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We review a case of cross-fertilization of two distinct areas of physics, namely,
hadronic and electroweak theory. In hadronic physics, concepts like solitons, non-
perturbative and nonlinear phenomena, and anomalies have found many appli-
cations in the Skyrme model of baryons. This has in turn given a large additional
impetus to the studies of such concepts and phenomena in electroweak physics
too. To close the circle, these studies give us clues how to represent the other kind
of hadrons, namely mesons, as solitons of the Skyrme type.

1. Introduction

In the Skyrme model!:??, baryons are pictured as topological solitons appea-
ring in purely mesonic effective chiral theories, or, more precisely, in various va-
riants of the nonlinear chiral sigma-model. This idea has attracted considerable
interest in the past few years both in the elementary particle and nuclear physics
community. Long-standing concepts about nonlinear phenomena, solitons, ano-
malies, etc., find a concrete realization in the Skyrme model, whereby also many
fundamental issues in hadronic physics are seen from a new angle.

In context of electroweak interactions, nonperturbative phenomena may be
observed when accelerator energies reach and surpass the electroweak symmetry-
breaking scale. This is obvious from the relation Mj = 24 (k)2 between the
Higgs-boson mass My, its coupling 4, and the Higgs vacuum expectation value
{hYexp ~ 0.2 TeV, since My close to the TeV range and beyond dictates so large
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a coupling A that A/4x cannot be used as a perturbative expansion parameter any
more. Several authors have therefore considered3—#® the possibility of soliton
solutions to the classical equations of motion. Namely, when the Higgs-boson
mass My in the Weinberg-Salam model tends to a ssufficiently large« value (a1
TeV and beyond), the model becomes equivalent to a gauged chiral model, so in
this limit there is an immediate possibility of Skyrme-type solitonic excitations of
gauge and Higgs bosons.

Here we want to review one such possible interplay between Skyrme and
Weinberg-Salam solitons, i. e., analogies and parallelisms between solitons in
hadronic and electroweak physics.

We shall elaborate this interesting interplay on the example of the solution
obtained in Ref. 8. This was the first electroweak Skyrme-type soliton with gauge
couplings fully included, whereas earlier analyses did not fully take into account
the effects of nonzero gauge couplings.

We recapitulate this in the second section. In the third section we show how
electroweak solitons can be translated to the hadronic context, as was first done
in Ref. 9. This reference is the second'of the basic articles (in addition of Ref. 8)
on which the bulk of this overview is based.

2. Skyrmion solutions to the Weinberg-Salam model

2.1. Infinite-Higgs-mass, or strong-coupling theory

As in Ref. 8, we assume the standard Weinberg-Salam model with a single
Higgs doublet @ = (¢4, ¢,). The Lagrangian describing the Higgs-boson sector is

Ly = (2,D)* (2¢D) + MLP*D — ) (DVD)2. (2.1

P, is the SU (2), ® U (1) covariant derivative, 9, = d, — (ig/2) A, — (ig'/2) B,,

A, = A, - T. For convenience, we define the matrix

P %]
M = [ 2.2
___(p:(- <P2 3 ( )

and then perform the polar decomposition M = AU, where UeSU (2) represents
the unphysical Goldstone bosons, while = (@*®)1/2 is real and represents the
physical Higgs. We make two assumptions: (i) ¢ = 0 and (ii) % is »frozen¢ in its
vacuum expectation value <h)? = M}/22 > 0. Assumption (i) is equivalent to
assuming sin? @y, = 0. As Klinkhamer and Manton* pointed out, it is necessary
for finding a spherically symmetric solution. Since sin? @y, is small, we hope that
we are doing a reasonable approximation. Assumption (i) leads to the global SU(2)
symmetry U -> VUV*, 4, - VA,V* V eSU (2). Assumption (ii) is equivalent
to having an infinite Higgs-boson mass My (and infinitely strong Higgs coupling
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1) in the tree-level approximation. Assumptions (i) and (ii) and the Yang-Mills
kinetic-energy term £, gives us

