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Abstract – This paper presents a parallel approach of the genetic algorithm (GA) over the Graphical Processing Unit (GPU) to solve 
the Traveling Salesman Problem (TSP). Since the earlier studies did not focus on implementing the island model in a persistent 
way, this paper introduces an approach, named Lightweight Island Model (LIM), that aims to implement the concept of persistent 
threads in the island model of the genetic algorithm. For that, we present the implementation details to convert the traditional island 
model, which is separated into multiple kernels, into a computing paradigm based on a persistent kernel. Many synchronization 
techniques, including cooperative groups and implicit synchronization, are discussed to reduce the CPU-GPU interaction that existed 
in the traditional island model. A new parallelization strategy is presented for distributing the work among live threads during the 
selection and crossover steps. The GPU configurations that lead to the best possible performance are also determined. The introduced 
approach will be compared, in terms of speedup and solution quality, with the traditional island model (TIM) as well as with related 
works that concentrated on suggesting a lighter version of the master-slave model, including switching among kernels (SAK) and 
scheduled light kernel (SLK) approaches. The results show that the new approach can increase the speed-up to 27x over serial CPU, 
4.5x over the traditional island model, and up to 1.5–2x over SAK and SLK approaches.

Keywords: GPGPU, Genetic algorithm, TSP, Island Model, Speed up

1.  INTRODUCTION

Nowadays, GPUs (Graphics Processing Units) are 
playing a significant role in general-purpose comput-
ing. Applications for engineering and research are 
accelerated by GPUs’ capabilities in various scientific 
domains. Nvidia introduced CUDA (Computer-Unified 
Device Architecture) in 2007 as a general-purpose par-
allel computing API [1, 2]. Programmers can efficiently 
solve computational issues by utilizing the GPU's par-
allel architecture using CUDA. These days, laptops are 
equipped with powerful GPUs that have thousands of 
cores [3]. These reasons motivated the researchers to 
develop GPU-based parallel applications. 

The traveling salesman problem (TSP) is a complex 
combinatorial optimization problem that has been 
used to solve many problems, like UAV path planning 
[4, 5]. A popular evolutionary algorithm for solving the 
TSP problem is the genetic algorithm (GA) [6]. The ge-
netic algorithm is an iterative process that requires a 
lot of computation. To speed up the GA process, many 
studies have developed parallel approaches over the 

GPU. They relied on the basic models of the parallel ge-
netic algorithm, including the master-slave model, the 
island model, and the cellular model. They developed 
them to suit the studied problem and decrease the ex-
ecution time [7-9].

In the traditional master-slave model, each step of 
the genetic algorithm was mapped to a separate ker-
nel. Performing the evolving process, in a single itera-
tion, involves calling these kernels. There is much CPU-
GPU communication overhead to call the kernels from 
the host in every iteration. The master-slave model 
based on persistent threads was suggested to collapse 
the multi-kernel into one kernel and keep the threads 
alive throughout the execution of all iterations in the 
genetic algorithm [10]. This approach reduces CPU-
GPU communication because there is only one kernel 
call, and iterations are made within the kernel.

Calling a single kernel means that we will pass the 
number of participating threads (Grid and Block sizes) 
only once in order to execute the genetic algorithm. 
For this reason, a method was adopted to distribute the 
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work between these active and live threads to achieve 
the best possible performance.

In the traditional island model (TIM), the large popula-
tion is divided into small subpopulations (islands). Each it-
eration is achieved with only one kernel call. This method 
also introduces a CPU-GPU communication overhead. 

Converting this model to a method based on per-
sistent threads requires discussing two issues: the 
synchronization mechanisms and the work distribu-
tion between live threads, whose number will be fixed 
throughout the kernel's execution.

In this paper, we focus particularly on how to convert 
the island model of the genetic algorithm into a new ap-
proach named the Lightweight Island Model (LIM) that 
follows the concept of persistent threads. For that, we 
highlight the earlier studies that worked on converting 
the traditional master-slave model into a lighter version 
by the number of kernel invocations. We will introduce 
two approaches and discuss the effects of the synchro-
nization techniques used. The work distribution and the 
warp-based implementation will be presented at every 
step of the genetic algorithm. The introduced approach 
will be compared with the traditional island model and 
with similar and previous works. 

