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Abstract
The Controlled Source Audio-frequency Magnetotellurics (CSAMT) is a geophysical method utilizing artificial electro-
magnetic signal source to estimate subsurface resistivity structures. One-dimensional (1D) inversion modelling of 
CSAMT data is non-linear and the solution can be estimated by using global optimization algorithms. Particle Swarm 
Optimization (PSO) and Grey Wolf Optimizer (GWO) are well-known population-based algorithms having relatively 
simple mathematical formulation and implementation. Hybridization of PSO and GWO algorithms (called hybrid PSO-
GWO) can improve the convergence capability to the global solution. This study applied the hybrid PSO-GWO algo-
rithm for 1D CSAMT inversion modelling. Tests were conducted with synthetic CSAMT data associated with 3-layer, 
4-layer and 5-layer earth models to determine the performance of the algorithm. The results show that the hybrid PSO-
GWO algorithm has a good performance in obtaining the minimum misfit compared to the original PSO and GWO al-
gorithms. The hybrid PSO-GWO algorithm was also applied to invert CSAMT field data for gold mineralization explora-
tion in the Cibaliung area, Banten Province, Indonesia. The algorithm was able to reconstruct the resistivity model very 
well which is confirmed by the results from inversion of the data using standard 2D MT inversion software. The model 
also agrees well with the geological information of the study area.
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1. Introduction

Controlled Source Audio-frequency Magnetotellurics 
(CSAMT) is an electromagnetic (EM) sounding method 
employing an artificial source to infer the subsurface re-
sistivity distribution. The transmitter (Tx) generates a 
high-power current injected into the earth through a pair 
of electrodes forming a horizontal electric dipole along a 
supposed x-axis. At a distance of 5 to 10 km from the 
source, the receiver (Rx) performs measurement of EM 
fields variations from pairs of electrodes and coil mag-
netometers as electric and magnetic field sensors, re-
spectively. The use of an artificial source was proposed 
in the late 70’s to overcome the problem with random 
and low signals encountered in magnetotellurics (MT) 
with a natural EM field (Goldstein and Strangway, 
1975). A typical field configuration for CSAMT is shown 
in Figure 1, where an electric field from dipoles along 
the x-axis (Ex) and a perpendicular magnetic field (Hy) 
from a coil magnetometer at the center of the array are 
measured and result in a scalar impedance (Zxy) as 

CSAMT data. The scalar mode measurement is intended 
to avoid complicated field logistics, since vector and ten-
sor modes require separate orthogonal sources and 
measurement of complete horizontal EM field compo-
nents (Wannamaker, 1997; Zonge and Hughes, 1991). 
CSAMT method is effective in estimating resistivity 
variations with depth up to 1 to 2 km and sometimes to 3 
km depending on the frequency range used, that usually 
spans from 10 kHz down to 10 Hz or 1 Hz correspond-
ing to periods from 0.0001 sec. to 0.1 sec. or 1 sec. Ap-
plications of CSAMT include explorations for geother-
mal (Zhao et al., 2019; Zhang et al., 2022), groundwa-
ter petroleum (Younis et al., 2015; Zhang et al., 2021) 
and mineral deposits (Liu et al., 2020; Zhang et al., 
2020).

Basically, scalar CSAMT data can only be interpreted 
in terms of a one-dimensional (1D) model, where resis-
tivity varies only with depth. However, with an apparent 
high lateral resolution due to the separation of only 25 m 
up to 100 m of the sounding sites along the profile, con-
catenating 1D models from each station can be used to 
generate a quasi-2D resistivity model. In MT and 
CSAMT, 1D inversion modelling is a relatively complex 
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problem due to the highly non-linear relationship be-
tween data and model parameters, i.e. the resistivity and 
thickness of the horizontal layers forming the 1D model. 
Therefore, global optimization methods are often fa-
voured to overcome fundamental problems often en-
countered in local search or gradient-based inversions, 
i.e. possible convergence to local minima and sensitivity 
to the initial model selection (Wen et al., 2019; Grandis 
and Sungkono, 2022). In recent years, population-based 
global optimization algorithms are gaining interest to re-
solve complex problems in engineering and extended to 
geophysical inversions. In such methods, the search 
space is explored by a population of models serving as 
search agents. The latter follows perturbation mecha-
nisms often adopted or simulated from natural phenom-
ena (Yang and He, 2019). Applications of population-
based optimization algorithms for geophysical inver-
sions include particle swarm optimization (PSO) (Godio 
and Santilano, 2018; Grandis and Maulana, 2017; 
Hapsoro et al., 2021; Shaw and Srivastava, 2007; Su 
et al., 2023), grey wolf optimizer (GWO) (Chandra et 
al., 2017; Li et al., 2018), artificial bee colony (ABC) 
algorithm (Wen et al., 2019) and symbiotic organisms 
search (SOS) (Grandis and Sungkono, 2022; Sung-
kono and Grandis, 2021) and many others.

