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ABSTRACT 

The article deals with mathematical formalism of the process of combining several inputs into a single 

output in fuzzy inteligent systems, the process known as aggregation. We are interested in logic 

aggregation operators. Such aggregators are present in most decision problems and in fuzzy expert 

systems. Fuzzy inteligent systems are equipped with aggregation operators (aggregators) with which 

reasoning models adapt well to human reasoning. A brief overview of  the field of fuzzy aggregators is 

given. Attention is devoted to so called graded logic aggregators.. The role of fuzzy agregators in 

modelling reasoning and the way they are chosen in modelling are pointed out. The conclusions are 

given and research in the field is pointed out. 
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INTRODUCTION 

In order to achieve an intelligent system, we need intelligence and a device – a computer. In 

order to implement intelligence with a computer, we need to model intelligence (knowledge 

representation), we need the automation of the process of (intelligent) reasoning to get new ideas 

about the world, and we need to implement the process of intelligent action based on new ideas [1]. 

Logic is one of tools for modelling the observable properties of human reasoning. We use logic 

to implement decision-making process or knowledge representation and automatic reasoning. 

In the last century, it has been noticed that the classical two-value logic is a limited framework 

for modelling the representation of knowledge and human reasoning. The ways to expand the 

possibilities of representation by logic have been proposed. One of the most fruitful of these 

attempts was initiated by Lotfi Zadeh [2]. 

Zadeh has expanded the idea of the degree to which an element belongs to a set from two values, 0 

(for non-belonging), and 1 (for belonging), to a range between 0 and 1, which allows the 

development of models in which key elements are not precise numbers but vague sets, i.e. a 

class of objects in which the transition from non-belonging to belonging is gradual, not abrupt. 

Zadeh described the mathematical theory of fuzzy sets and the corresponding fuzzy logic (a 

kind of a continuous logic with truth value from [0, 1], instead as in standard logic where each 

sentences have truth value from {0, 1}, there is no “in between”). Zadeh, also, proposed 

appropriate set and logical operations, which improved the expressiveness of the model, i.e. 

enabled dealing with uncertain and vague information common in human reasoning. Operations 

on fuzzy sets of unions, intersection and complement are defined using max, min and 1 −(x) 

operations, (where  is degree of membership of element x in a fuzzy set), which correspond to 

fuzzy logic functions disjunction, conjunction, and negation. In fuzzy intelligent systems [3], 

one of the key issues is the problem of aggregation of fuzzy information represented by 

membership functions (whose values are in [0, 1]). Fuzzy membership can be interpreted as a 

degree of truth, so we have fuzzy logic aggregation. Aggregation operators combine multiple 

input values into one output value, which represents all input values. 

In this article, the aggregation operator (aggregator), present in fuzzy intelligent systems, is 

considered. In Section 2, the considered problem is formulated. In Section 3 a formal definition 

of aggregator is given, as well as main classes of that operator. Section 4 deals with 

compensatory aggregators. Special attention is devoted to the aggregator called graded 

conjunction/disjunction. The selection of an aggregator is discussed in Section 5. Section 6 

contains the conclusions. A list of references is given. 

AGGREGATION 

In fuzzy intelligent systems, one of the key problems is the problem of agrregating fuzzy 

information represented by membership functions (whose values are in [0, 1]). Aggregators 

combine multiple input values into one output value, which represents all input values.  

For example, the general form of a fuzzy multicriteria decision-making system is shown in the 

Figure 1. 
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Figure 1. Aggregation in a type of fuzzy multicriteria decision-making system. 

In Figure 1 meanings of symbols are as follows:  

• xi, i = 1, 2, ..., m, are vectors of object properties, which are considered in decision-making 

process; 

• Cj, j = 1, 2, ..., n, are decision-making criteria; 

• ji(xj), j = 1, 2, ..., m, i = 1,2, ...,n, ji  [0, 1], are scores – degrees in which an object xi (or 

its property) satisfies the criteria Cj, ji is the degree of fuzzy membership in a fuzzy set of 

object property that completely satisfies criterion Cj; 

• Di, i = 1, 2, ..., m, Di  [0, 1], are decisions (performance indices) of an object xi with respect 

to all the criteria Cj; decisions Di are obtained by aggregation of information ji(xj), using 

appropriate aggregation operation. 

• The decision D*, on object xi that best satisfies all the criteria Cj, j = 1, 2, ..., m, is obtained 

by aggregation of decisions Di – using suitable aggregation operation, appropriate for the 

considered problem.  

