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We analyze the equation of motion for a particle in the double-well potential. We
find the symmetries through Lie’s method of group analysis. In the corresponding
quantum mechanical case, the method of spectrum-generating su(1, 1) algebra is
used to find energy levels as solutions of the Schrödinger equation with double-well
potential, without solving the equation explicitly. Finally, we discuss the symmetry
version of the double-well potential with the vector-field formalism.
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1. Introduction

Many quantum systems of physics and chemistry are represented by a particle
in the potential field in form of two wells with finite or infinite barrier and finite
or infinite outside walls [1, 2]. The double-well potential has many of applications
from the non-periodic to periodic quantum systems [3]. Also the symmetric version
of this potential has been widely used in many area of physics. Since symmetries
and breaking of symmetries play a crucial role in physics, the systematization of
the symmetries is very helpful in understanding the role of such potentials [4]. The
group analysis method of differential equations relevant to physics is an important
way to analyse many physical potentials [5, 6]. The symmetry in the double-well
potential allows to perform the group analysis of the Schrödinger equation with
such a potential, which leads to the Lie symmetries. In this work we consider
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a double-well potential with infinitely high outside walls. For this potential in
the external regions, an analytical solution of the energy spectrum is available by
algebric method [7]. We applied su(1, 1) and so(2, 1) algebra to solve the x2 +1/x2

potential using J1, J2, J3 and Casimir operators as generators.

2. Double-well potential

Let us consider a quantum system representing a particle in the symmetric
double-well potential field defined by

U(x) =
mω2

2























(x + x0)
2 +

β2

(x + x0)2
for x > a > 0 ,

F − Dx2 for −a ≤ x ≤ a ,

(x − x0)
2 +

β2

(x − x0)2
for x ≤ −a ≤ 0 ,























(1)

where m and ω are mass and angular frequency of the particle, respectively, and
β, F and D are positive constants. F determines the barrier height. The values
of β, F and D are such that U(x) is continuous at points x = −a and x = a.
The minima of the two potential wells are located at points x1 = (−

√
β + x0) and

x2 = (
√

β − x0). The first part of the potential (1) is symmetric. Because of the
sub-barrier tunnel effect and propagation at energies above the barrier, transitions
of the particle between wells occur, i.e., it oscillates from one well to the other
and back. To calculate the energy spectrum for the potential (1), the boundary
conditions at x → ±∞ play an important role.

The time independent Schrödinger equation in the external region (outsides of
walls) can be written as

∂2ψ

∂x2
+

( A

x2
+ Bx2 + C ′

)

ψ(x) = 0 , (2)

with

x ← x − x0 for x < −a ,

x ← x + x0 for x > a ,

where the new parameters C ′,B and A are defined by the following relations

C ′ =
2mE

h̄2 , B =
−m2ω2

h̄2 , A =
−m2ω2β2

h̄2 . (3)

It is well established that algebric methods were found to be useful for solving
the Schrödinger equation directly [6]. Therefore, we use this approach to obtain
the Schrödinger equation’s eigenvalues. The Lie algebra of non-compact groups
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SO(2, 1) and SU(1, 1) can be realized in terms of a single variable. By expressing
the generators according to the above equation, we define them by the following
relations

J1 =
d2

dx2
+

A

x2
+

x2

16
,

J2 =
−i

2

(

x
d

dx

)

+
1

4
, (4)

J3 =
d2

dx2
+

A

x2
− x2

16
.

So, J1,J2 and J3 satisfy the well known standard algebra

[J1, J2] = −iJ3 ,

[J2, J3] = iJ1 ,

[J3, J1] = iJ2 ,

and also the Casimir invariance condition related to SU(1, 1) group can be shown
to be

C2 = J2
3 − J2

1 − J2
2 . (5)

Therefore, we obtain the Casimir operator as follows,

C2 =
−A

4
+

(x

4

)( d

dx

)

. +
1

16
(6)

The second-order differential operator appearing in Eq. (3) in terms of the SU(1, 1)
generators, given by

∂2

∂x2
+

A

x2
+ Bx2 + C ′ =

(1

2
+ 8B

)

J1 +
(1

2
− 8B

)

J3 + C ′ , (7)

can be rewriten as

[(1

2
+ 8B

)

J1 +
(1

2
− 8B

)

J3 + C
]

ψ(x) = 0 .