The PSO algorithm was first introduced by Kennedy 
and Eberhart (1995) to solve optimization problems 
with non-linear functions, by adopting individual and 
social learning behaviours of a swarm in search for a 
common target. PSO has been widely used to solve opti-
mization problems in various scientific fields due to its 
relatively simple implementation with only a few pa-
rameters to adjust. Despite modifications to improve its 
capabilities, various PSO versions still have some weak-
nesses when applied to complex problems, such as pre-
mature convergence, poor exploration capabilities and 
slow convergence speed (Cheng et al., 2021; Phung 
and Ha, 2021). On the other hand, GWO was first intro-
duced by Mirjalili et al. (2014) as an optimization algo-
rithm inspired by the social hierarchy and hunting mech-
anisms of grey wolves. GWO has simple mathematical 
formulations with a few tuning parameters and has been 
applied to solve engineering design problems. The origi-
nal GWO algorithm also has weaknesses, such as its ten-
dency to stagnate in the exploitation stage and the con-
vergence speed that gradually slows down at the end of 
the iterations (Teng et al., 2019). As an alternative to 
improvement of each algorithm, combining PSO and 
GWO called hybrid PSO-GWO algorithm was pro-
posed, especially to improve the convergence (Singh 
and Singh, 2017; Cheng et al., 2021). For example, an 
original hybrid PSO-GWO has been successfully imple-
mented to solve individual and joint 1D inversion prob-
lems for direct current (DC) resistivity and MT data 
(Sarkar et al., 2023).

In this study, the same ratio between the exploration 
and exploitation stages in the original GWO is modified 

to become 70:30 by using the exponential decay func-
tion to accelerate convergence while maintaining a good 
exploration capability of the search space. Increasing the 
percentage of the exploration stage improves GWO abil-
ity to search for global information from the objective 
function (Mittal et al., 2016). In the exploitation stage, 
the solution search is carried out around the first three 
best solution candidates from GWO by using the PSO 
concept. This paper describes the application of the hy-
brid PSO-GWO algorithm for solving a geophysical in-
verse problem, in particular CSAMT 1D modelling. 
This study focuses on the implementation of the modi-
fied hybrid PSO-GWO optimization algorithm to mini-
mize a relatively complex misfit function involving the 
CSAMT 1D forward modelling developed by Fu et al. 
(2019). The latter is optimized such that a large number 
of forward modelling calculations needed in a global 
search approach can be done efficiently by using cur-
rently available computational resources. The proposed 
hybrid PSO-GWO algorithm was tested for inversion of 
synthetic CSAMT data associated with 3-layer, 4-layer 
and 5-layer earth models with correct and incorrect prior 
information on the number of layers. Furthermore, the 
validity of the algorithm was also tested by inversion of 
real or field data from mineral (gold) exploration in the 
Cibaliung area, Banten Province, Indonesia leading to 
satisfactory results.

Figure 1: Schematic of a typical field configuration of 
CSAMT sounding, Tx and Rx are transmitter and receiver, 

respectively. Ex represents electrodes as electric field sensors 
and Hy represents coil magnetometer as magnetic field 

sensor.

2. Hybrid PSO-GWO Algorithm

In what follows, the basic PSO is described according 
to Kennedy and Eberhart (1995) and Pace et al. 
(2021). In PSO, a population of solution candidates up-
date their positions to search for an optimum area in the 
search space, by learning individually and socially from 
their environment. For that purpose, each member of the 
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population learns from their previous best position (per-
sonal best) and from their current movement (inertia) 
that may bring them to a better position. They also try to 
move towards the best position achieved by other mem-
bers (global best). An initial population of size p consist-
ing of models [xk]; k = 1,2,…, p is generated randomly in 
the search space. Each model x is composed by m model 
parameters, hence x = [xi]; i = 1,2,…, m is a vector in an 
m-dimensional search space. At each iteration, the mod-
els are updated to sample the search space while con-
verging towards the target, i.e. the minimum misfit be-
tween observed and calculated data. The latter is the 
model response obtained by evaluating the forward 
modelling function for a particular model. For any kth 
model current position at t is updated by the velocity at 
(t+1) as follows (Pace et al., 2021; Singh and Singh, 
2017),
	 � (1)