The procedure used to combine the scores by which the object xi, or one of its characteristics, 

satisfies the criteria Ci into one decision Dj, i.e. D*, is:  

 Dj = A1(j1(xj), ..., jn(xj)), D
* = A2(D1, ..., Dm). (1) 

The symbol A in the above expressions indicates aggregators. In the more general case, 

expressions (1) can be given in the form  

 a = A(a1, ..., ar), (2) 

where aj, j = 1, ... , r, r  {n, m}, and a are values from interval of degrees of membership [0, 1]. 

Fuzzy operators, min for conjunction and max for disjunction, for A1 or A2 in (1), are to 

restrictive in practice and do not coincide with how people perform this operations. This lead 

to studies of other aggregators. In the huge majority of applications, primarily in 

decision-support systems, aggregators are developed as models of observable human reasoning. 
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So, we are interested in graded logic aggregators, i.e., aggregators that aggregate degrees of truth. 

Such aggregators are present in most decision problems. We assume that decision-making 

commonly includes evaluation of alternatives and selection of the most suitable alternative, Figure 1. 

Some other examples of applications of fuzzy set theory, for modelling complex and perhaps 

incompletely defined systems, use knowledge bases in which knowledge is represented by a 

base of fuzzy rules. These applications include fuzzy rule-based systems (and fuzzy logic 

control). What is typical for these situations is the set of rules, which emphasizes the 

aggregation components, also. 

DEFINITION AND CLASSES OF AGGREGATORS 

Let us aggregate n degrees of truth x = (𝑥1,...,𝑥𝑛), 𝑛 > 1, 𝑥𝑖 ∈ 𝐼 = [0, 1], 𝑖=1, ..., 𝑛. A general 

logic aggregator 𝐴: 𝐼𝑛 → 𝐼 is defined as a continuous function that is nondecreasing in all 

components of x : 

x  y implies A(x)  A(y) for every x, y  [0, 1]n, (nondecreasing monotonicity); 

and satisfies the boundary conditions (idempotency in extreme points):  

A(0, 0, … , 0⏟      ) = 0 and A(1, 1, … , 1⏟      ) = 1. 

                                                                  n times                                  n times 

It is assumed that the vector inequality is componentwise.  

Typical examples of aggregators are: weighted means, medians, OWA operators and t-norms / 

t-conorms. But there are many other aggregators and an infinite number of aggregator members 

in most families. Not all aggregators have the same properties, so they are grouped into separate 

classes according to the properties they satisfy. 

CLASSES OF AGGREGATORS 

Some classes of aggregators are, as follows: 

conjunctive aggregators A have the following property:  

min(x)  A(x); 

disjunctive aggregators A have the following property:  

A(x)  max(x); 

averaging aggregators A if they are bound by:  

min(x) = min
𝑖=1,…,𝑛

𝑥𝑖   A (x)   max
𝑖=1,…,𝑛

𝑥𝑖   = max(x); 

mixed, if they are neither conjunctive, disjunctive or averaging; 

idempotent, if A(t, …, t) = t for any t  [0, 1]; 

symmetric (commutative) if A(x) = A(xP) for any x  [0, 1]n and any permutation P of {1, 

…, n}. 

Monotonicity and idempotency implies averaging behavior. 

MAIN CLASSES 

Conjunctive/Disjunctive Aggregators 

For this class of aggregators holds duality: for strong negation N, 

AN(x) = N(A(N(x)), 

is N-dual of operator A.  
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In a special case of standard negation: 

Ad (x1, x2, …, xn) = 1 − A(1 − x1, 1 − x2, …, 1 − xn). 

Duals of conjunctive operators are disjunctive operators, and vice versa, duals of disjunctive 

operators are conjunctive operators 

Among conjunctive/disjunctive aggregators are t (triangular) norms – conorms, copulas and 

their duals, and others, [3]. 

Averaging Operators 

Averaging operators model trade-offs between goals. These include: 

• weighted arithmetic means: Mw (x) = ∑ 𝑤𝑖𝑥𝑖
𝑛
𝑖=1 , ∑ 𝑤𝑖

𝑛
𝑖=1  = 1 (in the general case they do not 

satisfy the condition of commutativity); 

• weighted quasi-arithmetic means: Mw,g (x) = g−1( ∑ 𝑤𝑖𝑔(𝑥𝑖)
𝑛
𝑖=1 ); 

• ordered weighted averaging (Yager) OWAw(x) = ∑ 𝑤𝑖𝑥(𝑖)
𝑛
𝑖=1 ; 

• generalised ordered weighted averaging: OWAw,g(x) = g−1( ∑ 𝑤𝑖𝑔(𝑥(𝑖))
𝑛
𝑖=1 ); 

• weighted ordered weighted averaging (WOWA) aggregator (Torra), combines advantages of 

OWA operator and weighted means operator; 

• other means (identric, logarithmic, …); 

• median, weighted median, quasi-median; 

• fuzzy integrals: Choquet, Sugeno, and particular cases; (the Choquet integral allows 

expressing interaction between criteria in multicriteria decision-making, and, for example, 

expressing (physician’s) preferences [4]). 