The remainder of this paper is organized as follows: 
Section 2 introduces the previous works. Background in-
formation about the genetic algorithm for the TSP, GPU 
computing, and implementation details of the genetic 
algorithm over the GPU are highlighted in Section 3. 
Section 4 presents the lightweight island approaches, 
while Section 5 focuses on simulation and experimental 
results. Finally, we conclude the paper in Section 6.

2. PREVIOUS WORKS

The genetic algorithm is one of the most popular al-
gorithms used to solve many complex problems, such 
as TSP. Many researchers address the acceleration of 
the genetic algorithm on GPUs to obtain results in a 
better time. Generally, researchers followed the three 
models of the parallel genetic algorithm: the master-
slave model, the island model, and the cellular model.

Authors in [11, 12] introduced an approach based on 
the master-slave model. Each step of the genetic algo-
rithm is associated with a separate kernel. This means a 
multi-kernel invocation and CPU-GPU data exchange at 
each iteration, which negatively affects performance. 

An approach based on master-slave was also intro-
duced in [13] to solve the traveling salesman problem. 
This approach depends on switching among kernels 
(SAK). It used three kernels to implement the steps in GA. 
The first kernel is responsible for fitting the population. 
The second kernel performs crossover, mutation, and fit-
ness calculations. The third one executes the selection 
operator. The number of threads in the CUDA configu-
ration was set equal to the number of individuals (grid-
size*block-size=population-size). The time needed for 

kernel invocations is minimized because there is no data 
exchange between the host and the device. This meth-
od reduced the number of kernel invocations per itera-
tion, but there are still a significant number of implicit 
synchronizations that can affect the execution time.

Many studies presented the island model of the GA over 
the GPU. A fully Distributed Island Model approach was 
introduced in [14]. In this approach, they ensured implicit 
global synchronization between the CPU and the GPU. 
This synchronization was performed by associating one 
kernel execution with one iteration of the evolutionary 
process. When the execution of one iteration is finished, 
the hand returns to the CPU. This synchronization mecha-
nism decreases performance due to the large number 
of implicit synchronization points and the overhead of 
the kernels call. Each island was associated with a single 
block, and it contained 128 individuals (island-size). One 
individual was represented by one thread, which means 
that block-size=island-size= 128. The results are intro-
duced for various numbers of islands (grid-size).

Authors in [15-18] also presented how to use GPUs 
to parallelize the island model of the genetic algorithm 
(IMGA). They focused on proposing parallel strategies 
for the genetic operators that are appropriate to the 
studied issue, but they did not address details about 
the mechanism for achieving global synchronization.

An approach named Scheduled Light Kernel (SLK) 
was presented in [10] for implementing GA on the 
GPU. This approach was inspired by the concept of per-
sistent threads introduced in [19]. The introduced ap-
proach concentrated on persistently applying only the 
master-slave model to keep the threads alive inside a 
single kernel invocation. They collapse multiple kernel 
invocations into a single persistent kernel call. The ex-
ecution method is determined by a work scheduling 
matrix. The GPU launching configuration (grid-size, 
block-size) of the persistent kernel is defined by finding 
the maximum number of blocks that is needed among 
the separate invocations. The researchers relied in their 
experiments on using the same number of available 
SMs (streaming multiprocessors) as a grid-size. As for 
the number of threads per block (block-size), they cal-
culated the number of maximum threads as T = popu-
lation-size (NPOP) / grid-size (B).

Since the aforementioned research did not focus, in 
its content, on developing a version of the persistent is-
land model, we will provide the necessary details about 
that. We will make use of the research that applied the 
master-slave model using persistent threads to achieve 
the mechanism in the island model. 

Considering that global synchronization greatly affects 
performance, we will discuss the mechanisms of synchro-
nization and provide sufficient details about them. We will 
develop a warp-based parallelization strategy to achieve 
the best possible performance. We expect that the pro-
posed approach will result in better performance.
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3. BACKGROUND

3.1. THE GENETIC ALGORITHM  
  fOR THE TSP PROBLEM 

A genetic algorithm (GA) is an evolutionary problem-
solving method based on Darwin’s theory. This Algorithm 
evolves a group of solutions (population) by repeating 
some steps in sequence. GA starts by generating an ini-
tial population which is a group of solutions. After that, 
GA starts evolving these solutions in an iterative process. 
At each iteration, a set of steps are performed, including 
Crossover, Mutation, Evaluation, and Selection [20]. This 
process is repeated until it reaches a pre-specified condi-
tion. Fig. 1 shows the process of the GA.