The velocity v at (t+1) in Equation 1 is composed by 
the current velocity and acceleration terms expressed by 
(Pace et al., 2021; Sarkar et al., 2023),

	

	 � (2)

where pk represents the personal best, g is the global 
best, while c1 and c2 are coefficients to control the move-
ment tendency of a model according to individual and 
social cognitive, respectively. R1 (0,1) and R2 (0,1) are 
random numbers uniformly distributed between 0 and 1 
to include stochastic behaviors of the process. The ten-
dency to continue in the current direction is expressed by 
the current velocity or v(t) with w as the inertia weight. 
The latter is commonly set linearly decreasing to the fi-
nal iteration to limit the perturbation of models as they 
approach the target. For an iteration equivalent to a unit 
time step t, velocity and acceleration terms in Equation 
2 can be represented simply by the difference between 
vector positions in the model space. Hence, the current 
velocity is calculated in practice as (Grandis and Maul-
ana, 2017),
	 � (3)

The GWO algorithm as described originally by Mir-
jalili et al. (2014) and later reviewed by Dada et al. 
(2022) was inspired by social hierarchy and hunting 
mechanisms of a pack of grey wolves in nature. The prey 
represents the solution being sought, while the wolves 
are the search agents or solution candidates. The social 
hierarchy shows the closeness of the search agents to the 
actual solution. The main stages carried out in GWO 
consist of tracking, encircling, and attacking prey. The 
first stage is implemented by identifying alpha, beta, and 
delta wolves or xα, xβ, xδ which are the first, second and 
third best solution candidates, respectively. Other solu-
tion candidates are xω or simply x. The encircling prey 

mechanism is for keeping the prey in the hunting area, 
while the attacking stage is the movement towards the 
prey. These can be stated in general form by the follow-
ing equations (Mirjalili et al., 2014; Chandra et al., 
2017),
	 � (4)

	 � (5)

where all involved vectors have the dimension of x i.e. 
the position of a solution candidate, coefficient vectors 

 and , while  is the 
position vector of the target, a is a vector whose ele-
ments are identical and linearly decaying from 2 to 0 
during the iteration process. R1 (0,1) and R2 (0,1) are 
vectors of random numbers uniformly distributed be-
tween 0 and 1. The absolute calculation and multiplica-
tion of vectors in Equation 4 and Equation 5 are opera-
tions on an element-by-element basis. Therefore, D is 
also a vector in the search space. Similar operations also 
apply for the subsequent paragraphs.

In reality, the location of the target in the search space 
is unknown. The solution candidates represented by xα, 
xβ, xδ have better knowledge of the potential location of 
the target. Therefore, other solution candidates x update 
their positions according to the positions of those three 
best search agents. The general mechanisms in Equa-
tion 4 and Equation 5 become (Mirjalili et al., 2014; 
Dada et al., 2022),

	

	 � (6)

	 x1 = xα–A1·Dα, x2 = xβ–A2·Dβ, x3 = xδ–A3·Dδ� (7)

Finally, the position of any solution candidate x for 
the next iteration (t + 1) is updated according to the posi-
tion of the best three solution candidates (α, β and δ), 
which is expressed by the following equation (Mirjalili 
et al., 2014; Chandra et al., 2017; Li et al., 2018),

	 � (8)

Mathematically, the mechanism of approaching the 
target is represented by the decay of the value of a. How-
ever, the resulting coefficient A will determine the 
movement of the search agent. It will move closer to the 
target if  or it turns away from the current target to 
search for better target. This behaviour allows the GWO 
algorithm to search for solutions globally.

The hybrid PSO-GWO algorithm combines the ad-
vantages of PSO and GWO resulting in better optimiza-
tion. The mechanism in the hybrid PSO-GWO algorithm 
is basically an extensive search space exploration 
through the advantages of the modified GWO algorithm. 
In this case, the encircling mechanism in Equation 6 is 
modified by giving the inertia weight w which is the con-



Junian, W. E.; Grandis, H.� 68

Copyright held(s) by author(s), publishing rights belongs to publisher, pp. 65-80, DOI: 10.17794/rgn.2023.3.6

trol parameter in the PSO algorithm, so that the equation 
can be written as (Sarkar et al., 2023; Singh and Sin-
gh, 2017),

	  

	 � (9)

Then, the candidate solutions from the first three best 
models are updated by using Equation 7. However, in-
stead of using Equation 8 directly to update a model, 
the best three candidate solutions obtained from the 
GWO algorithm (α, β and δ) are used in the PSO mecha-
nism, i.e. to replace personal best and global best, such 
that the velocity for the next iteration in Equation 2  
is modified to become (Sarkar et al., 2023; Cheng et 
al., 2021),

	

	 �(10)

where c1, c2 and c3 are coefficients to control the move-
ment tendency of a model according to xα, xβ and xδ, re-
spectively. R1 (0,1), R2 (0,1)  and R3 (0,1) are random 
numbers uniformly distributed between 0 and 1.

