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We review a case of cross-fertilization of two distinct areas of physics, namely, 
hadronic and electroweak theory. In hadronic physics, concepts like solitons, non­
perturbative and nonlinear phenomena, and anomalies have found many appli­
cations in the Skyrme model of baryons. This has in turn given a large additional 
impetus to the studies of such concepts and phenomena in electroweak physics 
too. To close the circle, these studies give us clues how to represent the other kind 
of hadrons, namely mesons, as solitons of the Skyrme type. 

1. Introduction 

In the Skyrme model 1• 2 >, baryons are pictured as topological solitons appea­
ring in purely mesonic effective chiral theories, or, more precisely, in various va­
riants of the nonlinear chiral sigma-model. This idea has attracted considerable 
interest in the past few years both in the elementary particle and nuclear physics 
community. Long-standing concepts about nonlinear phenomena, solitons, ano­
malies, etc., find a concrete realization in the Skyrme model, whereby also many 
fundamental issues in hadronic physics are seen from a new angle. 

In context of electroweak interactions, nonperturbative phenomena may be 
observed when accelerator energies reach and surpass the electroweak symmetry­
breaking scale. This is obvious from the relation M1 = 2A (h) 2 between the 
Higgs-boson mass MH, its coupling A, and the Higgs vacuum expectation value 
(h)exp � 0.2 TeV, since Mn close to the TeV range and beyond dictates so large 
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a coupling J. that J./4n cannol be used as a perturbative expansion parameter any 
more. Several authors have therefore considered 3- B> the possibility of soliton 
solutions to the classical equations of motion. Namely, when the Higgs-boson 
mass MR in the Weinberg-Salam model tends to a >>sufficiently large<< value c� 1 
TeV and beyond), the model becomes equivalent to a gauged chiral model, so in 
this limit there is an immediate possibility of Skyrme-type solitonic excitations of 
gauge and Higgs bosons. 

Here we want to review one such possible interplay between Skyrme and 
Weinberg-Salam solitons, i. e., analogies and parallelisms between solitons in 
hadronic and electroweak physics. 

We shall elaborate this interesting interplay on the example of the solution 
obtained in Ref. 8. This was the first electroweak Skyrme-type soliton with gauge 
couplings fully included, whereas earlier analyses did not fully take into account 
the effects of nonzero gauge couplings. 

We recapitulate this in the second section. In the third section we show how 
electroweak solitons can be translated to the hadronic context, as was first done 
in Ref. 9. This reference is the second· of the basic articles (in addition of Ref. 8) 
on which the bulk of this overview is based. 

2. Skyrmion solutions to the Weinberg-Salam model 

2.1. Infinite-Higgs-mass, or strong-coupHng theory 

As in Ref. 8, we assume the standard Weinberg-Salam model with a single 
Higgs doublet <I> = (<p1, <pz). The Lagrangian describing the Higgs-boson sector is 

(2.1) 

f»,, is the SU (2) L 0 U (1) covariant derivative, f»,, = a,, - (ig/2) A,, - (ig'/2) B,,, 
-+ -+ 

A,, = A,, · 1:. For convenience, we de fine the matrix 

(2.2) 

and then perform the polar decomposition M = hU, where UeSU (2) represents 
the unphysical Goldstone bosons, while h = (<J> +<J>) 1 12 is real and represents the 
physical Higgs. We make two assumptions: (i) g' = 0 and (ii) his >>frozen<< in its 
vacuum expectation value <h)2 

= MiJ/2.?. > 0. Assumption (i) is equivalent to 
assuming sin 2 Bw = 0. As Klinkhamer and Manton 4> pointed out, it is necessary 
for finding a spherically symmetric solution. Since sin 2 Bw is small, we hope that 
we are doing a reasonable approximation. Assumption (i) leads to the global SU(2)v 
symmetry U -+ VUV+, A

,, 
-+ VA

,, 
v+, V e SU (2). Assumption (ii) is equivalent 

to having an infinite Higgs-boson mass M8 (and in finitely strong Higgs coupling 
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A) in the tree-level approximation. Assumptions (i) and (ii) and the Yang-Mills kinetic-energy term 2 A gives us 

(2.3a) 

(2.3b) 

(2.3c) 

Equations (2.3) define the classical Lagrangian for the gauged SU (2)L © SU (2)R chiral model (where SU (2)L is the gauge group). Chiral models have an identically conserved current 
(2.4a) 

where 
(2.4b) 

