# Assessment of phenotypes based on deviations in milk yield as indicators of general resilience of dairy cattle in Kenya

R. D. Oloo<sup>1, 2\*</sup>, R. Mrode<sup>2,</sup>, J. Bennewitz<sup>3</sup>, C. Ekine-Dzivenu<sup>2</sup>, J. Ojango<sup>2</sup>, G. Gebreyohanes<sup>2</sup>, O. Mwai<sup>2</sup> and M. Chagunda<sup>1</sup>

<sup>1</sup> Animal Breeding and Husbandry in the Tropics and Subtropics, University of Hohenheim
 <sup>2</sup> Livestock Genetics, International Livestock Research Institute (ILRI)
 <sup>3</sup> Animal Breeding and Genetics, University of Hohenheim

#### Richard Dooso Oloo

<u>richard.oloo@uni-hohenheim.de</u> <u>r.dooso@cgiar.org</u>











## Introduction

- Environmental disturbances contribute to observed low dairy production in SSA
- Breeding for resilience to environmental stressors in dairy cattle might increase dairy productivity
- But resilience must be quantified first for it to be improved genetically
- Some indicators to measure resilience of animals have been defined based on the deviations from expected performance level (Berghof et al 2019).
- Resilient animal deviate with a smaller range from the expectation or recover faster from the disturbance







#### Which indicators

#### Variance of deviations:

- the severity and duration of environmental perturbations
- Lower variance for more resilient animals

#### Lag I autocorrelation of deviations:

- captures the duration (rate of recovery) of environmental perturbations
- Resilient animals have autocorrelation around 0 or toward - I

#### **Skewness of deviations:**

- severity of environmental perturbations
- A higher skew indicates better resilience
- Heritability estimates of these indicators range from 0.02 to 0.26 and have expected correlation with fitness related traits (Poppe et al., 2020, 2021 and Berghof et al 2019)

#### Problem

- The potential of using such indicators in sub-Saharan Africa is yet to be tested
- Use of actual deviation can mislead e.g., animals of different genotypes, performing in different environments etc
- □For instance, a change of 3 values from an expectation of 5, is equivalent to 60% change and from an expectation of 15, it is only 20%
- This would conclude that animals with overall low production are resilient which might not be the case





## **Objectives**

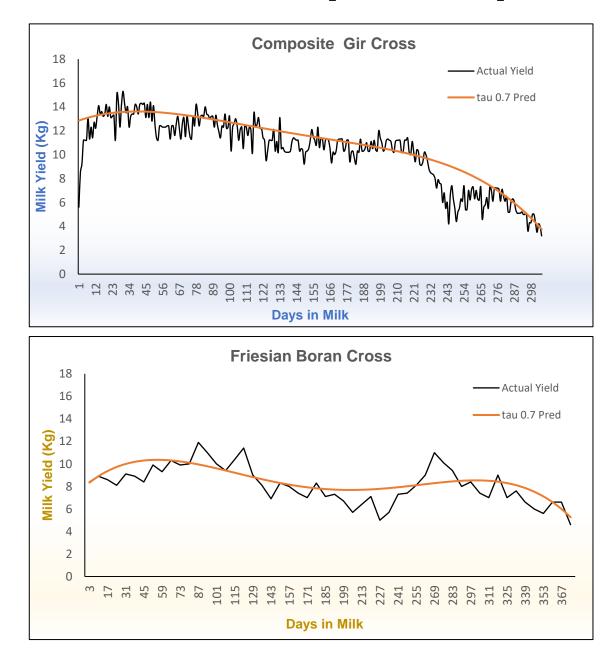
- I. To test the applicability of indicators based on deviations in milk yield in quantifying general environmental resilience of dairy cattle performing in SSA
- 2. To derive these indicators using proportion of (standardized) deviations and test for any improvement
- 3. To determine genetic relationship of these indicators with longevity and average milk production

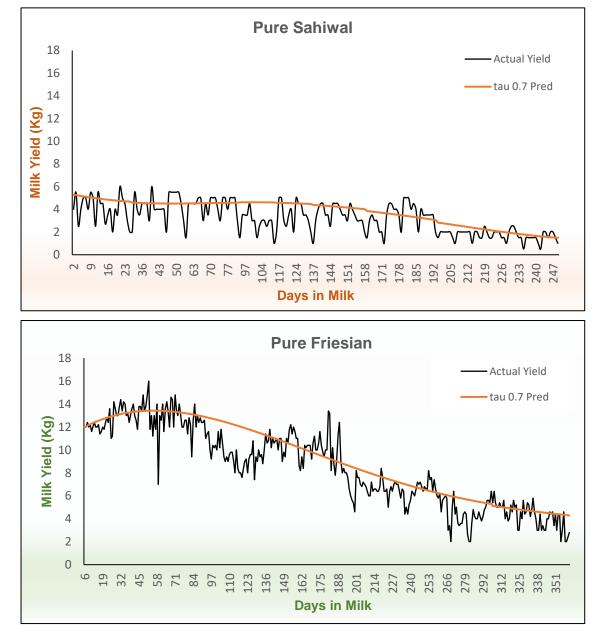
#### **Methods: Data**

- Animals performing in three large-scale farms in Kenya representing 3 different agroecological zones
- A final dataset of 307,155 first-parity milk records from 2670 animals was used to define the indicators
- Data of female animals that exited through death from a disease or sale for slaughter (n=1389) was used to define two longevity traits:
  - Productive life span: difference in days between the first calving date and date of exit
  - > Herd life: the age of an animal in days before it exited the herd