The Traveling Salesman Problem (TSP) is one of the 
most studied combinatorial optimization problems. It 
is used in many real-world applications, such as UAV 
Path planning. The TSP should find the shortest route 
that visits a group of cities exactly once and returns to 
the initial city. The genetic algorithm is widely used to 
solve TSP and other NP-hard problems [6]. 

fig. 1. Steps of the genetic algorithm

When using the genetic algorithm for solving TSP, 
each solution is represented by a route. A list of cities' 
indexes in a variation order makes up the route. The 
distances between cities are stored in an array. The fit-
ness of each route is calculated by the distances array. 
There are various crossover techniques for the TSP, in-
cluding PMX, CX, OX, etc.

3.2. GPU COMPUTING

In recent years, general-purpose GPUs (GPGPUs) 
have evolved into highly parallel, multithreaded, ma-
ny-core processors with very high memory bandwidth 
[21]. Many laptops are now available with modern and 
powerful GPUs that contain thousands of cores, such as 
the NVIDIA GeForce RTX 30 Series [3]. 

Compute Unified Device Architecture (CUDA) is a 
general-purpose parallel computing platform and pro-
gramming model introduced by NVIDIA. CUDA made 
developing parallel GPU applications much easier [21]. 
A typical CUDA program executes on both the GPU 
(Device) and the CPU (Host). The code executed on the 
GPU is grouped into a special function determined by 
the “global” qualifier and launched by the kernel invo-
cation. The kernel parameters determine the grid and 
block dimensions. Threads within the block are par-
titioned into warps. A warp is made up of 32 parallel 
threads that are all executed based on the single in-
struction multiple thread (SIMT) paradigm.

The CUDA kernel should be invoked by the host code 
to carry out parallel computations [22]. The kernel invo-
cation is asynchronous with respect to the host.  After 
the kernel call, the host code must use the "cudaDevice-
Synchronize()" API function to make the invocation syn-
chronous. This indicates that the host will wait until all 
GPU threads have finished running. This API function en-
sures implicit global synchronization within the grid [1]. 

When the computational algorithm requires some 
synchronization points, the developer should break it 
up into several steps. Each step is mapped to one de-
vice kernel. The invocation of each kernel should be 
followed by the cudaDeviceSynchronize() function. 
This mechanism will perform synchronization between 
the algorithm steps. The CUDA API also contains the 
“__syncthreads()” function to perform inter-block local 
synchronization among threads in the same block.

In CUDA 9, NVIDIA introduced the cooperative groups 
extension. This extension allows the programmer to syn-
chronize all threads in the same group [2, 23]. The group 
could be the grid. In this way, the programmer would be 
able to synchronize all threads in all blocks. 

One of the requirements to use cooperative groups 
is to launch the cuda kernel through the “cudaLaunch-
CooperativeKernel” API function. The drawback of co-
operative group synchronization is the limited number 
of launched blocks per multiprocessor. It cannot exceed 
the maximum number returned by the “cudaOccupan-
cyMaxActiveBlocksPerMultiprocessor” function. This 
function can provide an occupancy prediction based on 
the block size and shared memory usage of a kernel [21].

GPUs, with a compute capability of 3.0 or higher, pro-
vided a mechanism to allow threads to directly read 
another thread’s register in the same warp. The shuffle 
instruction enables threads in a warp to interact with 
one another without using shared or global memory. 
It offers applications a quick way to exchange data 
among threads in a warp [1].

3.3. GENETIC ALGORITHM OVER GPU

It is not easy to implement a GA on GPGPU, and nu-
merous implementations and models have been sug-
gested and explored in earlier literature. When you apply 
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the genetic algorithm in a parallel way, more than one 
thread will participate in completing the steps of this al-
gorithm. Attention should be paid to performing each 
step completely before moving on to the next step. This 
means inserting synchronization points between the 
steps [24]. There are three models of the parallel genetic 
algorithm (PGA) on GPGPU: the master-slave model, the 
island model, and the cellular model [7–9]. 