In this context, Kµ is not meaningful, since it is not gauge invariant. Admittedly, 
one can define a gauge-invariant current I(µ, 

(2.5a) 

However, it is not conserved: 

(2.5b) 

The charge Q = f K0d 3x is an integer in the ungauged chiral model. To keep 
the energy finite, U (t) must tend to a constant at spatial infinity. Space is there­
fore compactified to a three-sphere which is mapped by U (x) to the SU (2) mani­fold. The integers Q are associated with classes of the homotopy group n3 (SU (2)) = = Z. However, when SU (2)L is gauged, finite energy requires only the condition 
DµU -+ 0 at spatial infinity. We can, of course, choose U-+ 1 at Ix! -+ ex,, yiel­ding an integer-valued Q, but one should not claim to have thereby a topological configuration since this procedure has no gauge-invariant meaning. Of course, 
the charge Q = f K0d 3x is gauge invariant, but it has no topological meaning. 
In general, Q is not an integer. Below we show that there exist static localized 
solutions to the equations of motion, with Q not an integer. 
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Note that the Lagrangian (2.3) is just the Lagrangian of the gauged nonlinear a-model. Skyrme 1> was able to obtain· his stable soliton solutions after the added a fourth-order stabilizing term to the standard (ungauged) nonlinear a-model, since this term scaled differently from the usual chiral Lagrangian. We do not need the stabilizing term for this purpose since already the gauge-boson kinetic-energy term scales differently from the Higgs-boson Lagrangian, allowing for the possi­bility of a localized solution. (Recall that in some versions of the Skyrme model, the Skyrme term is replaced by an interaction with vector mesons, allowing for a description of baryons 10• 11• 2> via static solutions to such models.) Below we shall be able to obtain a finite-energy and a finite-size static soliton solution to (2.3). However, it is unstable under small perturbations of classical fields, i. e., it corres­ponds to a saddle point and not a minimum of energy. (Note that the term >>stability<< has been used quite sloppily by many authors. For some authors, classical sta­bility refers merely to the existence of a solution! For us, classically stable solu­tions are those which correspond to local minima of energy.) 
We can recover stability by including fourth-order terms like the Skyrme term in the effective Lagrangian. Such terms appear owing to quantum corrections 

to the model 1 2 >. We will obtain solutions with the gauged Skyrme term (2'9sky) added, and conjecture that they may correspond to real particles. So, we add 

to (2.3a) to obtain the complete Lagrangian 

2.2. Solutions for spherically symmetric ansatze 

(2.6) 

(2.7) 

To make the problem tractable, only spherically symmetric solutions of (2. 7) were considered8 • 13 • 9>, i. e., in addition to Skyrme's >>hedgehog<< ansatz for the static, classical Goldstone-boson field, 
-+ -+ 

A 

u (x) � uc1 (r) = cos e (r) + fr . r sine (r), (2.8) 
we choose the spherically symmetric ansatz for Aµ : 

g _ -Acl 
2 ' 

I a(r) - -
--· 2 (r X 7) 1 + /J (r) 

i1 + (5 (r)- f3 (r) r; · r) i1, (2.9) r r r 
where the time component of Aµ is eliminated by the gauge choice AO = 0. The remaining U ( 1)  gauge degree of freedom in (2.9) is eliminated by the additional gauge condition f3 (r) = 0. The static energy functional is then 

86 

M'fS [Uc!, Afl= 
Sn t> M0 [Uc1

, A�l], (2.10) 
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00 

Mo [Ucr, Af] = f de t.)� ( a 2 - ! ) 
2 

+ a•2 + 4a2a2 + r/ ce' + a) 2 + 
0 

+ F [ I + �ii2
2 

(F + 4e 2 (fJ' + cr)2) ]}, 

where F = 2 ( a + sin 2 fJ - � ) 
2 + + sin 2 28 and 

a=�= -8' [ e2 + F(g/e)2/ 8  J 
- e e2 + 4a 2 + F(g/e)2/ 8  . 