Other Aggregators, Not Conjunctive/Disjunctive Or Averaging 

In that class of aggregating operators are uninorms, nulnorms, T-S operators, symmetric sums, 

and others operators. 

COMPENSATORY AGGREGATORS 

Fuzzy logic theory offers a multitude of connectives that can be used as aggregators to aggregate 

membership values representing uncertain information. These operators can be classified, as 

we have seen, into the following three general classes: conjunction, disjunction (Section 3.2.1), 

and compensation operators (Section 3.2.2). In the case of Zadeh’s operators, min for 

conjunction and max for disjunction, used as aggregators, only inputs with extreme values affect 

the value of the output fuzzy set. However, both intuitive and formal criteria of human 

reasoning contain numerous requirements that are combined using models of simultaneity and 

substitutability (partial conjunction and partial disjunction), which set requirements for further 

development of fuzzy aggregators. In [5], logic operators based on continuous transition from 

conjunction to disjunction, were introduced, see also [6]. Results from [5] were strong contribution 

to development of aggregation as part of a soft computing. Those results, [6], improve Zadeh’s 

approach in dealing with uncertain and vague information common in human reasoning. 

So, any operator A, that, for example, applies to two arguments a1 and a2 from [0, 1], is 

compensatory operator if it satisfies the following:  

min(a1, a2)  A(a1, a2)  max(a1, a2). 

After [5], others also dealt with this issue of compensatory operators, the review is given 

in [3; p.183]. 
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The disjunction (union) operator provides full compensation, and the conjunction (intersection) 

operator does not allow compensation. The arithmetic mean is neutral in terms of disjunction 

and conjunction. It represents the midpoint between them and represents a special case of 

weighted averaging.  

In [5] andness and orness were defined by Dujmović as the level of simultaneity and 

substitutability, respectively, of the aggregation. They are defined in terms of the similarity to 

minimum and maximum, respectively. Andness was introduced as a degree of conjunction, Orness 

was introduced as a degree of disjunction. A high orness permits that a bad criteria be compensated 

by a good one. On the other hand, a high andness requires both criteria to be satisfied to a great 

degree. Andness and orness are related and add up to one. So, andness-directed transition from 

conjunction to disjunction (introduced in 1973 to its current status [6]), is the history of an effort 

to interpret aggregation as a soft computing propositional calculus.  

In some cases, we need to consider stronger functions in the sense that the outcome of an 

aggregation is less than the minimum or it is larger than the maximum. Fuzzy logic provides 

these type of operators, they are called t-norms and t-conorms, (xy  min(x, y), product t-norm 

is still more conjunctive than minimum). Because of this relationship, while minimum has an 

andness equal to one, product t-norm has an andness that is larger than one. When operators are 

between minimum and maximum, andness is for any number of inputs in the range [0, 1]. 

Operators that can return values smaller than the minimum (as t-norms) or larger than the 

maximum (as t-conorms) will provide andness outside [0, 1], reaching the minimum and the 

maximum of the interval with drastic disjunction and drastic conjunction [6]. 

The resulting analytic framework is a graded logic [6], based on analytic models of graded 

simultaneity (various forms of conjunction), graded substitutability (various forms of 

disjunction) and complementing (negation).  

Basic graded logic functions can be conjunctive, disjunctive, or neutral. Conjunctive functions 

have andness  greater than orness 𝜔, 𝛼 > 𝜔. Similarly, disjunctive functions have orness 

greater than andness, 𝛼 < 𝜔, and neutral is only the arithmetic mean where 𝛼 = 𝜔 = 1/2. Between 

the drastic conjunction and the drastic disjunction, we have andness-directed logic aggregators 

that are special cases of a fundamental logic function called graded conjunction/disjunction 

(GCD) [6]. GCD has the status of a logic aggregator, and it can be idempotent or 

nonidempotent, as well as hard (supporting annihilators) or soft (not supporting annihilators). 

The annihilator of hard conjunctive aggregators is 0, and the annihilator of hard disjunctive 

aggregators is 1.  

The whole range of conjunctive aggregators is presented in Figure 2 [6]. 