In the traditional master-slave model, there is a sin-
gle population. The evaluation step is achieved on the 
GPU by using a single kernel. The other GA steps are 
achieved sequentially on the CPU [8]. This model re-
quires one kernel call for each iteration as well as two 
operations to copy data from host to device and vice 
versa. In the master-slave model, there is the possibility 
of applying all GA steps in parallel on the CPU by em-
ploying multiple CPU threads [25]. It can also be done 
on a GPU by mapping each step to a separate kernel. 

This means that each iteration involves multi-kernel 
invocations. This model is good for performing implicit 
global synchronization by using the cudaDeviceSyn-
chronize() function. However, it is inefficient since it 
needs frequent CPU-GPU communication to launch 
kernels at each iteration [7]. The execution time is neg-
atively affected by this communication.

In the traditional island model, the population is di-
vided into subpopulations called islands [8]. Each sub-
population is kept in the shared memory and evolves 
separately in one block. This model includes an addi-
tional step called migration, which is carried out be-

tween neighboring islands every predetermined num-
ber of iterations. 

This model doesn't require global synchronization fol-
lowing each genetic step because each island evolves 
independently.  Inter-block synchronization is imple-
mented after each step [17]. The migration step is an ex-
ception and involves global synchronization between all 
GPU blocks to migrate some individuals from an island 
to a neighboring island through the global memory. 
Therefore, each iteration that doesn’t perform migration 
can be achieved with only a single kernel call.

4. PROPOSED APPROACHES

This section describes the procedures required to im-
plement the lightweight island model (LIM). Mixing be-
tween the island model and persistent threads is imple-
mented in two approaches. The first is the lightweight 
island model based on cooperative groups (LIM-CG), 
and the second is the lightweight island model based on 
implicit synchronization (LIM-IS). The scheme in both ap-
proaches will be discussed, in addition to the work distri-
bution mechanism at the steps of the genetic algorithm. 
Since both approaches are based on the island model, the 
work distribution mechanism will be identical in both.

4.1. APPROACH SCHEMES

In the first approach (LIM-CG), grid synchronization 
is applied using cooperative groups. All steps of the 
genetic algorithm, including migration, are mapped to 
only one kernel (GAKernel1), as shown in Fig. 2. 

fig. 2. Scheme of the lightweight island model based on cooperative groups (LIM-CG).

This kernel stays alive until it reaches the maximum 
number of iterations. This kernel code starts by gener-
ating the initial population. Each thread, in each block, 
is responsible for producing one individual through 

shuffle operations. The created individual is then stored 
in the island subpopulation array located in the shared 
memory. The "extern" identifier can be used to allocate 
this array. After that, all threads in the block enter the 
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fig. 3. Scheme of the lightweight island model based on implicit synchronization (LIM-IS).

Table 1. The number of synchronization points and the number of kernel invocations required in LIM-IS, 
LIM-CG, SAK, and SLK approaches.

Approach Global synchronization points Block synchronization points Kernel invocations
SAK #iterations * #steps #iterations * #steps

SLK #iterations * #steps 1

TIM #iterations #iterations * #steps #iterations

LIM-CG #iterations / #migrations #iterations * #steps 1

LSM-IS #iterations / #migrations #iterations * #steps #iterations / #migrations + #migrations

Migrating individuals between islands (blocks) is 
achieved through global memory. This approach does 
not rely on cooperative groups therefore, the number 
of blocks that can be executed on the device is unre-
stricted. It can be controlled either directly from the 
host or by a nested kernel. The host will be responsible 

for calling a single parent kernel, with one block and 
one thread, which in turn will invoke the other kernels.

Table 1 summarizes the synchronization points and 
the number of kernel invocations required. It compares 
the proposed approaches (LIM-IS, LIM-CG) with the 
switching among kernels approach (SAK) presented 

evolving process (while loop). Migration is the first step 
that is encountered. It is performed frequently after a 
predetermined number of iterations (migration fre-
quency). A global array is allocated in global memory 
to help migrate individuals between islands.