(2. I I) 

(2. 12) 

e = g (h > r/2 is a dimensionless variable and the prime denotes differentiation 
with respect to(!. Note that a (or equivalently CJ) appears in (2.11) with no deriva­
tives and hence is an auxiliary variable, expressed by (2.12). Therefore, only two 
variables, fJ and a, are dynamical degrees of freedom and their solutions specify 
the spherically symmetric soliton configurations appearing in the gauged a-model 
defined by (2. 7). These solutions were obtained in Ref. 8, and, except for the pure 
Weinberg-Salam case 1/e = 0 (i.e., .P = .P<P + .PA), independently also in Ref. 
7, and especially extensively discussed in Ref. 13. Here we review just the most 
important points. First, what we call the pure Weinberg-Salam (1/e = 0, i. e., 
.P0sky = 0) classical solution: Its energy is E = (Sn (h)/g) (1.7 9). Using Mw '.:::'. 
� 83 GeV, g � 0.67, and (h) = V2 Mw/g R:;j 175 GeV, it is E R:;j 11.6 TeV. Its 

energy density is localized within the length of roughly 0.01 fm. If a solution is 
stable under variations of classical fields, it is justified to assume that the existence 
of a corresponding state in quantum theory is very probable. However, our classical 
solution to (2.3), i. e., the pure Weinberg-Salam solution, is not stable. It is easy 
to find a variation {Jf) (r) which lowers the energy of the solution, so that we do not 
have a local minimum in the energy. However, in quantum theory, higher-order 
terms appear in the effective action 13 >. An example of such a term is the gauged 
Skyrme term .P0sky, Eq. (2.6), which reduces to the usual Skyrme term in the 
limit g � 0. By continuous variation of the parameters g and e, one can deform 
the pure Weinberg-Salam solution discussed above (corresponding to the limit 
1/e = 0) to the Skyrme soliton solution (g � 0) which is classically stable. In tra­
versing a path in the g-e plane from the pure Weinberg-Salam solution to the 
pure Skyrme solution, we should therefore find a transition from a classically un­
stable solution to a stable one. Indeed, after adding the gauged Skyrme term, 
solving the equations of motion for O < (g/e) 2 ;::S 0.3 9 yields two solutions for 
each g/e. (For (g/e) 2 > 0.3 9 there are no solutions.) One is classically unstable and 
goes into the pure Weinberg-Salam classical solution as 1/e � 0. The other goes 
into a classically stable solution of the ungauged Skyrme model and is therefore 
most probably also classically stable. (The rigorous proof of stability is of course 
very difficult.) Fig. 1 shows the energies for both branches of solutions along with 
values of Q for several values of(g/e) 2 

• Q � 1 only on the lower branch as g � 0, 
i. e., Q � Q as the solution goes over into the Skyrme solution. 
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Fig. 1. The energy in teraelectrenvolts of the solutions of the model given by the theory (2. 7) 
and the ansatze (2.8), (2.9), as a function of (g/e)2• The weak coupling is taken to beg= 0.67. 

1/e dictates the strength of the Skyrme term. (Ref. 8) 

The physical interpretation of the solutions on the upper unstable branch is not clear, but may be related to the other saddle-point solutions discovered in the Weinberg-Salam model, notably Klinkhamer's and Manton's sphaleron4>. The presumably stable lower branch may correspond to real particles. We call them >>weak skyrmions<<, analogous to hadronic skyrmions, but on the mass scale of several TeV. This allows for the possibility of directly observing weak skyrmions in future accelerators, for example through W-boson fusion. 

3. Mesons as nontopological solitions of a gauged a-model 

3. 1. Motivating, defining, and justifying the model inspired by electroweak skyrmions 

One of the appealing features of chiral solitons representing baryons in the Skyrme model 1• 2> is that, in this picture, baryons are objects of finite size, as all hadrons should of course be. However, what about the finite size of the other kind of hadrons - mesons? The Skyrme model seems to be unable almost by construc­tion to explain mesons: Baryons are extended >>kinks<< appearing in some effective field theories of mesons (especially pions). Mesons themselves are treated as point­like, >>elementary<< fields of the effective Lagrangian. Indeed, the pion is very special among mesons, and well suited for the role of a quasi-elementary chiral particle. However, for other mesons their composite nature is more manifest. Thus it would be very desirable to develop a description that would reflect their composite na-
88 FIZIKA B (1992) 1, 83-97 
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ture a lso wi thin the Skyrme mode l;  I wi ll here pro pose a possib le way how to 
represen t a t  leas t one meson , a 1, as an ex tended ob jec t, name ly ,  a nontopological 
so li ton o f  a chira l meson L agrangian , i .  e . , a so lu tion o f  the baryon number zero 
sec tor o f  the gauged a-mode l. 