2
Pyt L= — <”2> Tr (D, U (DPU)]—% Tr FwF,,  (2.3a)
Fy, = ud, — 8,4, — 5[4, 4 (2.3b)
i
DU =3,U — -2€A,,U. (2.30)

Equations (2.3) define the classical Lagrangian for the gauged SU (2); ® SU (2)g
chiral model (where SU (2), is the gauge group). Chiral models have an identically
conserved current

1
Ky = S4m? gl Tr [R,RiR,], (2.43)
where
R, = (D,U) U (2.4v)

In this context, K# is not meaningful, since it is noz gauge invariant. Admittedly,
one can define a gauge-invariant current K#,

Ru= ek Tr [R,R,R, + -2— &R, Fy,). (2.52)

24n2

However, it is not conserved:

2

> g
OuRit = — poe—s e Tt [F, Frp). (2.5b)

The charge Q = _f K°d3x is an integer in the ungauged chiral model. To keep
the energy finite, U (%) must tend to a constant at spatial infinity. Space is there-

fore compactified to a three-sphere which is mapped by U (%) to the SU (2) mani-
fold. The integers Q are associated with classes of the homotopy group =5 (SU (2)) =
= Z. However, when SU (2), is gauged, finite energy requires only the condition

D,U -> 0 at spatial infinity. We can, of course, choose U -> 1 at |3c)! -> 00, yiel-
ding an integer-valued Q, but one should not claim to have thereby a topological
configuration since this procedure has no gauge-invariant meaning. Of course,

the charge O = .f K°d3x is gauge invariant, but it has no topological meaning.
In general, Q is nor an integer. Below we show that there exist static localized
solutions to the equations of motion, with Q not an integer.
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Note that the Lagrangian (2.3) is just the Lagrangian of the gauged nonlinear
g-model. Skyrme?®’ was able to obtain his stable soliton solutions after the added a
fourth-order stabilizing term to the standard (ungauged) nonlinear g-model, since
this term scaled differently from the usual chiral Lagrangian. We do not need the
stabilizing term for this purpose since already the gauge-boson Kkinetic-energy
term scales differently from the Higgs-boson Lagrangian, allowing for the possi-
bility of a localized solution. (Recall that in some versions of the Skyrme model,
the Skyrme term is replaced by an interaction with vector mesons, allowing for a
description of baryons®%!1-2) yia static solutions to such models.) Below we shall
be able to obtain a finite-energy and a finite-size static soliton solution to (2.3).
However, it is unstable under small perturbations of classical fields, i. e., it corres-
ponds to a saddle point and not a minimum of energy. (Note that the term »stability«
has been used quite sloppily by many authors. For some authors, classical sta-
bility refers merely to the existence of a solution! For us, classically stable solu-
tions are those which correspond to local minima of energy.)

We can recover stability by including fourth-order terms like the Skyrme
term in the effective Lagrangian. Such terms appear owing to quantum corrections
to the model'?). We will obtain solutions with the gauged Skyrme term (%,s;,)
added, and conjecture that they may correspond to real particles. So, we add

ggSky = TI‘ [Rl" Ry] 2 (2.6)

1
32¢2
to (2.3a) to obtain the complete Lagrangian

L =Lyt Loy + L. 2.7)

2.2. Solutions for spherically symmetric ansatze

To make the problem tractable, only spherically symmetric solutions of (2.7)
were considered®:*3:9), i. e., in addition to Skyrme’s »hedgehog« ansatz for the
static, classical Goldstone-boson field,

U(x) > Ut (D) = cos O (r) + it + + 5in O (1), (2.8)

we choose the spherically symmetric ansatz for A4,:

(r Pt (9

WP 2 50, 20RO
2 ¢ r

== - — (¥ XT):

where the time component of A4, is eliminated by the gauge choice 4, = 0. The
remaining U (1) gauge degree of freedom in (2.9) is eliminated by the additional
gauge condition g (r) = 0. The static energy functional is then

