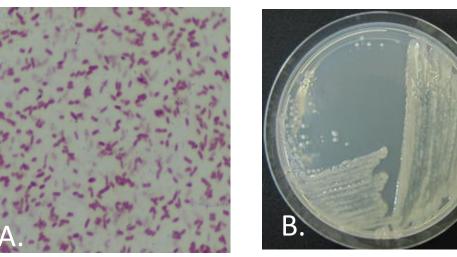
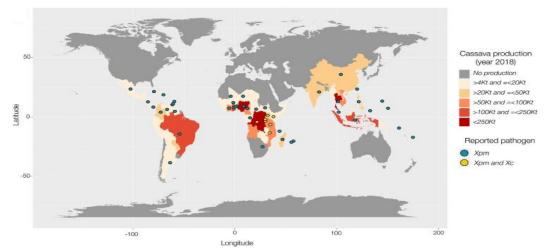


A protocol for measuring Cassava Bacterial Blight disease progression, using machinelearning image analysis

Pardo JM; Jimenez J; Rodriguez R; Leiva A.M.; Cuellar WJ* Crop Protection Team, Cassava Program, Crops for Nutrition & Health


Palmira 20/06/11/2023

*Corresponding author: w.cuellar@cgiar.org


La Alianza es parte de CGIAR, un consorcio mundial de investigación para un futuro sin hambre, dedicado a transformar los sistemas alimentarios, terrestres y acuáticos en medio de una crisis climática.

Bacterial blight (CBB) disease

Caused by Xanthomonas phaseoli pv. manihotis (Xpm)

A. Gram negative bacillus, **B.** Colonies that looks like nonpigmented, circular, raised, convex, creamy-White.

A. Worldwide cassava production (FAO, 2020) by country. Distribution of Xpm and Xc (CABI, 2020). (Zárate-Chaves et al., 2021)

Xpm is a vascular and a foliar pathogen

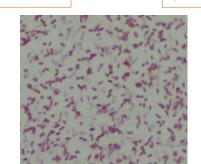
A. Production of exudates; **B.** Wilting and dieback; **C.** Blight or Burning (water soaking symptoms); **D.** Angular leaf spots.

Bacterial Blight disease progression, using machine-learning image analysis

2. Confirm the Xpm identity

(Bernal-Galeano et al., 2018)

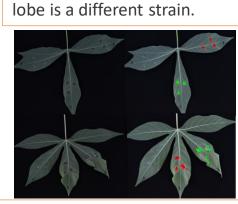
1. Isolate *Xantohomonas phaseoli* pv. *manihotis* (Xpm)



4. Choose the three leaf from 4–5-week-old cassava plants

Daily AUDPC advance

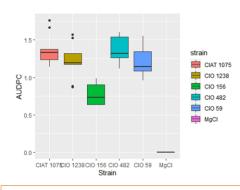
AUDPC = $\sum_{i} [(D_i + D_{i-1})^* (t_i - t_{i-1})]/2,$



5. Inoculation through infiltration, 3 technical replicates per strain onto the leaf lobe

Relative humidity=80% Day/night temperature=28/19°C

6. Three infiltration per lobe, central three lobes used, each



Per plant one leaf inoculated: Lobe 1: CIO 81 Lobe 2: CIO 59 Lobe 3: Control (Water) Per strain 3 plants

3. Prepare the inoculum: 3 days at 30°C, dilution 0.05 OD600

7. Measure the spot area advance: phenotyper –Machine learning

Measure in following days: 0, 4, 6, 9,12, Analyze data on R

Machine learning based quantification of water-soaked symptoms

1. Inoculation.....

2. Take photos (0,4,6,9,12) image device at the same conditions. use X – Rite Passport color card to gray color correction.

3. Choose the best symptoms to create collage.

- Select affected area manually (GIMP or IMAGE J)
- Create a mask: Convert picture to black and white. Only affected area white background black.

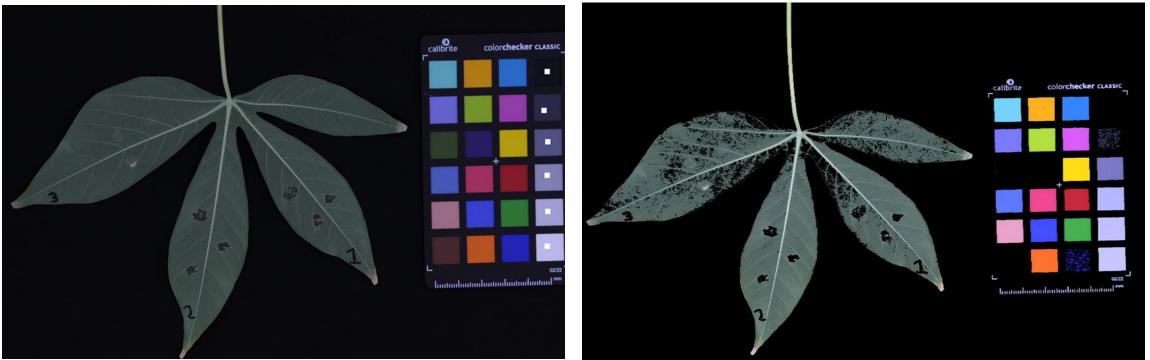
Machine learning based quantification of water-soaked symptoms