>>Meson like<< so li ton con figura tions in the Skyrme mode l were a lso considered 
in Re f. 14. However , these were ob tained in qui te a differen t way , through a new, 
ra ther comp li ca ted ansa tz, and corresponded to combina tions o f  two-baryon -
two-an tibaryon configura tions . These so li tons consequen tly have very large mass "s 
( the- lowes t one i s  4234 Me V) and their con nec tion wi th physica l  mesons is no t 
clear. 

The approa ch I exp lain be low was firs t proposed in my Ref . 9 and was inspired 
by the work on non topo logica l so li tons in e lec troweak gauge theory 8• 1 3> . Here 
I review a s ligh tly shor tened trea tmen t o f  Ref . 9 .  

Various au thors 3
- B> con jec tured abou t the exis tence o f  so li toni c ex ci ta tions 

o f  gauge and Higgs bosons a t  energies around and beyond the e lec troweak symme ­
try-breaking sca le .  Such considera tions in e lec troweak theory wer � fur ther s timu­
la ted and inspired by the so li ton pic ture o f  baryons In fac t, the Weinberg-Sa lam 

mode l becomes equiva len t to a gauged chira l mode l when the Higgs-boson mass 
MH becomes sufficien tly large The possibi li ty 5 • 6 > o f  so lu tions to e le ctroweak 
theory whi ch are ana logous to those for the skyrmion is there fore immedia te .  
Their researchers 6• 1 5 > ,  however , did no t pay suffici en t  a tten tion to the effec ts 

o f  gaug e cou plings. 
In the Skyrme mode l, the topo logi ca l  index is known to be equa l to the baryon 

number . For ana logous so lu tions in e lec troweak theory , simi lar iden ti fications 5> 

were m ade -b ut erroneous ly ,  since for a nonvanishing gauge co upli ng i t  is im ­
possib le to de fine a gauge-invarian t topo logica l index . Indeed , Re fs. 7 and 8 ob tai ­

ned a so li ton so lu tion to the Weinberg -Sa lam mode l tha t  is non to po logica l in na­
ture precise ly be cause o f  the presen ce o f  mass less gauge fields, as dis cussed in 
the preceding sec tio n. Fur thermore , Ref . 13 showed tha t  these e lec trowe ;:ik skyr ­

mions shou ld be quan ti zed as bosons. 
Thi s  fina lly gives us the com ple te pi ct.ire o f  this fascina Ling in te rp lay : Had ­

roni c skyr mions inspired e le ctroweak skyrmions , and they in two sugges ted us 
how we can try to pic ture cer tain mesons wi th the Skyrme mode l on an essen tia l 
equa l foo ting wi th baryons , name ly ,  as nontopological so li tons , whi ch are the ex ten ­
ded con figurations o f  background effec tive meson fie lds o f  s pin 0, i .  e ., pions. 

-->-
(Note tha t  the pion fie ld n = F ,.'re (r) ou t o f  which the Skyrme baryon is made 

is no t the physical pion . The physi ca l, dynamica l par ti cle can be pic tured as a 
-->-

time-de penden t flu ctua tion on to p o f  the so li ton so lu tion for n = F ,.re (r), which 
in turn , by i ts non trivia l con figura tion , serves to re presen t baryons.) 

3 .2. Defining the model 

As in Sec tion 2 ,  we consider the Lagrangian o f  the gauged and Skyrme ­
s tabi li zed a -mode l, 

.ff' = .ft' a + .ff' f/ Sky + .ff' .4.> (3 .1) 
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where 

(3.2) 

Rµ is defined by (2.4b) as in the preceding section, but U is now connected to 
the pion field :n: :  

... ...  
U = ei" · �tF". (3.3) 