It is also possible to perform a transformation of ψ(x) and the J1, J2 and J3

involving e(−iθJ2). In order to obtain the discrete energy eigenvalues, we must
define θ such that the compact operator, J3, will be diagonal. Therefore,

tanh θ = −
1
2 + 8B
1
2 − 8B

, (8)
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where

B =
−m2ω2

h̄2 .

So we may get

4n + 2 +
√

1 − 4A =
C ′

√
−B

. (9)

Finally, by substituting for parameters B, C ′ and A, we obtain

En
+ = 2h̄ω

(

n +
1

2
+

√
1 − 4A

4

)

,

En
− = 2h̄ω

(

n +
1

2
−

√
1 − 4A

4

)

. (10)

The results obtained here agree well with those of Ref. [9]. They contain two
terms. The first term explains the periodicity of the potential and the second one
describes its non-periodical property. So, the results show that there is no period-
icity for the double-well potential in the given area. Because of the importance of
the symmetrical version of this potential in physics, we will discuss vector fields
and some aspects of symmetry. To do this, we rewrite the Schrödinger for the given
potential,

d2ψ(x)

dx2
+

( A

x2
+ Bx2 + C ′

)

ψ(x) = 0 ,

by changing the variable x to y = αx2 and by the definition of α and ψ(y) as
follows,

α =
mω

h̄
=

√
−B , ψ(y) =

( y

α

)

−1/4

w(y), (11)

Then Eq. (3) transforms in to the standard Whittaker form [8],

d2w

dy2
+

[−1

4
+

C ′

4
√
−B

1

y
+

( 3

16
+

A

4

) 1

y2

]

w(y) = 0. (12)

Now we define the following parameters to rearrange Eq. (12),

G =
−1

4
, D =

C ′

4
√
−B

, C =
( 3

16
+

A

4

)

.

Finally, we obtain

d2w

dy2
+

[ C

y2
+

D

y
+ G

]

w(y) = 0 . (13)
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It is well known that there are two symmetries in the double-well potential
system, namely the spatial and the time translations generated by ∂/∂y, ∂/∂u,
∂/∂t and y(∂/∂u) − u(∂/∂y), respectively. Other symmetries are given by the
vector fields which generate the transformations ω → ω + k and ω → ω + q(u, y),
where k is a constant and q(u, y) is an arbitrary function.

The time-dependent solution of the double-well potential was not included here.
Therefore, apart from the above mentioned trivial symmetries, the double-well
potential system admits only the following symmetries

X = A(y, u)
∂

∂y
+ B(u, y)

∂

∂u
, (14)

where A and B are (non constant) arbitrary differentiable functions. So, in order
to find the Lie point symmetries of the corresponding quantum case, we write (13)
using [4]

w′′ = N(y, w,w′) , (15)

where

N(y, w,w′) = −
[ C

y2
+

D

y
+ E

]

w(y) . (16)

The infinitesimal generator of the symmetry under which the differential equation
remains unchanged is given by the following vector field [4]

Y = ξ(y, w)
∂

∂y
+ η(y, w)

∂

∂w
, (17)

and for a second-order differential equation, ξ and η can be obtained from the
following relations

N
[ ∂η

∂w
− 2

∂ξ

∂y
− 3w′

∂ξ

∂w

]

− ∂2N

∂y∂ξ
− ∂2N

∂y∂η
− ∂N

∂w′

[∂η

∂y
+ w′

( ∂η

∂w
− ∂ξ

∂y

)

− w′2 ∂ξ

∂w

]

+
∂2η

∂y2
+ w′

(

2
∂2η

∂y∂w
− ∂2ξ

∂y2

)

+ w′2
( ∂2η

∂w2
− 2

∂2ξ

∂y∂w

)

− w′3 ∂2ξ

∂w2
= 0 . (18)

The symmetry condition (18) related to (15) can be given by

−
[( C

y2
+

D

y
+ G

)

w(y)
]( ∂η

∂w
− ∂ξ

∂y

)

+
[2C

y3
+

D

y2

]

(wξ) +
[ C

y2
+

D

y
+ G

]

η +
∂2η

∂y2

−w′

[

3
( C

y2
+

D

y
+ G

) ∂ξ

∂w
+ 2

∂2η

∂y∂w
− ∂2ξ

∂y2

]

+ w′2
[ ∂2η

∂w2
− 2

∂2ξ

∂y∂w

]

− w′3 ∂2ξ

∂w2
= 0 .