8n <h>

MWS [U, 4t )= M, (U, Ad], (2.10)
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oo

2
M, (U9, 45 =fd@ {ngz' (az —-%—) + a? +40%a® + 0% (O +)? +
S
2
b [1 + %Z-)z— (F + 402 (0" + a)’)”, (2.11)

2
where F = (a +sin2 O — —21) + —:]Z—sin2 26 and

_ 8 _ o[ o*+Fes
o=g=7° [92+4a2+F(g/e>2/8]' @10

o = g<h>r/2 is a dimensionless variable and the prime denotes differentiation
with respect to 0. Note that ¢ (or equivalently 6) appears in (2.11) with no deriva-
tives and hence is an auxiliary variable, expressed by (2.12). Therefore, only two
variables, ® and @, are dynamical degrees of freedom and their solutions specify
the spherically symmetric soliton confi gurations appearing in the gauged ¢-model
defined by (2.7). These solutions were obtained in Ref. 8, and, except for the pure
Weinberg-Salam case 1/e = 0 (i. e., &£ = £, + £,), independently also in Ref.
7, and especially extensively discussed in Ref. 13. Here we review just the most
important points. First, what we call the pure Weinberg-Salam (1/e = 0, i. e.,
2L ,siy = 0) classical solution: Its energy is E = (8x (h)/g)(1.79). Using My =~
~ 83 GeV, g ~ 0.67, and <h)> = /2 My[g~ 175 GeV, it is E~ 11.6 TeV. Its
energy density is localized within the length of roughly 0.01 fm. If a solution is
stable under variations of classical fields, it is justifi edto assume that the existence
of a corresponding state in quantum theory is very probable. However, our classical
solution to (2.3), i. e., the pure Weinberg-Salam solution, is not stable. It is easy
to find a variation 66 (r) which lowers the energy of the solution, so that we do not
have a local minimum in the energy. However, in quantum theory, higher-order
terms appear in the effective action!®). An example of such a term is the gauged
Skyrme term % ¢y, Eq. (2.6), which reduces to the usual Skyrme term in the
limit g — 0. By continuous variation of the parameters g and e, one can deform
the pure Weinberg-Salam solution discussed above (corresponding to the limit
1/e = 0) to the Skyrme soliton solution (g — 0) which is classically stable. In tra-
versing a path in the g-e plane from the pure Weinberg-Salam solution to the
pure Skyrme solution, we should therefore find a transition from a classically un-
stable solution to a stable one. Indeed, after adding the gauged Skyrme term,
solving the equations of motion for 0 < (g/e)?2 < 0.39 yields two solutions for
each gfe. (For (g/e)? > 0.39 there are no solutions.) One is classically unstable and
goes into the pure Weinberg-Salam classical solution as 1/e — 0. The other goes
into a classically stable solution of the ungauged Skyrme model and is therefore
most probably also classically stable. (The rigorous proof of stability is of course
very difficult.) Fig. 1 shows the energies for both branches of solutions along with

values of Q for several values of (g/e)? - é — 1 only on the lower branch as g - 0,
i. e., Q = Q as the solution goes over into the Skyrme solution.
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Fig. 1. The energy in teraelectronvolts of the solutions of the model given by the theory (2.7)
and the ansatze (2.8), (2.9), as a function of (g/e)2. The weak coupling is taken to be g = 0.67.
1/e dictates the strength of the Skyrme term. (Ref. 8)

The physical interpretation of the solutions on the upper unstable branch
is not clear, but may be related to the other saddle-point solutions discovered in
the Weinberg-Salam model, notably Klinkhamer’s and Manton’s sphaleron®.

The presumably stable lower branch may correspond to real particles. We call
them »weak skyrmions¢, analogous to hadronic skyrmions, but on the mass scale
of several TeV. This allows for the possibility of directly observing weak skyrmions
in future accelerators, for example through W-boson fusion.