Similarly, .PA, ff'gsky and Fµ, and DµU in Eqs. (3. 1)-(3.3) are defined by (2.3a), 
(2.6), (2.3b) and (2.3c), respectively, except that A; are now (auxiliary) vector 
mesons and that their coupling constant g is now simply a free parameter, whereas 
in Section 2, g was the electroweak coupling in the Weinberg-Salam model. More­
over, ff'" in (3.2) is identical to ff'"' after assumptions (i) and (ii), i. e., to ff' <P in 
(2.3a), except for t he overall energy scale in front (- (h) 2/2 � -F;,/1 6) which 
is now given by $e pion decay constant F,. instead of the Higgs vacuum expec­
tation value (h). Thus, modulo different energy scales and different g, (3. 1) de­
fines the same model as (2.3) . This means that, just as electroweak skyrmions were 
obtained by translating the background pion into the Higgs field, we can translate 
it back, whereby weak gauge bosons A; are translated into vector mesons. Note 
that there is no contradiction in introducing this A; as a truly massless gauge par­
ticle since A; is also an auxiliary background meson field (just like the hedgehog 

-+ 

pion :n: = F,. re (r)), while the physical and, of course, massive-vector mesons 
should be obtained as rotational excitations through the standard semiclassical 
quantization introduced in this context by Adkins, Nappi and Witten 1 6>. In this 
context, the quantization must be applied to the >>Skyrme meson<<, i. e . ,  to the 
classical, static spherically symmetric configuration of the pion na and the gauge­
meson A;, just as the nucleon and LI are J = I/2 and 3/2 excitations of the Skyrme 
baryon. Note that a problem appears here, since mesons must be quantized as 
bosons, with an integer spin. This means that this treatment is not so firmly rooted 
in QCD as the treatment of baryons, but it is more ad hoc. Namely, to get baryons 
in the hadronic Skyrme model, one goes to a three-flavoured chiral model and in­
cludes the Wess-Zumino term which contains Ne, the number of colours in QCD. 
The odd Ne = 3 uniquely fixes 1 7

•
2> the quantization scheme to be fermionic. 

Thus, to quantize our nontopological skyrmions as bosons, we have to give up 
this beautiful and deep connection with QCD. In order to model mesons as soli­
tons, we must settle for less and take the SU (2) chiral model as a completely phe­
nomenological model whose stable nontopological solitons we quantize as bosons 
ad hoc, at least at this point. However, developments which may reestablish an a 
posteriori justification from a more fundamental level are possible, for examples, 
along the lines recently discussed by Kaplan 1 8 > .  In the first place, his model connects 
QCD and a nonrelativistic constituent quark model, but it also amounts in a ·,vay 
to a synthesis of the constituent-quark model and the Skyrme model at a deeper 
level. In Kaplan's view, a constituent, dressed quark Q is a nontrivial configuration 
of the light-quark condensate (i[q), caused by the >>seed<< light bare quark q. (Q 
carries all discrete quantum numbers of q.) In this way, not baryons but consti-
tuent quarks are topological solitons. Light flavour mesons, QQ objects, would 
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then be bound soliton-antisoliton configurations, with topological index zero. If such a configuration indeed gets constructed and solved, it is very likely that it will look similar to meson skyrmions described here. 
On the other hand, this issue of the foundation of the Skyrme model in QCD provides an additional, albeit somewhat negativistic motivation for such an ad hoc treatment of mesons for which no justifications are given from the level of QCD as the fundamental theory: - In addition to arousing enthusiasm, the Skyrme model has also been subject to much criticism. A relatively recent and quite com­prehensive critique has been given by Ball 1 9> . He concludes that there are no stable solitons in the meson (and glueball) sector of QCD, so that baryons cannot be skyrmions. If this is correct, i. e., if, contrary to the analysis of Witten and others 17>, baryon skyrmions do not have a basis in QCD after all, one is obliged to understand how skyrmions can have so many successes. The study of meson skyrmions, proposed in this paper, for which no fundamental justification from the level of QCD itself has been attempted at all, can then help to clarify whether also the successes of the Skyrme baryons can be explained simply by having the correct symmetries and the correct energy scale built into the model. 
Note that there is no contradiction of this model with the work done in those variants of the Skyrme model of baryons which include vector mesons in the La­grangian 2>.  In some of them the (!, w and a 1 meson fields were also included via the gauge principle, but in such treatments the fields were gauge bosons of a 

broken gauge theory, i. e., they had Lagrangian masses from the very start. Evidently such massive fields must vanish at infinity and cannot play any role in the boundary 
...... ...... condition at lr l -+ oo so it remains the standard, strong one : U -+ const as lrl -+  oo ,  

