT, Univalle, Clayuca, KMUTT

Argentina (S.A.2)

> CIRAD, CIAT, Univalle, Clayuca, KMUTT

Diversity of dimensions

	unit	C-III	C-IV	C-II	TH-1	TH-2	TH-3
Pipe up	m						
Pipe down	m						
Pipe under	m						
Total length	m	33	20.7	53	57.7	45	46
Δ diameter	m		yes Sm		alo ^e dry	ors 5	- 12m
Diameter up	m		1.5	1.0	1.5	1.14	1.16
Diameter down	m						

Capacity kg starch db/s 1.1 1.0 0.5 4.4 2.0 1.8

Diversity of designs \rightarrow Is there an optimum?

CIRAD, CIAT, Univalle, Clayuca, KMUTT

Diversity of operating conditions

	unit	C-III	C-IV	C-II	TH-1	TH-2	TH-3
Capacity	kg starch db/s						
Air flow	kg air/s						
A/S ratio		25.1	21.8	40.8	8.1	9.9	7.1
T°in	°C	130	155	135	175	170	173
T°out	°C	~60	~60	~60	55	54	52
Starch mc in	%wwb						
Starch mc out	%wwb	13	13	13	13	13	14
Energy use	MJ/t starch	2047	2225	3400	1266	1248	931
Energy use	MJ/t water						
Energy eff	%		50	30	79	66	79

CIRAD, CIAT, Univalle, Clayuca, KMUTT

2

Colombia (Cauca)

Can we make dryers at small scale with same energy efficiency as large scale?

CIRAD, CIAT, Univalle, Clayuca, KMUTT

Sun drying

- 2014-2015: Computer model
- 2015-2016: Design and construction of prototype at CIAT 2017-2018: Testing and validation of high energy efficiency
- → 2019-2022: Transfer to private sector (scaling out)
 - Reduce energy costs and production costs
 - Increase production capacity
 - Lower environmental impacts & more sustainable cassava processing

Energy efficiency is possible at small-scale

Model predicts that longer tube reduces energy use. Min 20 m.

Key finding: Longer drying tube

Particles stay long enough for optimum heat and water transfers between air and particles. → Residence time 1.5 to 2 s

Constraint: Min velocity 10-12 m/s to keep the particles in suspension

Pipe is long enough to ensure correct residence time. \rightarrow Min 20 m; optimum 25-30 m

Adjust capacity with the tube diameter.

Max 180-210° C to avoid burning the product.

The pilot flash dryer developed at CIAT

Equipment layout: Adjustable drying duct length

Capacity: 100 kg/hr Adjustable length: 15 – 35m Adjustable air velocity

The pilot flash dryer developed at CIAT

Equipment layout: Adjustable drying duct length

Capacity: 100 kg/hr Adjustable length: 15 – 35m Adjustable air velocity

The pilot flash dryer developed at CIAT

Equipment layout: Adjustable drying duct length

Capacity: 100 kg/hr Adjustable length: 15 – 35m Adjustable air velocity Pilot at CIAT: Energy efficient, small-scale flash dryer

Adjustable temperature: 120 - 200°C LPG gas consumption: 3-4 kg/h at 180°C Cost: 4 USD/h or 0.04 USD/kg starch

Energy: 1500-2000 MJ/t starch similar to large scale dryers

Drying experiments: results

Cassava flour

Effect of pipe length:

Pipe length (m)	19	26	32
Air velocity (m/s)	12	12	12
Temperature (°C)	192	205	206
Feed rate (kg/h)	52	64	57
Output moisture (% wb)	18.4	15.6	11.3

Effect of other parameters:

Pipe length (m)	26	26	26	26	32	32
Air velocity (m/s)	10	10	10	12	12	12
Temperature (°C)	180	180	205	205	206	205
Feed rate (kg/h)	41	46	47	64	57	53
Output moisture (% wb)	11.2	12.6	10.7	15.6	11.3	10.7

Additional component: Heat exchanger design

- Design proposal
 - Example of a 60 kW hot air generator producing air at 210 °C

Additional components for flash drying system efficiency

Heat exchanger design

Design proposal

- Example of a 60 kW hot air generator producing air at 210 °C
- Turbulators are placed in the smoke pipe: they increase heat exchange by a factor of 5-10

• Operation

- Choose the closest burner power
- **Control**: modulating burner + PID temperature controller (ideally)
- Adjust power by adding or removing turbulators

Heat exchanger design

• Design proposal: video presentation

Credit: Marcelo Precoppe

Scaling out flash dryer innovations

Drying pipe: Recommended 25 to 30 m

Scaling out flash dryer innovations

Heat exchanger: Counter-current, thin pipes for high exchange surface, turbulators

Also one in Ghana

Key design criteria for efficient flash dryer

	Units	Current	Upgraded
1. Tube length	m	7 - 12	25 - 30
2. Blower speed	m/s	3 - 5	10 - 12
3. Heat exchanger	% efficiency	60	80 - 90
Surface of exchange, turbulate	ors, insulation		
Insulation of the drying tube		No	Yes

Upgrade to 250 kg flour/h (Nov. 2022)

Nutripro & Agrimac Kinshasa (DRC)

Baseline 2019:

- 100 kg/h and 132 L diesel/t flour (5000 MJ/t) Visit 2022:
- 250 kg/h and 74 L diesel/t flour (2800 MJ/t)

CIAT Centro Internacional de Agricultura Tropical

Thanks ! Merci ! **Gracias** !

thierry.tran@cirad.fr

RESEARCH PROGRAM ON **Roots**, Tubers and Bananas