5. Machine training:

- Use phenotyper software (Berry et al., 2018).
- Train naive Bayes or SVM using ML_CREATE specifying classifier type:

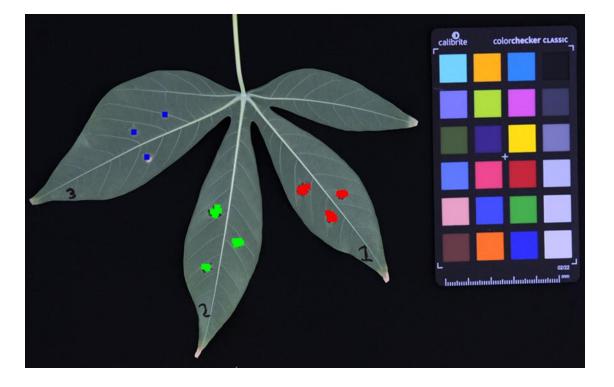
PhenotyperCV -m=ML_CREATE -method=svm -i=collage.png -b=mask.png -class=output_bayes_classifier.yaml

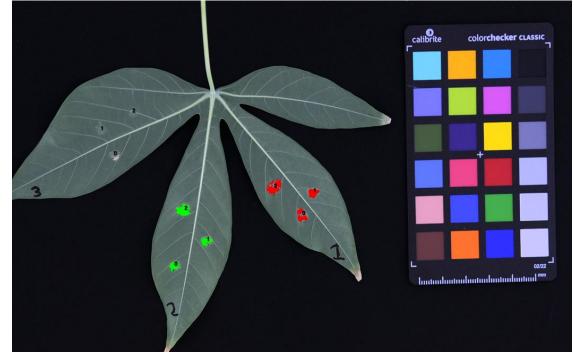
• Check the classifier prediction using either ML_PRED specifying classifier type


Prediction image: Affected area showed in white

Machine learning based quantification of water-soaked symptoms

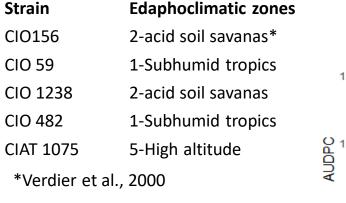
- 6. Routinary measuring process on Phenotyper software
- 1. Click only the gray scale color chips from black to white to isolate features

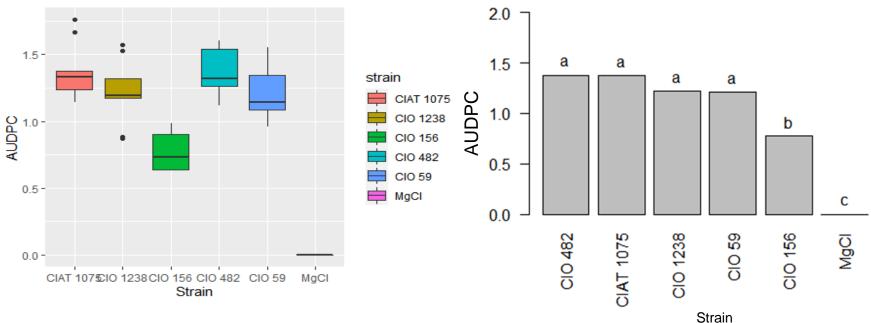

2. Feature prediction of input image, Threshold the prediction


Per plant one leaf inoculated: Lobe 1: CIAT1075 Lobe 2: CIO 59 Lobe 3: Control (MgCl 10 mM)

3. Click on the features to measure. Select region of interest specify them by which type of mouse click you use. Left = red, right = green, middle = blue

4. Machine learning output (Data in Pixels). Color map on classified pixels (0,1,2).





Results and data analysis

Pathogenicity test

• Experimental design: Randomized Blocks. (Three Blocks, 9 observations per strain). Negative control MgCl. Genotype CM6740-7 (Reina).