The second approach (LIM-IS) depends on performing 
an implicit global synchronization by returning control 
to the host after a predefined number of iterations. This 
number depends on the migration frequency. In this 
way, the number of global synchronization points is re-
duced.  The migration kernel is invoked only when there 
is a migration. There are three kernels (InitialPopKernel, 
GAKernel2, and MigrationKernel3), as shown in Fig. 3. 

The first one is responsible for generating the initial 
population. Each thread, in every block, is responsible 
for producing one individual, calculating the fitness, 
and then storing it in the global array. The second ker-
nel repeats the steps of the genetic algorithms (while 
loop) until there is a need for migration (migration fre-
quency). At that point, the control is returned to the 
host to launch the migration kernel just once. The loop 
counter at the host side is incremented by the value of 
migration frequency. 

Synchronization inside every island is ensured by 
inter-block local synchronization. Global synchroniza-
tion is implicitly guaranteed by returning the control to 
the host.
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in [13], the scheduled light kernel approach (SLK) pre-
sented in [10], and the traditional island model (TIM) 
presented in [14]. This is done without regard to the 
kernel that initializes the random vector.

In the SLK approach, they launched a single kernel 
with multiple blocks. All the blocks must be synchro-
nized before moving toward the next scheduled com-
putation (the next step). This style will increase the 
global synchronization points inside the kernel. In the 
SAK approach, there are three kernel invocations per 
iteration. This means three global synchronization 
points that are achieved by implicit synchronization.

In our approach, there is no need for global synchroni-
zation after each step. Inter-block synchronization, with-
in the island, is performed after each step. It is guaran-
teed by the _syncthreads() function. Global synchroniza-
tion is involved only when there is a migration between 
islands. Global synchronization is achieved through co-
operative groups or implicit synchronization.

Several kernel invocations occur in the SAK model, 
and the number of threads participating in each step 
can differ. Although this paradigm reduces the num-
ber of kernel-running blocks, it increases the CPU-GPU 
communication overhead.

4.2. WORK DISTRIBUTION

When launching the persistent kernel in the SLK model, 
the maximum number of threads required for the overall 
steps is employed. A work scheduling matrix is used to 
distribute work among threads. It has several rows corre-
sponding to the algorithm steps and several columns that 
define the working state of the block at this step. Some 
blocks can be assigned a no-operation (NOP) if they are 
not needed during a specific computation step.

In our proposed approaches, we'll try to effectively dis-
tribute the work among the threads to ensure that the 
most active threads are participating in the current step. 

Work distribution is guaranteed by some variables.  
The value of these variables is determined by the prob-
ability of the genetic operators, the length of the route, 
and the configuration of the islands. 

As illustrated in Pseudo-code 1, these variables are 
grouped into a structure called settings that is initially 
copied to the device. At each step, some equations are 
calculated using these variables to define the number 
of threads participating and how the work will be dis-
tributed among them.

Crossover and selection operations require the most 
computation time in comparison to the other steps. 
The one-point crossover is used in the crossover opera-
tor, while the tournament selection method is used in 
the selection step since it's preferable for parallel im-
plementation.

In the selection step, the island population is divided 
into several groups depending on the number of se-

lected individuals, needed and the number of warps 
inside the island. 

Pseudo-code 1. The structure of the settings.
struct settings
{

 float CROSSOVER_RATE;
 float MUTATION_RATE;
 float SELECTION_RATE;
 float MIGRATION_RATE;
 int MAX_ITERATIONS;
 int ISLAND_SIZE;
 int ROUTE_SIZE;
 int NUM_ISLANDS;
 int MIGRATION_FREQ;

};

As seen in Fig. 4, each warp will manipulate one 
group to find the fittest individuals inside it through an 
unrolled reduction operation.

The reduction stops when it reaches the fittest indi-
viduals involved. Then, based on the warp and thread 
indices, the fittest individuals will be stored in the prop-
er positions in the island population. 

To facilitate the task, an alternative matrix is used, in 
which we store the fitness values of the individuals and 
their indices. Pseudo-code 2 describes the selection step.

fig. 4. Work distribution inside the island in the 
selection step.