The inertia weight w in Equation 9 and Equation 10 
is a control factor in exploration and exploitation during 
the search process. The exploration stage has a larger 
inertia weight, and the exploitation stage has a smaller 
inertia weight. In this study the inertia weight at t is 
calculated by the following equation (Sarkar et al., 
2023),

	 � (11)

where wmax and wmin are the maximum and minimum in-
ertia weights, respectively, while Nt is the number of it-
erations. On the other hand, the vector coefficient a is 
used with an exponential decay function of the number 
of iterations. Following Mittal et al. (2016) for itera-
tions with 70% exploration and 30% exploitation, each 
element of a is expressed by,

	 � (12)

3. Application to Synthetic CSAMT Data

In this study, the PSO, GWO and hybrid PSO-GWO 
algorithms were applied to synthetic CSAMT data gen-
erated from 1D models that corresponds to 3-layer, 
4-layer and 5-layer models (see Table 1). The EM re-
sponse of from a dipole current over an N-layered model 
was obtained by applying the forward modelling algo-
rithm developed by Fu et al. (2019). A dipole length 
(dL) of 1 km with a current strength (I) of 10 Amperes 
and a transmitter-receiver distance (r) of 6 km were sim-
ulated. The impedance from orthogonal electric and 

magnetic field, i.e., , in the period range of 
0.00016 to 0.5 sec. (or frequencies from 6400 down to 2 
Hz) were sampled at eight points per decade, resulting in 
32 periods. Gaussian noise of 5% was added indepen-
dently to real and imaginary parts of the impedance. The 
apparent resistivity and phase data as function of the pe-
riod (T) were calculated by using the well-known 
Cagniard’s formula (Cagniard, 1953),

	 � (13)

where  is the permeability of the free 
space, while Re(.) and Im(.) denote real and imaginary 
parts of a complex number, respectively.

Table 1: Parameters of synthetic models for 1D CSAMT 
synthetic data generation

Model Layer
Parameters

Resistivity (Ohm.m) Thickness (m)

Model 1
1 100 300
2 10 600
3 1000 -

Model 2
1 10 300
2 1000 600
3 100 -

Model 3

1 10 100
2 500 300
3 50 500
4 1000 -

Model 4

1 500 120
2 90 200
3 30 300
4 60 300
5 800 -

Tests with a population of 100 models and a total of 
500 iterations were carried out to determine the perfor-
mance of the hybrid PSO-GWO algorithm relative to the 
original PSO and GWO algorithms. These inversion pa-
rameters were considered adequate to obtain good solu-
tions while maintaining a reasonable computational 
time. The initial population was randomly generated in 
the search space with boundaries for resistivity ranging 
from 1 to 2000 Ohm.m and layer thickness from 1 to 
1000 meters. The choice for a priori model parameter 
intervals is intended to avoid bias to inversion results 
since they cover a wide range of values (Grandis and 
Maulana, 2017). In PSO, c1 = c2 = c3 = 0.5 were chosen, 
while inertia weights wmax and wmin were chosen to be 0.9 
and 0.4, respectively. The misfit between the observed 
and predicted data in each iteration was evaluated using 
the Root Mean Squared (RMS) errors expressed by 
(Grandis and Sungkono, 2022),
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	 �(14)