3. Mesons as nontopological solitions of a gauged o-model

3.1. Motivating, defining, and justifying the model inspired by electroweak skyrmions

One of the appealing features of chiral solitons representing baryons in the
Skyrme model**? is that, in this picture, baryons are objects of finite size, as all
hadrons should of course be. However, what about the finite size of the other kind
of hadrons — mesons? The Skyrme model seems to be unable almost by construc-
tion to explain mesons: Baryons are extended »kinks« appearing in some effective
field theories of mesons (especially pions). Mesons themselves are treated as point-
like, »elementary« fields of the effective Lagrangian. Indeed, the pion is very special
among mesons, and well suited for the role of a quasi-elementary chiral particle.
However, for other mesons their composite nature is more manifest. Thus it would
be very desirable to develop a description that would reflect their composite na-
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ture also within the Skyrme model; I will here propose a possible way how to
represent at least one meson, a;, as an extended object, namely, a nontopological
soliton of a chiral meson Lagrangian, i. e., a solution of the baryon number zero
sector of the gauged g-model.

»Mesonlike« soliton configurations in the Skyrme model were also considered
in Ref. 14. However, these were obtained in quite a different way, through a new,
rather complicated ansatz, and corresponded to combinations of two-baryon —
two-antibaryon configurations. These solitons consequently have very large mass=s
(the lowest one is 4234 MeV) and their connection with physical mesons is not
clear.

The approach I explain below was first proposed in my Ref. 9 and was inspired
by the work on nontopological solitons in electroweak gauge theory® 13, Here
I review a slightly shortened treatment of Ref. 9.

Various authors®-% conjectured about the existence of solitonic excitations
of gauge and Higgs bosons at energies around and beyond the electroweak symme-
try-breaking scale. Such considerations in electroweak theory were further stimu-
lated and inspired by the soliton picture of baryons In fact, the Weinberg-Salam
model becomes equivalent to a gauged chiral model when the Higgs-boson mass
My becomes sufficiently large The possibility®'® of solutions to electroweak
theory which are analogous to those for the skyrmion is therefore immediate.
Their researchers® !, however, did not pay sufficient attention to the effects
of gauge couplings.

In the Skyrme model, the topological index is known to be equal to the baryon
number. For analogous solutions in electroweak theory, similar identifi caions®
were made — but erroneously, since for a nonvanishing gauge coupling it is im-
possible to define a gauge-invariant topological index. Indeed, Refs. 7 and 8 obtai-
ned a soliton solution to the Weinberg-Salam model that is nontopological in na-
ture precisely because of the presence of massless gauge fidds, as discussed in
the preceding section. Furthermore, Ref. 13 showed that these electrowesk skyr-
mions should be quantized as bosons.

This finally gives us the complete pictare of this fascina.ing interplay: Had-
ronic skyrmions inspired electroweak skyrmions, and they in two suggested us
how we can try to picture certain mesons with the Skyrme model on an essential
equal footing with baryons, namely, as nontopological solitons, which are the exten-
ded confi guraions of background effective meson fi dds of spin 0, i. e., pions.

(Note that the pion fidd ;z) = F,70 (r) out of which the Skyrme baryon is made
is not the physical pion. The physical, dynamical particle can be pictured as a

== ~ .
time-dependent fluctuation on top of the soliton solution for = = F,r® (r), which
in turn, by its nontrivial configuration, serves to represent baryons.)