...... compactifying the domain of U (r) into S3 and causing U (r) to be a topologically nontrivial map. In contrast to that, our A; is massless, so that in the chiral model gauged with it, the finite energy implies a condition on the covariant derivative of 
the chiral field : DµU -+ 0 as lrJ -+ oo. This is precisely the reason for the non topolo-gical nature of the gauged solitons, as explained in Section 2 for the electroweak skyrmion. 
3.2. Simplifying ansiitze, semiclassical quantization, and results for the a 1 meson 

The same simplifying ansatze are used here as in Refs. 8 and 1 3, and in Sec­tion 2 of this work. In addition to the spherically symmetric >>hedgehog<< for a 
...... ...... ...... static, classical pion field, :n: = F,.re (r), causing uc1 (r) to be again given by (2.8), we once more choose the spherically symmetric ansatz (2.9) for Aµ and gauge choices A 0 = 0 and fJ (r) = 0. The static energy functional therefore differs from the one in Section 2 just by a scale prefactor, 

(3.4) 

where, as before, dimensionless quantity M0 [ uc1, Ai' ] is defined by (2. 1 1), a 
by (2. 12) and F = 2 ( a+sin28- �) 2 + � sin2 28. We stress again that unlike in 
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Section 2 where g was the experimental weak coupling (so that the energy depen­ded only on one parameter, the ratio g/e), in this section the coupling g is in prin­ciple also a free parameter. (Below we shall see that physical considerations in fact constrain it somewhat.) The only other differences are that the overall energy scale is now determined by the pion decay constant F,. and that the dimensionless variable 
is accordingly defined as e =rgF,,/2 VS. Thus, the dimensionless equations of mo­tion and solutions fore (e) and a (e) are completely identical as the ones obtained in the electroweak case of Refs. 8 and 1 3  and discussed in Section 2. There are no solutions for (g/e) 2 � 0.39, whereas below this value we have two branches of solutions, as shown in Fig. 1 .  Again, only the branch lower in energy belongs to the presumably stable soliton solutions, whereas the upper branch corresponds to the classically unstable solutions. In this paper we consider only the stable solu­tions, although the unstable ones might still turn out to be useful, for example, for describing so quickly decaying objects as meson resonances. 

The meson we try to describe by a soliton is a1 (1260). The reason is that the hedgehog ansatz (2.8), i. e., our classical skyrmion with mass M0 (Eq. (3.4)) ...... ...... . 
carries the spin-isospin parity assignment K" = (JJ + JJ)" = o+, i. e., it can be viewed as a mixture of states with J = I and positive parity. Therefore, upon the standard collective-coordinate quantization with J = I = 1, the excitation should be identified with the axial-vector meson a 1 because of its ( +) parity. We are not sure i fwe can get a physical rho, i. e., massive vector mesons with I = J = 1, since it has negative parity. Still, there is a possibility that the solution of this pa­rity problem is very simple, since it may be simply a matter of convention, which we can see in the following way : Since the parity is defined through 2> 

" u (...... ) " - , u+ c ..... ) n 0p 
x, t n

0P 
= -x, t 

(where n 0 p is the parity operator), we conclude that the hedgehog ansatz (2.8) is parity invariant, i. e., its parity is ( + ). However, since in the Lagrangian (3. 1 )  only the combinations R,. = (a,. U) u+ occur, (3. 1 )  is invariant under the substi-
-.. -+ -... -+  � tution U -+ U = i U. Then (2.8) is changed like this : uc1 (x) -+ uc1 (x) = i uc1 (x) 

and, obviously, i U+ (-x, t) = -U+ (-x, t). Thus, the parity is switched to (-) by a trivial multiplication by i, leaving the energy functional and the equations 
of motion unchanged. If this interpretation is correct, uc1 (x) describes e rather than a 1 mesons. (In this case, however, we would have to introduce an additional term to break e and a 1 degeneracy.) The physics constrains the parameters of the model more tightly than it looks at first sight. The solutions as functions of the dimensionless coordinate e = rgF,./ 
2 Vs and therefore their sizes depend only on the ratio g/e in the dimensionless e-space. The size in the usual coordinate r-space for a given g/e is therefore inver­sely proportional to the coupling g. For (g/e)2 = 0.0145, 0.06 and 0.386, the energy­density-weighted 1 3> r. m. s. radii (r)E are, respectively, (r)E = 0.367/g fm, 0.75/g fm and 2.44/g fm. Since the size of the a 1 meson as a hadronic system should not differ very much from, say, the size of the proton, we can get upper and lower limits on g. Assuming that 0.3 fm :S: (r)E < 2 fm, it follows that g � 1.2-8 around (g/e) 2 � 0.386, g � 0.4-2.5 around (g/e)2 � 0.06, and g � 0.2-1.2 in 
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the region around (g/e) 2 � 0.0145. Obviously, the regimes (g/e)2 � 0.386 and 
(g/e) 2 � 0.0145 can hardly be compatible. Thus it is not surprising that a detailed calculation of the energy of the quantized soliton further below will further restrict the possible ranges of both g and (g/e) 2