The one-point crossover process takes place in two 
phases. In the first phase, the points located before the 
crossing point are transferred from the first parent to 
the child. In the second phase, all the points of the sec-
ond parent are tested to see if they are not duplicated 
in the child. Then the non-duplicated points are added 
to the child after the crossing point. 

The second stage requires many comparisons to be 
completed, depending on the length of the route. For 
this reason, we will allocate a warp to accomplish the 
crossover process between two parents to generate a 
child, as shown in Fig. 5. 

At the start, Thread0 within the warp generates the 
index of the crossover point, the position for parent1, 
and the position for parent2.
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Pseudo-code 3. The crossover step.

#CrossedIndiveduals= CROSSOVER_RATE * ISLAND_SIZE
#warpsInIslad= ISLAND_SIZE /32
WarpIndex= trunc(thid / 32)
#CrossoverOperationsInsideWarp=ceil (#CrossedIndiveduals / #warpsInIsland)
ChildIndex= #SelectedIndiveduals + WarpIndex * #CrossoverOperationsInsideWarp
for(j=0;j<#CrossoverOperationsInsideWarp;j++)

 CrossPosition=generatRandom (1,ROUT_SIZE-1)
 parent1Index= generatRandom (0,#selectedIndividuals)
 parent2Index= generatRandom (0,#selectedIndividuals)
 CrossPosition = __shfl_sync (0xFFFFFFFF,CrossPosition,0,32)
 parent1Index = __shfl_sync (0xFFFFFFFF,parent1Index, 0, 32)
 parent2Index = __shfl_sync (0xFFFFFFFF,parent2Index, 0, 32)
 read parent1, parent2
 stride=32
 threadIndex=threadIdx.x%32
 for(i= threadIndex; i< CrossPosition ; i=i+stride)
  if(i< CrossPosition)
   IslandPop[ChildIndex].rout[i]=parent1.rout[i]
 GroupSize = ceil(ROUT_SIZE/32)
 for(i= threadIndex * GroupSize;i<threadIndex * GroupSize+ GroupSize;i++)
  Test duplicate points in parent2[i] with parent1[1, CrossPosition]
 Store non-duplicated points to shared memory 
 Thread0 will update the child located at the ChildIndex position

 childIndex= childIndex+1

Then it broadcasts these values to all of the threads in 
the same warp via the shuffle operation. 

The threads within the warp will participate in trans-
ferring the points from the first parent to the child. This 
will decrease the divergence among threads in the 
same warp. After that, the points of the second parent 
will be divided and distributed among the threads to 
be tested for doubling in the child.

The value of the non-duplicated point, or -1, will be 
recorded to indicate the presence of doubling. 

This process is done by using the data of the first 
father [0, crossing position] that is stored with each 
thread to avoid saving multiple copies of the child. 

Finally, the non-duplicated points will be stored in 
shared memory. Thread0 inside the warp will update 
the points of the child in the population after the cross-
ing position. Pseudo-code 3 describes the details of the 
crossover step.

fig. 5. Work distribution in the crossover process

5. EXPERIMENTAL RESULTS

This section presents the results of the two present-
ed approaches (LIM-IS, LIM-CG) compared with the se-
rial CPU, the switching among kernels approach (SAK) 
presented in [13], the scheduled light kernel approach 
(SLK) presented in [10], and the traditional island mod-
el (TIM) presented in [14].

Pseudo-code 2. The selection step.

#SelectedIndiveduals = SELECTION_RATE * ISLAND_SIZE #warpsInIslad= ISLAND_SIZE /32
WarpIndex= trunc(thid / 32)
#SelectionOperationsInsideWarp=ceil  (#SelectedIndiveduals / #warpsInIsland)
Index= WarpIndex * #SelectionOperationsInsideWarp
Unrolled Reduction Inside the group
Store fittest individuals to shared memory starting from index
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Table 2. Parameters of the TSP 
 and the genetic algorithm

Parameter Value
Problem Att48

Maximum iterations 1000

Selection Tournament selection (30%)

Crossover One-point crossover (65%)

Mutation Swap mutation (5%)

Migration topology Unidirectional ring

Migration frequency Every 50 iterations

The results of the first experiment are displayed in 
Table 3. Results show that choosing a block-size=1024 
will provide the best performance compared to the se-
rial implementation. Taking into account that the maxi-
mum number of threads that can run on the GPU being 
used is 1024 threads per block. 