3.2. Defining the model

As in Section 2, we consider the Lagrangian of the gauged and Skyrme-
stabilized o-model,

$:$o+$asky+$.4) (31)
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where
o=

g‘,:"—"]—é

Tr R,R¥. (3.2)

R, is defined by (2.4b) as in the preceding section, but U is now connected to
the pion field =:

R, = (D,U) U*, U = ein - #iFn, (3.3)

Similarly, &4, Z,s1y and F,, and D, U in Egs. (3.1)—(3.3) are defined by (2.3a),
(2.6), (2.3b) and (2.3c), respectively, except that A; are now (auxiliary) vector
mesons and that their coupling constant g is now simply a free parameter, whereas
in Section 2, g was the electroweak coupling in the Weinberg-Salam model. More-
over, L, in (3.2) is identical to %, after assumptions (i) and (ii), i. e., to £, in
(2.3a), except for the overall energy scale in front (— (h)>2/2 - —F2[16) which
is now given by the pion decay constant F, instead of the Higgs vacuum expec-
tation value <{A). Thus, modulo different energy scales and different g, (3.1) de-
fines the same model as (2.3). This means that, just as electroweak skyrmions were
obtained by translating the background pion into the Higgs field, we can translate
it back, whereby weak gauge bosons A are translated into vector mesons. Note
that there is no contradiction in introducing this A4 as a truly massless gauge par-
ticle since Ay, is also an auxiliary background meson field (just like the hedgehog

pion; = F,70 (1)), while the physical and, of course, massive-vector mesons
should be obtained as rotational excitations through the standard semiclassical
quantization introduced in this context by Adkins, Nappi and Witten!®. In this
context, the quantization must be applied to the »Skyrme meson«, i. e., to the
classical, static spherically symmetric configuration of the pion z* and the gauge-
meson A, just as the nucleon and 4 are J = 1/2 and 3/2 excitations of the Skyrme
baryon. Note that a problem appears here, since mesons must be quantized as
bosons, with an integer spin. This means that this treatment is not so firmly rooted
in QCD as the treatment of baryons, but it is more ad hoc. Namely, to get baryons
in the hadronic Skyrme model, one goes to a three-flavoured chiral model and in-
cludes the Wess-Zumino term which contains N, the number of colours in QCD.
The odd N¢= 3 uniquely fixes!”*? the quantization scheme to be fermionic.
Thus, to quantize our nontopological skyrmions as bosons, we have to give up
this beautiful and deep connection with QCD. In order to model mesons as soli-
tons, we must settle for less and take the SU (2) chiral model as a completely phe-
nomenological model whose stable nontopological solitons we quantize as bosons
ad hoc, at least at this point. However, developments which may reestablish an a
posteriori justification from a more fundamental level are possible, for examples,
along the lines recently discussed by Kaplan!®. In the first place, his model connects
QCD and a nonrelativistic constituent quark model, but it also amounts in a way
to a synthesis of the constituent-quark model and the Skyrme model at a deeper
level. In Kaplan's view, a constituent, dressed quark Q is a nontrivial configuration
of the light-quark condensate {q¢)>, caused by the »seed« light bare quark ¢. (Q
carries all discrete quantum numbers of ¢.) In this way, not baryons but consti-

tuent quarks are topological solitons. Light flavour mesons, QQ objects, would
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then be bound soliton-antisoliton configurations, with topological index zero. If
such a configuration indeed gets constructed and solved, it is very likely that it
will look similar to meson skyrmions described here.

On the other hand, this issue of the foundation of the Skyrme model in QCD
provides an additional, albeit somewhat negativistic motivation for such an ad hoc
treatment of mesons for which no justifications are given from the level of QCD
as the fundamental theory: — In addition to arousing enthusiasm, the Skyrme
model has also been subject to much criticism. A relatively recent and quite com-
prehensive critique has been given by Ball'®. He concludes that there are no
stable solitons in the meson (and glueball) sector of QCD, so that baryons cannot
be skyrmions. If this is correct, i. e., if, contrary to the analysis of Witten and
others!?’, baryon skyrmions do not have a basis in QCD after all, one is obliged
to understand how skyrmions can have so many successes. The study of meson
skyrmions, proposed in this paper, for which no fundamental justification from
the level of QCD itself has been attempted at all, can then help to clarify whether
also the successes of the Skyrme baryons can be explained simply by having the
correct symmetries and the correct energy scale built into the model.