• Actually, a tighter lower bound on g can already be obtained from the static energy M0 (Eq. ( 10)) or rather from the pro­duct g • M0, which depends only on g/e. Since the a 1 mass, m01 , is just M0 plus the rotational energy after quantization, m01 cannot be smaller than M0 • The minimal value of g is thus gM 0/(m01
)exp· (See Fig. 2). 

3.0 

2.5 

2.0 

min ( g )  

1.5 

1.0 

0.5 

O 0.05 0.10 0.15 0.20 0.25 0.30 0.3S 0.40 I g / e )2 

Fig. 2. min (g), i. e., the minimal allowed values of the coupling parameter g for various values 
of (g f e) 2, the squared product of the gauge coupling and the strength of the stabilizing term. (Ref. 9) 

The semiclassical quantization is performed in the standard way 1 3• 1 6>: 
-+ -+ -+ 

uc1 (r) � U (r, t) = V (t) uc1 (r) v+ (t), 
-+ -+ -+ A�' (r) � A ,. (r, t) = V (t) A�1 (r) v+ (t), 

Ve S U  (2), 

(3.5) 

(3.6) 

that is, using the time-dependent isospin rotations V (t). Now we arrive again at an important issue already pointed out above: In order to choose the quanti­zation scheme to be bosonic, we must give up the connection which the Skyrme model has with QCD. We sacrifice this connection in order to at least obtain a completely phenomenological solitonic description of mesons, and follow the ho­sonic quantization scheme of Ref. 13. The mass of our Skyrme meson a 1 is then 
(3.7 ) 
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whe re the spin of a 1 is / = 1 an d 

5 12  V2 1 -a [Ucl Acl ] = __ __ a [Ucl Acl ] 
' I -

3 g3Fn 

' I ' 

00 

f { [ 
1 ( g' ) 

2 
( sin 2 e) a [uci, Afl ] = dge 2 sin2 e 1 + 8 e 

e1 2 + � + 
0 

Putt ing (3.4 ), (3. 7) an d (3.8) togethe r :  

(3. 8) 

( 3 . 9 ) 

(3. 10) 

The de pen den ce of Ma1 
on (g/e) 2 an d, pa ramet rically , on g is shown in F ig. 3 

an d com pa re d w ith the e xpe rimental ma ss of the a 1 me son ma1 , 

The de pen den ce of Ma1 is ve ry pe cul ia r, be ing able to fit ma1 only for q uite 
a re st ricte d range of (g/e) 2 an d g. A s  (g/e) 2 � 0 ,  the moment of ine rt ia a � 0 an d 
the rotat ional ene rgy dive rge s. The rotat ional ene rgy va rie s  q uickly al so w ith 
fin ite (g/e) 2

• F rom fin ite b ut ve ry small (g/e) 2 to (g/e)2 = 0 .3 9  it va rie s  ove r th ree 
o rde rs of magn it ude. A s  (g/e) grow s, the rotat ional ene rgy fall s ve ry q uickly w ith 
1 /a, b ut then the stat ic cont rib ut ion M O be come s dom inant ,  so that curve s fo r 
Ma1 rise aga in if g is not too la rge (g < 2) . In such ca se s, Ma1 can neve r be lowe ­
re d to the e xpe rimental val ue. Howeve r, sin ce MO ,...._, 1 /g ,  MO w ill be suff iciently 
suppre sse d fo r suff icie ntly h igh g. At g = 2 .5 the curve doe s  not rise b ut flatte ns 

o ut ,  an d for g � 3, the Ma1 curve s sta rt inte rse ct ing the e xpe rimental ma1 • Th is 
ha ppen s at the val ue s  of (g/e) 2 wh ich a re al rea dy q uite clo se to the l im it ing val ue 
(g/e) 2 � 0. 39 beyon d wh ich the re a re no mo re sol ut ion s. 