This experiment also proves that the GPU implemen-
tation gives a significant improvement in execution 
time compared to the serial CPU implementation. Ac-
celeration of up to 27x has been achieved using the 
GPU, knowing that the population-size and algorithm 
parameters are the same in both cases.

In the second experiment, we will compare our ap-
proaches to those of SAK, SLK, and TIM for different 
population sizes. The GPU configuration (grid-size, 
block-size), as described in Section 2, was different for 
each approach. This relates to the population-size that 
was being used in the experiment. 

To demonstrate the experimental process, Table 4 dis-
plays the necessary GPU settings to test each of the afore-
mentioned approaches on the same population size. 
Each thread in the TIM, SLK, and SAK approaches, was 
mapped to a single individual. The number of GPU run-
ning threads must be equal to the population-size. In 
our approaches, and based on the results of the first 
experiment, the block-size is set to 1024. 

The experiments were carried out with various num-
bers of population-size. The GA-TSP parameters, listed 
in Table 2, were adopted during the implementation of 
serial CPU and parallel GPU approaches.

Table 3. The execution time and speedup of the LIM-CG and LIM-IS approaches 
for different numbers of block-size and population-size

Block-size Grid-size Island-size Population-
size

Serial time 
(ms)

LIM-CG LIM-IS

Time (ms) Speedup Time (ms) Speedup

128

8 128 1024 1434.62 1304.20 1.1 2049.45 0.7
16 128 2048 2857.78 2198.29 1.3 2597.98 1.1
32 128 4096 5661.31 2358.88 2.4 2461.44 2.3
64 128 8192 11278.44 3759.48 3 3638.21 3.1

128 128 16384 22685.26 5532.99 4.1 4931.58 4.6
256 128 32768 45543.33   8433.95 5.4

256

8 128 1024 1434.62 1024.73 1.4 1103.55 1.3
16 128 2048 2857.78 893.06 3.2 952.59 3
32 128 4096 5661.31 1286.66 4.4 1347.93 4.2
64 128 8192 11278.44 1819.10 6.2 2128.01 5.3

128 128 16384 22685.26 3287.72 6.9 3065.58 7.4
256 128 32768 45543.33   5117.23 8.9

512

8 128 1024 1434.62 843.89 1.7 896.63 1.6
16 128 2048 2857.78 476.30 6 529.22 5.4
32 128 4096 5661.31 602.27 9.4 622.12 9.1
64 128 8192 11278.44 989.34 11.4 947.77 11.9

128 128 16384 22685.26 1731.70 13.1 1786.24 12.7
256 128 32768 45543.33   2828.78 16.1

1024

8 128 1024 1434.62 531.34 2.7 683.15 2.1
16 128 2048 2857.78 280.17 10.2 357.22 8
32 128 4096 5661.31 339.00 16.7 365.25 15.5
64 128 8192 11278.44 433.79 26 458.47 24.6

128 128 16384 22685.26 807.30 28.1 840.19 27
256 128 32768 45543.33   1615.01 28.2

The experiments were implemented on a laptop with 
an Intel Corei5-10 2.5GHz CPU and Nvidia RTX 3050Ti 
GPU. This GPU has 20 SMs, which means a total of 2560 
CUDA cores. The compilation was performed using 
Microsoft Visual Studio 2019 with CUDA 11.6 SDK. The 
experiments are carried out with various numbers of 
population-size. 

Since we applied warp-based parallelism, as explained 
in Section 4, the block-size may vary from the island-size. 
Where a single individual is mapped to several threads. 
In order to determine the GPU configurations (grid-size, 
block-size) that lead to the best possible performance, 
the first experiment will test the performance of our is-
land-based approaches (LIM-IS, LIM-CG) against the se-
rial CPU implementation. The number of individuals per 
island (island-size) is set to 128. Each block manipulates 
a single island. The grid-size determines the number 
of running blocks (islands). The population-size results 
from island-size*128. The same settings, listed in Table 2, 
were adopted during the implementation.
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Table 5 and Fig. 6 display the execution times for 
each approach. Fig. 7 compares the speedup of the 
suggested approaches with serial execution and earli-
er-mentioned studies.