Note that there is no contradiction of this model with the work done in those
variants of the Skyrme model of baryons which include vector mesons in the La-
grangian?. In some of them the p, w and a; meson fields were also included via
the gauge principle, but in such treatments the fields were gauge bosons of a
broken gauge theory, i. e., they had Lagrangian masses from the very start. Evidently
such massive fields must vanish at infinity and cannot play any role in the boundary

— -
condition at |r| -> oo so it remains the standard, strong one: U -> const as [rl - 00,

-
compactifying the domain of U (r) into S? and causing U (r) to be a topologically
nontrivial map. In contrast to that, our 4j is massless, so that in the chiral model
gauged with it, the finite energy implies a condition on the covariant derivative of

the chiral field: D, U -» O as |;T -» oo. Thisis precisely the reason for the non topolo-
gical nature of the gauged solitons, as explained in Section 2 for the electroweak
skyrmion.

3.2. Simplifying ansdize, semiclassical quantization, and results for the a, meson

The same simplifying ansitze are used here as in Refs. 8 and 13, and in Sec-
tion 2 of this work. In addition to the spherically symmetric »hedgehog« for a

static, classical pion field, %= F.70 (r), causing U (r) to be again given by (2.8),
we once more choose the spherically symmetric ansatz (2.9) for 4, and gauge
choices Ay = 0 and f (r) = 0. The static energy functional therefore differs from
the one in Section 2 just by a scale prefactor,

Mo = [U%, 48] = @ M, [U, 4], (3.4)

where, as before, dimensionless quantity M [U<, Aet] is defined by (2.11), o
2

by (2.12)and F = 2 (a—l—sinz@—-%) + —; sin? 26, We stress again that unlike in
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Section 2 where g was the experimental weak coupling (so that the energy depen-
ded only on one parameter, the ratio g/e), in this section the coupling g is in prin-
ciple also a free parameter. (Below we shall see that physical considerations in fact
constrain it somewhat.) The only other differences are that the overall energy scale
is now determined by the pion decay constant F, and that the dimensionless variable
is accordingly defined as p=rgF,/2 |/8. Thus, the dimensionless equations of mo-
tion and solutions for ® (g) and a (g) are completely identical as the ones obtained
in the electroweak case of Refs. 8 and 13 and discussed in Section 2. There are no
solutions for (g/e)? = 0.39, whereas below this value we have two branches of
solutions, as shown in Fig. 1. Again, only the branch lower in energy belongs to
the presumably stable soliton solutions, whereas the upper branch corresponds to
the classically unstable solutions. In this paper we consider only the stable solu-
tions, although the unstable ones might still turn out to be useful, for example,
for describing so quickly decaying objects as meson resonances.

The meson we try to describe by a soliton is a, (1260). The reason is that
the hedgehog ansatz (2.8), i. e., our classical skyrmion with mass M, (Eq. (3.4))

—> -

carries the spin-isospin parity assignment K = (|J + I))" = 0%, i. e., it can be
viewed as a mixture of states with J = I and positive parity. Therefore, upon the
standard collective-coordinate quantization with J = I = 1, the excitation should
be identified with the axial-vector meson a, because of its (+) parity. We are
not sure if we can get a physical rho, i. e., massive vector mesons with I =J =1,
since it has negative parity. Still, there is a possibility that the solution of this pa-
rity problem is very simple, since it may be simply a matter of convention, which
we can see in the following way: Since the parity is defined through?

AU (& ) a7t = Ut (=%, 1)

(where 7,, is the parity operator), we conclude that the hedgehog ansatz (2.8)
is parity invariant, i. e., its parity is (4). However, since in the Lagrangian (3.1)
only the combinations R, = (9,U) U* occur, (3.1) is invariant under the substi-

tution U — U = iU. Then (2.8) is changed like this: U? (x) - D¢ (x) = iU (%)

and, obviously, iU* (—%, t) = —U+ (=%, t). Thus, the parity is switched to (—)
by a trivial multiplication by i, leaving the energy functional and the equations

of motion unchanged. If this interpretation is correct, U (¥) describes p rather
than a; mesons. (In this case, however, we would have to introduce an additional
term to break o and a; degeneracy.)