Where:
 and  are apparent resistivity,
 and  are phase for observed and predicted 

data, respectively,
i is the data index with N is the number of data.
The comparison of the misfit or RMS error versus it-

erations for inversions with the original PSO, GWO and 
hybrid PSO-GWO algorithms is presented in Figure 2 
with the best model misfit at the last iteration for all 
models in Table 2. In this case, the hybrid PSO-GWO 
algorithm converged rather slowly but achieved lower 
final misfits compared to the original PSO and GWO. 
Based on the previous similar tests with CSAMT syn-
thetic data, misfit for synthetic data with 5% Gaussian 
noise relative to data without noise is in the order of 0.05 
(Grandis and Sungkono, 2022). In these tests, a misfit 

up to 0.06 is considered acceptable. Such a level of mis-
fit was obtained from almost all algorithms for all mod-
els, except for Model 1 and Model 4 with PSO (see Ta-
ble 2). However, Figure 3 shows qualitatively that there 
is an overall good fit between synthetic and calculated 
data (from the best model at the last iteration) presented 
as sounding curves. The performance of an inversion 
method is also evaluated by its capability in recovering 
the synthetic models. Figure 4 indicates that only hybrid 
PSO-GWO algorithm can recover the synthetic models 
remarkably well especially for Model 1 and Model 2, i.e. 
3-layer models associated with H-type and K-type 
sounding curves. The recovery of the synthetic model 
with a larger number of layers is more difficult, particu-
larly with a 4-layer model with PSO and a 5-layer model 
with almost all algorithms. Nevertheless, the misfit of 
the inverse model from the hybrid PSO-GWO for a 
5-layer model is exceptionally low. This is due to the 
equivalence phenomena where slightly different models 
may result in similar model response that fit to the ob-
served data within an acceptable misfit.

Evaluation of a large number of models in the global 
optimization algorithm results in relatively more com-
plete information about the objective function in the 
multi-dimensional space. This allows for the evaluation 
of the uncertainty of the inverse model. All sampled 
models from the search space with misfit below 0.06 are 
plotted in Figure 5 along with the best model for tests 
with the hybrid PSO-GWO algorithm. It illustrates qual-
itatively and visually the inverse model uncertainty for 
each model tested. A significant variation of model pa-
rameter values demonstrates higher uncertainty and dif-

Figure 2: Comparison of misfit as a function of iterations for synthetic data inversion using PSO, GWO and hybrid PSO-
GWO algorithms for (a) Model 1, (b) Model 2, (c) Model 3 and (d) Model 4

Table 2: Comparison of the final misfit from synthetic data 
inversion using the PSO, GWO and hybrid PSO-GWO 

algorithms

Model
Misfit (RMS Error)

PSO GWO PSO-GWO
Model 1 0.066 0.054 0.053
Model 2 0.052 0.052 0.049
Model 3 0.047 0.048 0.046
Model 4 0.087 0.044 0.041
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Figure 3: Apparent resistivity (ρa) and phase (φ) sounding curves of synthetic and predicted data (for the best models at final 
iteration) from inversion using PSO, GWO and hybrid PSO-GWO algorithms for (a) Model 1, (b) Model 2, (c) Model 3 and 

(d) Model 4
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ficulty in resolving a particular model parameter. For 
example, high uncertainty of thickness of the second 
layer of Model 1 leads to difficulty in resolving the depth 
interface of the third or last layer. Quantitatively, the 

model uncertainty is the standard deviation calculated 
from each model parameter of the sampled models 
shown in Figure 5. The statistical results of synthetic 
data inversion using hybrid PSO-GWO algorithm are 

Figure 4: Results from inversion of synthetic data using PSO, GWO and hybrid PSO-GWO compared to the synthetic model 
for (a) Model 1, (b) Model 2, (c) Model 3 and (d) Model 4. Inverse models are the best model from the last iteration of each 

algorithm.

Figure 5: Results from inversion of synthetic data using the hybrid PSO-GWO algorithm for (a) Model 1, (b) Model 2, (c) 
Model 3 and (d) Model 4. The best models are plotted along with models having misfit below 0.06 (grey lines) and the 

synthetic models for comparison.
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shown in Table 3. In general, resistive, and deeper layers 
are more difficult to resolve. This is in accordance with 
the basic concept of the general EM sounding method 
that has good sensitivity for identifying conductive layer 
and the resolution decreases with increasing depth. The 
latter is highly related to the diffusive character of the 
EM fields (Simpson and Bahr, 2005).

In reality, the number of layers of the subsurface is 
unknown in advance. Therefore, all synthetic data were 
also inverted using the hybrid PSO-GWO algorithm as if 
they are associated with 5-layer models. In this case, in-
versions of synthetic data from Model 1, Model 2 and 
Model 3 were done with an incorrect number of layers. 
On the other hand, the correct number of layers was used 

Table 3: Model parameters and their uncertainties from synthetic data inversion using the hybrid PSO-GWO algorithm

Model Layer
Synthetic Model Inverse Model RMS 

ErrorResistivity (Ohm.m) Thickness (m) Resistivity (Ohm.m) Thickness (m)