The results shown in Fig. 6 and Fig. 7 demonstrate 
that the two new approaches can increase the speed-
up to 4.5x over the TIM, and up to 1.5x– 2x over SLK and 
SAK approaches. 

Table 4. The GPU configuration.

Approach GPU configurations

LIM-CG 
LIM-IS

Island-size: 128 
Grid-size: Population-size/128, Block-size: 1024

TIM Island-size: 128 
Grid-size: Population-size/128, Block-size: 128

SLK Grid-size: 40 (twice the number of available SMs) 
Block-size: population-size / grid-size.

SAK Grid-size: population-size / block-size. 
Block-size: 1024 (The maximum number allowed)

Table 5. The execution time (ms) of the proposed 
approaches LIM-IS and LIM-CG compared with SAK, 

SLK, and TIM approaches.

Population-
size Serial  TIM SAK SLK LIM-

CG LIM-IS

1024 1434.6 1434.6 1024.7 478.2 531.3 683.1

2048 2857.7 1512.9 697.1 453.6 280.1 357.2

4096 5661.3 2358.8 775.5 496.6 339.0 365.2

8192 11278.4 2819.6 848.0 751.9 433.7 458.4

16384 22685.2 3979.8 1597.5 1281.6 807.3 840.1

32768 45543.3 7116.1 3098.1 2384.4 1615.0

fig. 6. The execution time of the proposed 
approaches LIM-IS and LIM-CG compared with SAK, 

SLK, and TIM approaches.

It can be seen that the first approach, which uses co-
operative groups, is limited to a maximum number of 
blocks within the device.

fig. 7. The speedup achieved by the proposed 
approaches LIM-IS, and LIM-CG compared with SAK, 

SLK, and the TIM approaches

The last experiment will focus on evaluating the qual-
ity of the obtained solutions. The parameters and set-
tings applied in this experiment are those listed in Table 
2 and Table 4. The relative error between the fittest solu-
tion's cost and the optimal solution's cost, represented 
by equation (1), was calculated. The execution was re-
peated ten times, and the average value was recorded. 

(1)

Fig. 8 displays the relative error resulting from serial CPU 
and GPU-based parallel implementations. It has been ob-
served that the quality of the solution improves when 
the size of the population increases. The island-based ap-
proaches (TIM, LIM-CG, LIM-IS) have an advantage in ob-
taining the highest quality because of the migration step. 
Migrating some individuals between islands gives them 
the possibility to explore different regions of the search 
space and discover better-quality solutions. 

fig. 8. The relative error of the solutions that 
resulted from serial, LIM-IS, LIM-CG, SAK, SLK, and 

TIM approaches.

Noting that the experiments were carried out for 
1000 iterations for all aforementioned approaches.
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6. CONCLUSION AND fUTURE WORK

In this paper, we highlight the details of implementing 
a lightweight island model (LIM) on a general-purpose 
graphic processor unit (GPGPU) for the TSP problem. 
Two approaches were suggested (LIM-IS, LIM-CG) that 
follow the concept of persistent threads. The necessary 
details to convert the traditional island model (TIM) into 
a lightweight island version were discussed. We also re-
viewed the previously suggested researches that worked 
on transforming the traditional master-slave model into 
new approaches, such as the switching among kernels 
approach (SAK) and the scheduled light kernel approach 
(SLK). A new mechanism was presented for distributing 
work between live threads inside the islands. The GPU 
configurations were tested and detailed to get the best 
possible performance. The introduced approaches were 
compared, in terms of execution time and solution qual-
ity, with serial implementation and with previous works 
including the traditional island model (TIM), switching 
among kernels approach (SAK), and scheduled light ker-
nel approach (SLK).

Our suggested approaches produced much bet-
ter results compared with these previous works. The 
speedup achieved is up to 27x compared with the se-
rial CPU and up to 4.5x compared to the TIM approach. 
The speedup improvement was up to 1.5– 2x over SLK 
and SAK approaches.

In terms of solution quality, the proposed approaches 
produced better solutions than SAK and SLK, whereas 
the results were nearly identical between the proposed 
approaches and TIM.

For future work, these approaches can be tested on 
larger TSP problems to measure the effectiveness of the 
synchronization methods and the parallelization strategy.
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