The physics constrains the parameters of the model more tightly than it looks
at first sight. The solutions as functions of the dimensionless coordinate g = rgF,/

2 ]/8 and therefore their sizes depend only on the ratio g/e in the dimensionless
p-space. The size in the usual coordinate r-space for a given g/e is therefore inver-
sely proportional to the coupling g. For (g/e)? = 0.0145, 0.06 and 0.386, the energy-
density-weighted*® r. m. s. radii {r)j are, respectively, {r>g = 0.367/g fm, 0.75/g
fm and 2.44/g fm. Since the size of the ¢; meson as a hadronic system should not
differ very much from, say, the size of the proton, we can get upper and lower
limits on g. Assuming that 0.3 fm < {r)>g << 2 fm, it follows that g~ 1.2—8
around (gfe)? ~ 0.386, g ~ 0.4—2.5 around (g/e)? ~ 0.06, and g ~ 0.2—1.2 in
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the region around (g/e)? ~ 0.0145. Obviously, the regimes (g/e)?2 ~ 0.386 and
(gle)* ~ 0.0145 can hardly be compatible. Thus it is not surprising that a detailed
calculation of the energy of the quantized soliton further below will further restrict
the possible ranges of both g and (g/e)2. Actually, a tighter lower bound on g can
already be obtained from the static energy M, (Eq. (10)) or rather from the pro-
duct g - M,, which depends only on g/e. Since the a, mass, m,,, is just M, plus
the rotational energy after quantization, m,, cannot be smaller than M,. The
minimal value of g is thus gM,/(m,,)..,. (See Fig. 2).

30

25
b

20

min(g) [
15|

05 |

1 1 1 1 | 1 1 1
0 005 0.0 015 020 025 030 035 040
(g/e)?

Fig. 2. min(g), i. e., the minimal allowed values of the coupling parameter g for various values
of (g/e)?, the squared product of the gauge coupling and the strength of the stabilizing term. (Ref. 9)

The semiclassical quantization is performed in the standard way!3:16);

UL (@) - U(m) = V(&) U (D) V1), (3.5)
AL (D) > A (1 8) = V(1) 4 () V* (), (3.6)
VeSU (2),

that is, using the time-dependent isospin rotations V (z). Now we arrive again
at an important issue already pointed out above: In order to choose the quanti-
zation scheme to be bosonic, we must give up the connection which the Skyrme
model has with QCD. We sacrifice this connection in order to at least obtain a
completely phenomenological solitonic description of mesons, and follow the bo-
sonic quantization scheme of Ref. 13. The mass of our Skyrme meson a, is then

AU+ 1)

— cl cl :
My = Mo [U®, 43 + a7

(3.7)
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where the spin of a; is / =1 and

ol si2f2 1 o,
a (U, 4] = =5 =g @ (U 47, (3.8)
oo o, |
a[U, 49 = f doo? {sinz@ [1 + %(é) (@,2 n su;z@) "

1 2
4 ( “7) +2]) (3.9

Putting (3.4), (3.7) and (3.8) together:

My, =L 23 aF, By (U4, A7) + g = 210
an*? aF, M, [U", ‘]+g128V§E[Ud,AfI]' (3.10)

The dependence of M,, on (g/e)? and, parametrically, on g is shown in Fig. 3
and compared with the experimental mass of the a, meson m,,.