Figure 2. The range of conjunctive aggregators: border aggregators and aggregation segments [6]. 
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A detailed classification of GCD aggregators, based on combinations conjunctive/ disjunctive, 

idempotent/nonidempotent, and hard/soft aggregators is presented in Table 1 [6]. 

Table 1. Classification of andness-directed graded logic (GL) functions and aggregators [6]. 

 Logic function/aggregator I T A Global andness ()  

 

 

 
 

 
 

G 

R 
A 

D 
E 

D 

 
L 

O 

G 
I 

C 
 

F 

U 
N 

C 
T 

I 

O 
N 

S 
 

 

 
 

 

 

 

 
C 

O 
N 

J 

U 
N 

C 
T 

I 

V 
E 

Drastic conjunction N H 0   = max = n / (n – 1)  

High hyperconjunction N H 0 t  <   < max 
 

 

 

B 

A 
S 

I 
C 

 

 
G 

L 

 
 

A 
G 

G 

R 
E 

G 
A 

T 

O 
R 

S 
 

 

 
 

Medium 

hyperconjunction 
N H 0  =t = (n 2n – n – 1) / (n – 1) 2n 

Low hyperconjunction N H 0 1 < < t 
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Hard partial conjunction Y H 0 θ     < 1; 1/2 < θ < 1 

Soft partial conjunction Y S - 1/2 <  < θ 

Neutrality Y S -  = 1/2 
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Soft partial disjunction Y S - 1 – θ    < 1/2 

Hard partial disjunction Y H 1 0 <   1 – θ 

Full disjunction Y H 1  = 0 

Low hyperdisjunction N H 1 1 – t  <   < 0 

Medium hyperdisjunction N H 1  = 1 – t 

High hyperdisjunction N H 1 min <   < 1 – t 

Drastic disjunction N H 1  = min =  –1/(n  – 1)  

Columns: I = idempotent, Y/N = yes/no; T = type, H/S = hard/soft; A = annihilator  

All disjunctive aggregators can be realized as De Morgan duals of conjunctive aggregators, so, 

it is sufficient to analyse only the conjunctive aggregators. 

In the case of using weighted conjunctive means or weighted disjunctive means as a aggregator, 

the value of the output fuzzy set is affected by all the inputs or by outputs of all rules in a case 

of a fuzzy rule-based system. 

In addition, weighted conjunctive means and weighted disjunctive means enable continuous 

weighting of the influence of the output of individual rules on the total output fuzzy set. 

CHOOSING AGGREGATOR 

The aggregator is chosen on the basis of available data about modelled system and about 

application requirements of developed (fuzzy) intelligent system. Requirements are translated 
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into mathematical properties: idempotency, neutral element, commutativity, and similar. These 

mathematical properties, in turn, define the class of aggregators. The data allows us to select 

specific members of the aggregator families that are best suited to the data. 

In the case of GCD aggregator, the specification of requirements for aggregator consists of 

choosing features of an aggregator: idempotent or nonidempotent; simultaneity or 

substitutability; hard or soft; the desired strength of simultaneity/substitutability (andness/or-

ness); the degrees of importance. 

The andness-directed interpolative method for implementing GCD [6], consists of 

implementing the border aggregators shown in Figure 2 and then using interpolative 

aggregators in the range of andness between them. This method can be used to implement all 

logic GCD aggregators shown in Table 1.  

The family of graded logic functions and similar aggregators, investigated in [6], includes GCD 

(introduced in 1973), various OWA aggregators (introduced in 1988), aggregators based on 

fuzzy integrals (introduced in 1974), and various means (introduced more than 2000 years ago). 

CONCLUSIONS 

Models of combining information are integral parts of the methods of implementation of 

artificial-intelligent systems. In many applications, and especially in the development of 

artificial-intelligent systems, there is a need to aggregate not only numerical, but also linguistic, 

qualitative, organized information.  

Research in the field of aggregators includes purely theoretical studies (which include 

sophisticated mathematics), the development of practical aggregation tools (programming), as 

well as the applications of aggregators. 

The process of aggregating information occurs in many applications related to the development 

of not only fuzzy systems but also other intelligent systems: neural networks, vision systems, 

robotics, multicriteria decision making systems in general, robotic networks (for example, 

platforms in smart cities [7], Self-Driving car networks [8]) and others. Aggregators represent 

a current research topic [9, 10]. For example, in [11] a new approach is proposed upon which a 

new theory of aggregation could be developed. The aggregation method dealing with so called 

order-2 fuzzy sets is considered in [12]. Work is also underway on the development of 

aggregators for aggregating arguments of various natures (numerical, qualitative, mixed), as 

well as on the systems for determining the parameters of aggregators (learning systems). 
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