Model 1
1 100 300 98.84 ± 2.5 301.73 ± 8.0

0.0532 10 600 9.47 ± 0.3 576.13 ± 15.4
3 1000 - 1099.86 ± 30.7 -

Model 2
1 100 300 9.85 ± 0.2 298.73 ± 7.6

0.0492 1000 600 971.12 ± 25.8 607.86 ± 8.2
3 10 - 98.22 ± 2.5 -

Model 3

1 10 100 10.06 ± 0.4 97.64 ± 4.2

0.046
2 500 300 433.39 ± 26.8 280.13 ± 16.4
3 50 500 54.01 ± 3.1 555.66 ± 23.8
4 1000 - 1124.22 ± 65.5 -

Model 4

1 500 120 520.87 ± 24.3 115.30 ± 5.2

0.041
2 90 200 91.71 ± 4.3 189.29 ± 8.9
3 30 300 35.79 ± 1.6 609.63 ± 17.1
4 60 300 452.42 ± 23.1 81.89 ± 3.1
5 800 - 1465.99 ± 70.6 -

Figure 6: The best models from inversion of synthetic data using the hybrid PSO-GWO algorithm with a different number of 
layers from the synthetic models, for (a) Model 1 with misfit 0.050, (b) Model 2 with misfit 0.049, (c) Model 3 with misfit 

0.047 and (d) Model 4 with misfit 0.045. Models having misfit below 0.06 (grey lines) are plotted along with synthetic models 
for comparison.
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for the inversion of synthetic data from Model 4. Hence, 
it was performed only to evaluate the consistency of in-
version results for a number of layers most likely en-
countered in the field. Figure 6 shows the resulting best 
model along with all inverse models having misfit below 
0.06, including the synthetic models for comparison. 
Qualitatively, a good resemblance between inverse mod-
els with actual synthetic models can be observed. In this 
case, the uncertainty of the inverse models is not pre-
sented quantitatively in terms of standard deviation of 
model parameters since there is no one-to-one corre-
spondence between the inverse model to the synthetic 
model with a different number of layers. However, the 
main feature of resistivity variations with depth can be 
recovered relatively well by inversion with the hybrid 
PSO-GWO algorithm. The general characteristics of the 
EM sounding method are also consistently observed.

4. Application to Field CSAMT Data

Based on the satisfactory performance of the hybrid 
PSO-GWO algorithm with synthetic data, the algorithm 
was further tested to invert CSAMT field data associated 
with mineral exploration in the Cibaliung area, Banten 
Province, Indonesia. CSAMT soundings were per-
formed along two profiles in the SW-NE direction, ap-
proximately perpendicular to the main geological struc-
tures of the area at the scale of interest. Line 1 and Line 
3 are separated by about 200 m and consist of 57 and 60 
sounding sites, respectively. The interval for sounding 

sites at both profiles is only 25 m, typical of CSAMT 
survey for mineral resources (see Figure 7). The appar-
ent resistivity and phase pseudo-sections of the meas-
ured CSAMT data are presented in Figure 8 and Figure 
9 for Line 1 and Line 3, respectively. Direct interpreta-
tion of measured CSAMT data is rarely carried out be-
cause the data do not show the true resistivity distribu-
tion of the subsurface. However, pseudo-sections indi-
cate qualitatively the resistivity variations, at least 
laterally along the profile, with cautions for longer peri-
od data especially in the near-field zone (Grandis and 
Sumintadireja, 2017). In general, there is no significant 
difference between those pseudo-sections, implying that 
the structures are elongated along an assumed direction, 
i.e. NW-SE or perpendicular to the CSAMT profiles.

All measurement data were inverted using the hybrid 
PSO-GWO algorithm independently for each CSAMT 
sounding data. It is assumed that a 4-layer model is ad-
equate to represent the subsurface resistivity variation at 
every station. Based on the tests with synthetic data, the 
choice of the number of layers does not have significant 
effects on the final results. For subsurface represented by 
a model with less than 4 layers, then the inverse model 
would show a 4-layer model having layers with similar 
resistivity or very thin layers with significantly different 
resistivity. Sample results from inversion of CSAMT 
field data are presented in Figure 10 and Figure 11 for 
Station 23 of Line 1 and Station 43 of Line 3, respec-
tively. The misfits between the observed and calculated 
data of the inverse models are in the range of 0.065 to 

Figure 7: CSAMT sounding locations along Line 1 and Line 3, plotted  
over the simplified geological and alteration map of the study area.
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Figure 8: (a) Apparent resistivity and (b) phase pseudo-sections of Line 1. The green inverted triangles  
with station number indicate the location of sounding points.