The dependence of M,, is very peculiar, being able to fit m,, only for quite
a restricted range of (g/e)? and g. As (gfe)2 — 0, the moment of inertia a - 0 and
the rotational energy diverges. The rotational energy varies quickly also with
fi rite (g/e)2. From finite but very small (g/e)? to (gfe)?> = 0.39 it varies over three
orders of magnitude. As (gfe) grows, the rotational energy falls very quickly with
1/a, but then the static contribution M, becomes dominant, so that curves for
M,, rise again if g is not too large (¢ < 2). In such cases, M,, can never be lowe-
red to the experimental value. However, since M, ~ l/g, M, will be sufficiently
suppressed for sufficiently high g. At g = 2.5 the curve does not rise but flattens
out, and for g ~ 3, the M,, curves start intersecting the experimental m, . This
happens at the values of (gf/e)? which are already quite close to the limiting value
(gle)?> ~ 0.39 beyond which there are no more solutions,

However, the rotational energy grows as g3, so for higher g's it contributes
considerably even for relatively high (g/e)?. This is the reason that we cannot
reach m,, for g above g ~ 5.5. For instance, for g = 6, M,, falls sharply, but
cannot get as low as m,, before (ge)* ~ 0.39, beyond which no solutions exist.
Fig. 3 shows that the model can reproduce the a; mass for (g/e)? between 0.34
(for g ~ 3.5) and 0.39 (for g ~ 5.5 but also for g &~ 3). The coefficient of the sta-
bilizing term, e, is thus constrained to be between roughly 4.8 and 9. Interestingly,
this is consistent with the value e ~ 5 from the baryon Skyrme model. The value
e ~ 5 indicates that compatibility with the standard baryon Skyrme model would

favour the value of the coupling g ~ 3—3.5.

3.3. Further possibilities

As shown in Fig. 3, the model cannot yield masses jbelow 1.1 GeV. Does
this mean that already because of the possible masses, it is not possible to describe,

94 FIZIKA B (1992) 1, 83—97



KLABUCAR: AN OVERVIEW OF THE INTERPLAY..,

for instance, vector mesons, even if the other problems — like parity assignments
— are solved? Of course not! The present model has been chosen in order to ex-
ploit to the fullest what had already been learnt about electroweak skyrmions® 13,
The dynamics can, however, be modified. For example, one can try out various
other forms for the stabilization term and use the ones which permit solutions
of lower energy than in the present model, making it possible to describe also
mesons lighter than a;.

45

m [GeVv]

10

005 00 05 02 025 030 035 04

Fig. 3. The dependence of the model a; energy m = M, on (g/e)? for various values of the
coupling parameter g, The dashed line m,; is the experimental mass of the a; meson. (Ref. 9)

This ability to encompass many different mesons will open many interesting

questions. For example, while for the spin / = 1 we obtain isovector (|7| =1)
mesons (either g or a,, and hopefully it will be possible to incorporate both), a care-
ful analysis should show whether the ground state with / =0 can be identified
in some sense with the physical # (I = J = 0) meson or whether it is similar to
the ordinary skyrmion in that it is not a physical state.

Incorporating more mesons will not only help to pin down their couplings
g even more precisely, but, more importantly, it may also enable us to clarify its
connection with the empirical meson coupling constants. On the one hand, the
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couplings g will have to be fine-tuned to reproduce the meson. On the other hand,
if they are to be identified with the couplings of physical g, ay, ... particles, they
will have to satisfy empirical successful relations, such as g, = m/f,, i. e., the
universality for the g-coupling, or the KSFR relation2?.
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Originalni znanstveni rad

Dan je pregled jednog slucaja unakrsne fertilizacije dvaju razliCitih podrudja fizike,
naime hadronske i elektroslabe teorije. U hadronskoj fi zici pojmovi kao solitoni,
neperturbativne i nelinearne pojave i anomalije mnogo su primjenjivani u Skyr-
meovom modelu bariona. To je pak dalo veliki dodatni podsticaj proucavanjima
takvih pojmova i pojava u fizici elektroslabih procesa. Krug se zatvara time $to
nam ta proucavanja kazu kako prikazati drugu vrstu hadrona, naime mezone,
kao solitone Skyrmeovog tipa.
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