A. duncan test for difference of means p-values < 0.05, strains with different letter have statistical differences B. Boxplot graph showing differences between strains.

Results and data analysis

Susceptibility test

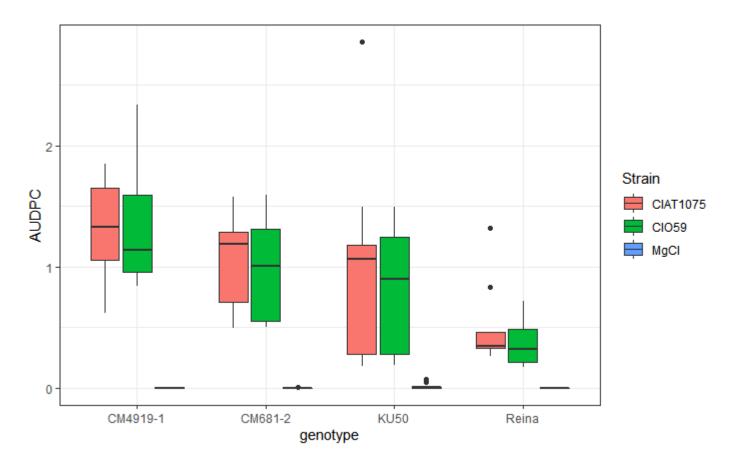
• Experimental design: Split plots . (4 genotypes, 2 strains, three replicates, 9 observations per strain X Genotype). Negative control MgCl.

Strain	Edaphoclimatic zones	Genotype	Field Response
CIO 59	1-Subhumid tropics	CM681-2	S
CIAT 1075	5-High altitude	KU50	R
		CM4919-1	R
		CM6740-7	R

Análisis of variance (ANOVA) for Split plot model showing statistically significant differences between varieties and strains

	Df	Sum Sq	Mean Sq	F value	Pr(>F)	
genotype	3	4.885	1.6282	10.377	6.24e-06	***
stra:genotype	6	2.545	0.4242	2.704	0.0185	*
Residuals 9	90 :	14.122	0.1569			

Difference of means p-values < 0.05, Genotypes with different letter have statistical differences


	AUDPC	groups
CM4919-1	0.8877260	а
CM681-2	0.6804157	ab
KU50	0.5966230	b
Reina	0.2957532	с

Difference of means p-values < 0.05, interaction genotype x strain with different letter have statistical differences .

Interaction	AUDPC	groups
CIO59:CM4919-1	1.3440826	а
CIAT1075:CM4919-1	1.3173175	а
CIAT1075:CM681-2	1.0565354	ab
CIO59:CM681-2	0.9840317	ab
CIAT1075:KU50	0.9731702	ab
CIO59:KU50	0.8025246	bc
CIAT1075:Reina	0.5140739	cd
CIO59:Reina	0.3726708	de
MgCl:KU50	0.0141743	е
MgCl:CM4919-1	0.0017779	е
MgCl:CM681-2	0.0006801	е
MgCl:Reina	0.0005149	е

Results and data analysis

Boxplot graph showing differences between genotypes.

References

-lliott, K., Berry, J.C., Kim, H. et al. A comparison of ImageJ and machine learning based image analysis methods to measure cassava bacterial blight disease severity. *Plant Methods* **18**, 86 (2022).

-Berry JC, Fahlgren N, Pokorny AA, Bart RS, Veley KM. An automated, highthroughput method for standardizing image color profles to improve imagebased plant phenotyping. PeerJ. 2018. https://doi.org/10.7717/ peerj.5727.

-Restrepo, S., Duque, M. C., & Verdier, V. (2000). Characterization of pathotypes among isolates of Xanthomonas axonopodis pv. manihotis in Colombia. Plant Pathology, 49(6), 680-687.

-Zárate-Chaves, C. A., Gómez de la Cruz, D., Verdier, V., López, C. E., Bernal, A., & Szurek, B. (2021). Cassava diseases caused by Xanthomonas phaseoli pv. manihotis and Xanthomonas cassavae. *Molecular plant pathology*, 22(12), 1520-1537.

- CABI. (2020) Xanthomonas axonopodis pv. manihotis (cassava bacterial blight). In: Invasive species compendium. Available at: https://www. cabi.org/isc/datasheet/56952.

- Bernal-Galeano, V., Ochoa, J. C., Trujillo, C., Rache, L., Bernal, A., & López, C. A. (2018). Development of a multiplex nested PCR method for detection of Xanthomonas axonopodis pv. manihotis in cassava. Tropical Plant Pathology, 43(4), 341-350.

Acknowledgement

Australian Government

Australian Centre for International Agricultural Research

Thank you!