Figure 9: (a) Apparent resistivity and (b) phase pseudo-sections of Line 3. The green inverted triangles  
with station number indicate the location of sounding points.

0.085 or in general less than 0.1 which is equivalent to 
an error of approximately 10%.

The inversion modelling results from all sounding 
stations along each profile are concatenated to obtain a 
quasi-2D resistivity model and compared to the result of 
2D inversion with non-linear conjugate gradient (NLCG) 
algorithm (Rodi and Mackie, 2001) implemented in 
WinGlink software. In this case, the CSAMT data were 
limited to cover only the short period range, i.e. to isolate 
data in far-field condition similar to MT. The latter was 

done since the software is intended for modelling MT 
data. In addition, the scalar CSAMT data were con
sidered as TM-mode data only for the structure with 
strike perpendicular to the profiles. Although both 
quasi-2D and 2D resistivity models are not quite similar, 
in general they show a representative subsurface resis-
tivity distribution for the study area (see Figure 12 and 
Figure 13).

The resistivity model for Line 1 shows a low resistiv-
ity layer in the range of 5-100 Ohm.m along the profile 
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Figure 10: Results from inversion of CSAMT field data at Station 23 of Line 1, (a) apparent resistivity and phase sounding 
curves showing the fit between observed and calculated data with a misfit of 0.067, (b) 4-layer resistivity model

Figure 11: Results from inversion of CSAMT field data at Station 43 of Line 3, (a) apparent resistivity and phase sounding 
curves showing the fit between observed and calculated data with a misfit of 0.065, (b) 4-layer resistivity model

at shallow depths (from surface down to elevation of 
-350 m). The superficial low resistivity layer is identified 
as volcaniclastic sedimentary rocks. There is a contrast 
between the shallow and deeper zones with a resistivity 

range of 100-500 Ohm.m. The deeper zone is identified 
as basement rock composed mostly by pyroclastic brec-
cia. On the other hand, there is a high resistivity anoma-
ly of 500-1000 Ohm.m extending horizontally about 275 
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Figure 12: Subsurface resistivity distribution for Line 1 represented by (a) quasi-2D and (b) 2D models  
(see text for more details)

(a)

(b)

m from Station 19 to Station 10 at an elevation of ‑100 
to -500 m. This anomaly is thought to be a response to 
mineralized host rocks (porphyritic andesite) associated 
with fault structures and clay alteration (illitic and ad-
vanced argillic). There is also a high resistivity anomaly 
with a smaller lateral dimension from Station 43 to Sta-
tion 48. This anomaly extends vertically to deeper parts 
of the model and is interpreted as a fault structure and 
the lithological boundary between altered zone and unal-
tered zone. 

The resistivity model for Line 3 shows a lateral con-
tinuation from Line 1 with almost similar character, 
except that the high resistivity anomaly associated with 
fault and lithological boundary extends laterally larger, 
from Station 40 to Station5 1. These results are in ac-
cordance with another study using magnetic and induced 
polarization (IP) methods on the same lines (Junian et 
al., 2021a; Junian et al., 2021b). The area is a miner-
alization pathway that is controlled by fault structu- 
res and illitic alteration (illite-pyrite ± quartz + smecti- 
te) with low magnetic anomaly response and high 
chargeability.

5. Discussion and Conclusions

The particle swarm optimization (PSO) and grey wolf 
optimizer (GWO) algorithms have proven effective in 
solving general non-linear optimization problems. How-
ever, they are not without drawbacks, such that modifi-
cations are still continuously proposed, either by im-
proving characteristic capabilities of individual algo-
rithms or by combining them. In this paper, the hybrid 
PSO-GWO is presented and implemented for inversion 
of the 1D inversion modelling of CSAMT synthetic as 
well as field or real data. The new algorithm has shown 
a remarkably good performance to solve relatively com-
plex non-linear inversion problems, such as CSAMT 1D 
modelling by combining the advantages of the original 
PSO and GWO algorithms. A more extensive search of 
the model space can be associated with the increase of 
the ratio between exploration and exploitation to 70:30 
as suggested by Mittal et al. (2016), leading to optimum 
solutions. Inversions of synthetic CSAMT data with 5% 
Gaussian noise resulted in inverse models with low 
RMS errors while recovering the synthetic models 
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Figure 13: Subsurface resistivity distribution for Line 3 represented by (a) quasi-2D and (b) 2D models  
(see text for more details)

(a)

(b)

equally well with the correct or incorrect a priori num-
ber of layers. Estimation of the number of layers in 1D 
modelling is more difficult with CSAMT data covering 
the near-field zone. In the latter, the CSAMT sounding 
curve contains distortions such that it does not qualita-
tively represent the resistivity variation with depth 
(Grandis and Sumintadireja, 2017).