#### **Methods: Statistical analyses**


- Lactation curves modelled using 4<sup>th</sup> order polynomial quantile regression using 0.7<sup>th</sup> quantile
- From these curves, deviation in milk yield was calculated as: Deviation<sub>i</sub> = Expected Yield<sub>i</sub> Actual Yield<sub>i</sub>
- And standardized deviation as:  $\frac{Deviation_i}{Expected Yield_i}$
- Univariate and bivariate animal models were used to estimate genetic parameters of all the resilience indicators, average milk yield and longevity traits adjusting for encountered fixed effects
- Fixed effects model terms for resilience indicators and longevity traits included


```
Resilience Indicator = U + farm + ysc + breed + obs + age + dim I + dim2
productive life span= U + farm + ysb + breed + age + AMY + lacts + exitcode + yse
herdlife = U + farm + ysb + breed + AMY + lacts + exitcode + yse
```



where ysb, ysc, and yse are year season of birth, calving and exit respectively; obs represent the number of test-day observations, dim l and dim2 are days in milk class of first and last milk record for an individual animal, respectively; lacts is the total number of calving before exit, and exitcode is the exit reason for the animal, either death from a disease or sale for slaughter

#### Trend of actual and predicted milk production based on 0.7<sup>th</sup> quantile of selected few animals





## **Results and Discussions**



#### **Genetic parameters of indicators**

- All the indicators based on two methods had almost similar heritability estimates
- All traits had low but significant heritability estimates (P<0.05) which are comparable to those previously reported (Poppe et al., 2020, 2021)
- Variance of deviations had the highest heritability estimates
  - Might be the most suitable for assessing resilience
  - Similar results reported by (Elgersma et al., 2018, Poppe et al., 2020, 2021)

| Trait                                      | <b>Additive Variance</b> | <b>Phenotypic Variance</b> | Heritability |
|--------------------------------------------|--------------------------|----------------------------|--------------|
| Variance of actual deviations              | 0.057(0.013)             | 0.299(0.009)               | 0.19(0.04)   |
| Skewness of actual deviations              | 0.001(0.001)             | 0.031(0.001)               | 0.05(0.03)   |
| Autocorrelation of actual deviations       | 0.014(0.018)             | 0.725(0.021)               | 0.02(0.03)   |
| Variance of standardized deviations        | 0.047(0.011)             | 0.272(0.008)               | 0.17(0.04)   |
| Skewness of standardized deviations        | 0.002(0.001)             | 0.031(0.001)               | 0.07(0.03)   |
| Autocorrelation of standardized deviations | 0.045(0.03)              | 0.949(0.028)               | 0.05(0.03)   |

Productive life span and is the difference in days between the first calving date and date of death from a disease or sale for slaughter. Herd life and is the age of an animal in days before it died from a disease or was sold for slaughter







### **Results and Discussions**

#### Relationship with average milk yield

- Only variance of deviations indicators had significant correlations with average milk yield
- Variance of actual deviations had a positive correlation with milk yield: High resilience translates to low milk
  - Variance of actual deviations is based on actual deviations: animals with low milk production profile have low deviations and low variance hence considered resilient
- Variance of standardized deviations had negative correlation with milk yield: High resilience translates to high milk

| Resilience indicator                                             | Average Milk<br>Yield |  |  |
|------------------------------------------------------------------|-----------------------|--|--|
| Variance of actual deviations                                    | 0.72(0.08)*           |  |  |
| Variance of standardized deviations                              | -0.66(0.08)*          |  |  |
| Autocorrelation of actual deviations                             | -0.14(0.21)           |  |  |
| Autocorrelation of standardized deviations                       | -0.2(0.17)            |  |  |
| Skewness of actual deviations                                    | -0.31(0.24)           |  |  |
| Skewness of standardized deviations                              | -0.39(0.23)           |  |  |
| Genetic correlations of resilience indicators with average daily |                       |  |  |

Genetic correlations of resilience indicators with average daily milk yield. Asterisk indicates significance at P<0.05

- > Variance of standardized deviations is based on proportion hence does not favor low producing animals
- However, this observation is environment specific and does not necessarily mean that all high producers are resilient





## **Results and Discussions**

## **Relationship with longevity traits**

- Only variance of actual and standardized deviations had significant negative correlation with longevity traits
  - This shows that resilient animals and low producing animals had greater longevity
  - Similar results reported (Elgerisma et al 2018, Poppe et al 2020, 2021)

| Resilience indicator                       | Productive Lifespan | Herd life    |
|--------------------------------------------|---------------------|--------------|
| Variance of actual deviations              | -0.47(0.26)*        | -0.43(0.28)* |
| Variance of standardized deviations        | -0.49(0.26)*        | -0.47(0.28)* |
| Autocorrelation of actual deviations       | -0.07(0.48)         | 0.12(0.5)    |
| Autocorrelation of standardized deviations | -0.15(0.42)         | -0.02(0.44)  |
| Skewness of actual deviations              | 0.19(0.68)          | 0.05(0.72)   |
| Skewness of standardized deviations        | 0.59(0.51)          | 0.67(0.55)   |

Genetic correlations of resilience indicators with productive life span and herd life. Asterisk indicates significance at P<0.05  $\,$ 











# Conclusion

- There is a possibility for harnessing these indicators to measure resilience of dairy animals
- Variance of standardized deviations could be a better indicator of resilience of dairy animals in sub-Saharan Africa
  - > It does not inaccurately group low producing cows as being resilient
- Resilient animals:
  - Have better longevity
  - > Produce milk yield that is much closer to their optimal production







# Thank You!