(19)
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By equating the coefficients of w′3 and w′2 to zero, one obtains

∂2ξ

∂w2
= 0 ,

∂2η

∂w2
= 2

∂2ξ

∂y∂w
, (20)

where ξ and η satisfy the following equations,

ξ = wα(y) + ρ(y) ,

η = w2α′(y) + wγ(y) + δ(y) . (21)

By equating the coefficients of w′ in (21), we get

3
( C

y2
+

D

y
+ G

) ∂ξ

∂w
+ 2

∂2η

∂y∂w
− ∂2ξ

∂y2
= 0 . (22)

Substitution for ξ and η changes (22) into

3
[ C

y2
+

D

y
+ E

]

α(y) + 3wα′′(y) + 2γ′(y) − ρ′′(y) = 0 . (23)

For α = 0, we get

2γ′(y) = ρ′′(y) (24)

and

γ(y) =
ρ′(y)

2
+ H , (25)

where H is a constant.

Substituting from equations (24), (25) and (21) into (19), one obtains

−
[ C

y2
+

D

y
+ G

]

w(y)
∂η

∂w
+

[ C

y2
+

D

y
+ G

]

w(y)
∂ξ

∂y
+

[2C

y3
+

D

y2

]

wξ

+
[ C

y2
+

D

y
+ G

]

η +
∂2η

∂y2
= 0 . (26)

After straightforward calculations to obtain ∂η/∂w, ∂ξ/∂y, and ∂2η/∂y2 , and
using ρ(y) instead of γ(y) from (25), we have

ρ′′′(y) + 4
[ C

y2
+

D

y
+ G

]

ρ′(y) +
[4C

y3
+

2D

y2

]

ρ(y) +
[2C

y2
+

2D

y
+ G

]

δ(y)

+
[4C

y3
+

2D

y2

]

w2α(y) + 2w2α′′′(y) + 2δ′′(y) = 0 . (27)
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The last four terms of equation (27) and parameters α(y) and α′(y) are equal to
zero. Therefore, the reminding terms are also zero, what leads to the Schrödinger-
like equation

ρ′′′(y) + 4
[ C

y2
+

D

y
+ G

]

ρ′(y) −
[4C

y3
+

2D

y2

]

ρ(y) = 0 . (28)

The solution is

ρ(y) =
p

y
+ q . (29)

This equation leads to the following conditions,

q = 2pD ,

C =
−3

4
, (30)

D2 = −G ,

and

D =
C ′

4
√
−B

, C =
( 3

16
+

A

4

)

,

where A = −15/4. From Eq. (2), we obtain β and C ′ as follow,

β =
h̄

mω

√

15

4
,

C ′ = 2
√
−B . (31)

By using relations (17) and (21), we get

Y = [wα(y) + β(y)]
∂

∂y
+ [w2α′(y) + wγ(y) + δ(y)]

∂

∂w
(32)

which is a type of symmetry for the double-well potential.

3. Conclusion

The approach of group analysis of the double-well potential on the basis of
energy spectrum is presented in this work. By using the generators of SU(1, 1) non-
compact group of a particle in the symmetric double-well potential field, we obtain
the energy spectrum for n+ and n− cases. Finally, we present the symmetry part
of this potential with the help of a vector field.
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NEKOMPAKTNA GRUPA SU(1, 1) SLOBODNE ČESTICE U SIMETRIČNOM
DVOJAMNOM POTENCIJALNOM POLJU

Analiziramo jednadžbu gibanja čestice u dvojamnom potencijalu. Lieovom me-
todom grupne analize nalazimo simetrije. U odgovarajućem kvantno-mehaničkom
slučaju primjenjujemo algebru SU(1, 1) kojom se izvode spektri, radi dobivanja en-
ergija stanja za Schrödingerovu jednadžbu s dvojamnim potencijalom, bez njenog
izravnog rješavanja. Na kraju raspravljamo simetričnu inačicu dvojamnog potenci-
jala u okviru formalizma vektorskog polja.
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