In general, the hybrid PSO-GWO algorithm has better 
performance than the original PSO and GWO algo-
rithms. Its application to invert CSAMT field data re-
sults in a subsurface resistivity model showing minerali-
zation zones that are in a good agreement with the local 
geology of the study area. CSAMT data are mostly ob-
tained with scalar mode measurements and the data re-
flect simple resistivity variation with depth or 1D. How-
ever, concatenating 1D models along a profile to form a 
quasi-2D model results in a more realistic representation 
of the subsurface. The latter is supported by the fact that 
CSAMT sounding stations are closely spaced to each 
other along a profile, typically only 25 m in mineral 
prospecting up to 100-200 m in a larger survey cover-
age, for example in geothermal exploration. By consid-

ering only CSAMT data in the far-field zone (high fre-
quencies or short periods) to emulate MT data and use 
them as TM-mode data, the 2D modelling by using MT 
2D inversion software resulted in a 2D model equivalent 
to quasi-2D model composed of 1D models from the 
proposed algorithm.

So far, most global population-based optimization al-
gorithms do not have formal mathematical proof of con-
vergence. However, every newly proposed algorithm 
has undergone tests to find the global minimum of a 
large number of very complex functions that become 
standard in the literatures of optimization and its appli-
cations. Nevertheless, there are efforts to relate such em-
pirical proof of convergence to more formal or mathe-
matical ones. One of them is the theory of Markov Chain 
(Yang and He, 2019). In this context, more theoretical 
works are still needed. Furthermore, applications of pop-
ulation-based algorithms are limited to modelling with a 
small number of model parameters and relatively simple 
forward modelling. It is mainly determined by the fact 
that the global optimization approach necessitates misfit 
evaluation of a large number of models, which is com-
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putationally intensive. Hence, extension of the proposed 
algorithm for vertical electrical sounding (VES), magne-
totellurics (MT), transient electromagnetics (TEM) and 
other similar geophysical methods are rather limited to 
1D inversion modelling.
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SAŽETAK

Hibridni algoritam optimizacije roja čestica i optimizacije sivoga vuka  
za jednodimenzionalno inverzno modeliranje audiofrekvencijske magnetotelurike  
s kontroliranim izvorom (CSAMT)

Audiofrekvencijska magnetotelurika s kontroliranim izvorom (CSAMT) geofizička je metoda koja se koristi izvorom 
umjetnoga elektromagnetskog signala za procjenu struktura otpornosti ispod površine. Jednodimenzionalno (1D) inver-
zno modeliranje CSAMT podataka nelinearno je te se rješenje može procijeniti korištenjem algoritama za globalnu opti-
mizaciju. Algoritam roja čestica (PSO) i algoritam sivoga vuka (GWO) dobro su poznati algoritmi koji se temelje na po-
pulaciji i imaju relativno jednostavnu matematičku formulaciju i implementaciju. Hibridizacija PSO i GWO algoritama 
(hibridni PSO-GWO) može poboljšati sposobnost konvergencije prema globalnom rješenju. U ovom istraživanju primi-
jenjen je hibridni PSO-GWO algoritam za 1D CSAMT inverzno modeliranje. Provedeno je testiranje sa sintetičkim 
CSAMT podatcima povezanim s 3-slojnim, 4-slojnim i 5-slojnim modelima zemlje kako bi se odredile performanse algo-
ritma. Rezultati su pokazali kako hibridni PSO-GWO algoritam ima dobre performanse u postizanju minimalne neu-
sklađenosti u usporedbi s originalnim PSO i GWO algoritmima. Hibridni PSO-GWO algoritam također je primijenjen 
za inverziju CSAMT terenskih podataka s ciljem istraživanja mineralizacije zlata u području Cibaliung, provincija Banten, 
Indonezija. Algoritam je uspio vrlo dobro rekonstruirati model otpornosti, što potvrđuju rezultati inverznoga modelira-
nja korištenjem standardnoga softvera za inverziju 2D magnetotelurskih podataka. Rezultati modela također se dobro 
podudaraju s geološkim informacijama istraživanoga područja.
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CSAMT, nelinearna inverzija, algoritam roja čestica, algoritam sivoga vuka, hibridni algoritam
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