Howeve r, the rotat ional ene rgy grow s a s  g 3, so for h ighe r g 's it cont rib ute s 
con side rably even fo r relat ively h igh (g/e)2 . Th is is the rea son that we cannot 
rea ch ma1 fo r g above g � 5.5. Fo r in stan ce ,  for g = 6, Ma1 fall s sha rply ,  b ut 
cannot get a s  low a s  ma1 

be fo re (g/e)2 � 0. 39 , beyon d wh ich no sol ut ion s e xist. 
F ig. 3 show s that the mo del can re pro duce the a 1 ma ss for (g/e) 2 between 0.34 
( for g � 3. 5) an d 0. 39 ( for g � 5. 5 b ut al so for g � 3). The coeff icient of the sta­

b il iz in g  te rm ,  e, is th us con st ra ine d to be between ro ughly 4.8 an d 9 .  Inte re st ingly , 
th is is con sistent w ith the val ue e � 5 from the ba ryon Sky rme ;mo del . The val ue 
e � 5 in dicate s that com pat ib il ity w ith the stan da rd ba ryon Sky rme mo del wo ul d  
favo ur the val ue of the co upl in g g � 3-3.5. 

3.3. Further possibilities 

A s  shown in F ig. 3, the mo del cannot y iel d ma sse s  [below 1 .1 GeV . Doe s 
th is mean that al rea dy be ca use of the po ssible ma sse s, it is not po ssible to de scribe, 
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for instance, vector mesons, even if the other problems - like parity assignments - are solved? Of course not! The present model has been chosen in order to ex­ploit to the fullest what had already been learnt about electroweak skyrmions 8• 1 3 > . 
The dynamics can, however, be modified. For example, one can try out various other forms for the stabilization term and use the ones which permit solutions of lower energy than in the present model, making it possible to describe also mesons lighter than a 1 • 

4.5 

40  

3.5 

3.0 

> 

8 
E 

2.5 

2.0 

1.5 

I 1.5 2 3 4 5 6 

\0 '---�-�-�-��-�-�-�-�-
0.05 0.10 0.15 0.20 0.2S 0.30 0.35 0.1.0 

(g/e )2 

Fig. 3. The dependence of the model a 1 energy m = M0 1  on (g/e) 2 for various values of the 
coupling parameter g. The dashed line m. 1 is the experimental mass of the a 1 meson. (Ref. 9) 

This ability to encompass many different mesons will open many interesting 
-+ questions. For example, while for the spin l = 1 we obtain isovector ( IJJ = 1) mesons ( either e or a1 , and hopefully it will be possible to incorporate both), a care­ful analysis should show whether the ground state with l =10 can be identified in some sense with the physical r; (I = J = 0) meson or whether it is similar to the ordinary skyrmion in that it is not a physical state. 

Incorporating more mesons will not only help to pin down their couplings 
g even more precisely, but, more importantly, it may also enable us to clarify its connection with the empirical meson coupling constants. On the one hand, the 
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couplings g will have to be fine-tuned to reproduce the meson. On the other hand, 
if they are to be identified with the couplings of physical e, a 1 , • • •  particles, they 
will have to satisfy empirical successful relations, such as ge = m;ffe, i .  e., the 
universality for the e-coupling, or the KSFR relation20i . 
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PRE G LED ME DUI GRE S LA BIH I HADRO NSKIH SK YRM IO NA 
DUBRAVKO KLABUCAR 

Institut •>Ruder Boskovic«, P. p. 1016, 41001 Zagreb 

UDK 539. 1 2  

Originalni znanstveni rad 

Dan je pregled jednog sluca ja unakr sne fer tiliza ci je dva ju r azli citih podr ucja fizike , 
naime hadron ske i e lek tro slabe teori je. U hadron sko j fizici , po jmovi kao so li toni , 
ne per turba tivne i nelinearne po jave i anomali je mnogo su pr im jen jivani u Skyr­
meovom model u bariona . To je pak dalo veliki doda tni pod stica j pro ucavan jima 
takvih po jmova i po java u fizici e lek tro slabih proce sa. Kr ug se za tvara time sto 

nam ta pro ucavan ja ka zu kako prikaz ati dr ug u  vr stu had ron a, naime mezone , 
kao soli tone Skyrmeovog ti pa. 
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